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1. Introduction 

The aim of this work has been to review the neurochemical alterations described in the 
cerebellar ataxias, and to enumerate the attempts made at their pharmacological treatment. 
As will be shown, little use has been made of the neurochemical information available, and 
the therapeutic trials have been far from successful.  

The predominant (though not exclusive) reference to degenerative ataxias is due to the 
fact that the specificity of the affected cell populations should allow anticipation of 
more or less specific neurochemical alterations. This information could be used to look 
for therapeutic strategies, given the absence of curative treatments for the majority of 
ataxic disorders. This review covers only the pharmacologic attempts performed to treat 
ataxic symptoms, and is not exhaustive in terms of nosology, genetics or congenital 
errors of metabolism. The neurochemical basis of some non-degenerative ataxias that 
demonstrate favourable responses to pharmacological treatment are also reviewed. An 
outline of the physiological neurotransmission in the cerebellum opens this chapter 
(Table 1).  

2. Neurotransmission in the cerebellum  

The cerebellum is made up of four pairs of nuclei located in the deep white matter that 
covers the fourth ventricle, and is surrounded by a superficial layer of grey matter. The 
cerebellar cortex has a very uniform cellular structure and great cell density. 

In the cortex of the cerebellum, there are several types of inhibitory interneurons that utilize 
-aminobutyric acid (GABA) as neurotransmitter. These are Golgi cells (that coexpress 
GABA with glycine), stellate cells, basket cells and Lugaro cells.  

Purkinje cells are also GABAergic; they are the only ones whose axons exit the cortex of the 
cerebellum, projecting towards the cerebellar and vestibular nuclei. They use taurine as an 
osmotic regulator. 
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The excitatory amino acid glutamate is used in the cerebellar cortex by granule cells and 
unipolar brush cells. The axons of the granule cells constitute the parallel fibres of the 
molecular layer.  

Most of the afferent fibres of the cerebellum are excitatory and use glutamate as main 
neurotransmitter. The climbing fibres that leave the contralateral inferior olive and synapse 
with the Purkinje cell dendrites are mostly glutamatergic, in addition to using aspartate and 
homocysteic acid. The mossy fibres are more numerous and originate in a number of areas, 
such as the pontine nuclei, reticular formation, spinal cord, deep cerebellar nuclei (as 
collaterals to the nuclear axons) and unipolar brush cells. They reach the dendrites of the 
granule cells in the so called glomerular structures. The great majority of mossy fibres use 
glutamate; a small proportion, acetylcholine (afferents from the vestibular nuclei and others 
from the cerebellar nuclei) and peptides such as enkephalins, cholecystokinin, 
corticotrophin, or calcitonin gene related peptide (CGRP). Part of the climbing and mossy 
fibres which originate in precerebellar structures, emit a collateral ramification that reaches 
the deep cerebellar nuclei on their trajectory toward the cortex. The efferent nuclear fibres 
are excitatory, with the exception of those destined for the inferior olives, which have an 
inhibitory function.  

In addition to the mossy and climbing fibres, there is a group of beaded fibres that use 
monoamines as neurotransmitters, and reach the three layers of the cerebellar cortex.   

 
Table 1. Neurotransmitters in the cerebellum (references 1-7). 

Origin in vestibular nuclei Acetylcholine 

Origin in hipothalamus Histamine 

Origin in reticular formation Serotonin 

Origin in locus ceruleus Noradrenaline 

Golgi cells (coexpressed with GABA) Glycine 

Golgi cells 
Stellate cells               
Basket cells 
Lugaro cells 
Purkinje cells 

GABA 

Mossy fibers                    
Climbing fibers  
Granule cells 
Parallel fibers 
Unipolar brush cells 

Glutamate 
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A contingent of noradrenergic fibres stems from the locus ceruleus, and there seems to be a 
group of dopaminergic afferents of indeterminate origin. Serotonergic fibres originate at the 
paramedian and lateral reticular nuclei, the periolivary reticular formation and the lateral 
tegmental region; it has not been possible to demonstrate connections between the raphe 
nuclei and the cerebellar cortex. Some histaminergic fibres reach the cerebellar cortex from 
the hypothalamus.  

Nitric oxide (NO) is a non-synaptic neurotransmitter present in the cerebellar cortex, mostly 
generated in the soma and parallel fibres of the granule cells. This substance spreads 
through the cell membranes and acts on glial cells and some neurons, stimulating the 
synthesis of cyclic guanosine-monophosphate. Basket and unipolar brush cells also 
synthesise NO, although not so Purkinje cells (1-7).  

In conclusion, neurotransmission in the cerebellum implicates the amino acids glutamate 
and GABA, which establish an equilibrium between excitatory and inhibitory phenomena  
(Table 1).   

Figures of the anatomy of the cerebellum and its connections, and of the neurochemical 
organization of the cerebellar cortex may be found the works of Colin et al (5), and Ottersen 
et al (1). 

3. Neurochemistry and pharmacological therapy of the cerebellar ataxias  

The abundance of neurotransmitters in the cerebellum complicates the task of determining 
which among them are implicated in disease pathogenesis. In addition, neurochemical data 
about many diseases is fragmentary. This section reviews the available neurochemical 
information (Table 2) and attempts at pharmacological treatment (Table 3) of the following 
conditions:  

1. Cortical cerebellar atrophies  
2. Atrophies of the cerebellar cortex and afferent fibres from the brainstem 

(olivopontocerebellar atrophies, OPCA). 
3. Spinocerebellar atrophies. 
4. Degenerations of the dentate nucleus and efferent tracts of the cerebellum.  
5. Episodic ataxias. 

4. Cortical cerebellar atrophies  

The cortical cerebellar atrophy (CCA) of idiopathic etiology constitutes a relatively 
straightforward neurochemical model: the loss of Purkinje cells in the cerebellar vermis (8) 
causes a selective decrease of the concentration of GABA in the dentate nuclei (9) and 
cerebrospinal fluid (CSF) (10-13), with no reduction in that of glutamate (9), homovanillic 
acid (HVA), 5-hydroxiindolacetic acid (5-HIAA), or the noradrenergic metabolite 3-
methoxy-4-hydroxyphenylglycol (MHPG) (14). Reduced consumption of glucose in the 
cerebellum has been determined by positron emission tomography (PET) (15). This 
condition presents as a late-onset, pure cerebellar syndrome (8). Autosomal dominant 
spinocerebellar ataxias (SCA) that exhibit a progressive and isolated cerebellar syndrome 
include SCA 5, 6, 11, 15, 22, 26 and 30.   
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Cortical cerebellar atrophy Decreased content of GABA in the dentate nuclei and CSF. 
Oivopontocerebellar 
atrophy  

Decreased levels of GABA and glutamate in the cerebellar cortex, and of 
GABA in the dentate nuclei. Decreased concentration of dopamine and 
HVA in putamen, caudate and nucleus accumbens.  
CSF: decreased levels of GABA and glutamate  

Friedreich's ataxia  Decreased glutamate concentration in the grey substance and dorsal 
columns in the lumbar spinal cord.  
Low glutamate and GABA concentrations in the cerebellar cortex.  

Machado-Joseph disease  Decreased HVA in CSF.  
Dentatorubral-
pallidoluysian atrophy  

Decreased GABA and substance P in globus pallidus and substantia nigra, 
and of choline-acetyltransferase in putamen and caudate nucleus.  
Reduced GABA in CSF.  

Episodic ataxia type 6  Defective glutamate uptake  

Table 2. Neurochemistry of the cerebellar ataxias. 

 

Cortical cerebellar atrophy  Anticholinesterase drugs: physostigmine (13,53)  
Serotonergic drugs: L-5-hydroxytryptophan (38-41), buspirone (43-47), 
tandospirone (48) 
Serotonergic antagonists: ondansetron (49)  
Peptides: TRH (51,52)  
GABAergic drugs: gabapentin (25), pregabalin (31) 
NMDA agonists: D-cicloserine (54)  
Carbonic anhidrase inhibitors: acetazolamide (55,56)  
Piracetam (32,33) 

Oivopontocerebellar 
atrophy  

Anticholinesterase drugs: physostigmine (53,94)  
Serotonergic drugs: L-5-hydroxytryptophan (40,91), buspirone (46)  
Dopaminergic drugs: amantadine (89)  
Peptides: TRH (52)  
Cholinergic drugs: lecithin (95), L-acetylcarnitine (99)  
GABAergic drugs: vigabatrin (90), gabapentin (103), zolpidem (101)  
Glucocorticoid drugs: betamethasone (105)  
Glutamatergic drugs: ramified amino acids (100)  
Riluzole (102) 

Friedreich's ataxia  Cholinergic drugs: L-acetylcarnitine (99)  
Serotonergic drugs: L-5-hydroxytryptophan (40,91) 
Tandospirone (48) 
Dopaminergic drugs: amantadine (89,115)  
GABAergic drugs: vigabatrin (116)  
Peptides: TRH (52)  
Iron chelators: deferiprone (133) 
Antioxidant agents: idebenone (118-121,123, 126,127)  
Erythropoietin (131, 132) 

Machado-Joseph disease  Tetrahydrobiopterin (140)  
Trimethoprim-sulfametoxazole (141,145)  
Serotonergic drugs: buspirone (92), fluoxetin (120), tandospirone (147, 48)  
Antiepileptic drugs: lamotrigine (146)  
Antiarrhythmic drugs: mexiletine (148) Riluzole (102) 

Episodic ataxia type 1  
Episodic ataxia type 2  
Episodic ataxia type 3  
Episodic ataxia type 4  
Episodic ataxia type 5  

Acetazolamide, phenytoin (156)  
Acetazolamide (161)  
Acetazolamide (164)  
Dimenhydrinate (166)  
Acetazolamide (169)  

Table 3. Pharmacological therapy of the cerebellar ataxias. Boliographic references are in 
brackets.  
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A deficiency of GABA in the cerebellum may lead to cerebellar ataxia, as suggested by 
abnormal GABAergic neurotransmission in the presence of antibodies directed against the 
enzyme glutamic decarboxylase (GAD) (16), and the coexistence of ataxia with the 
aforementioned antibodies (17-19). Anti-GAD antibodies are present in juvenile neuronal 
ceroid-lipofuscinosis, a disorder that may associate ataxia (20), and a selective vulnerability 
of GABAergic neurons has been found in other lysosomal disorders (21). Besides, an 
amelioration of ataxia was achieved with the use of GABAergic drugs in a case of adult 
GM2 gangliosidosis (22), and administration of gabapentin improved motor coordination in 
potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) 
knockout mice, which exhibit a decreased content of GABA in the cerebellum (23).  

The pharmacological trials in CCA are reviewed in the following section.  

An open-label trial of gabapentin reported a substantial clinical improvement, and 
statistically significant differences in the scores of some items selected from the International 
Cerebellar Ataxia Rating Scale (ICARS) (24). Ten patients were initially given a single dose 
of 400 mg of gabapentin, followed by doses between 900 and 1600 mg per day during four 
weeks. Every patient experienced an improvement in ataxia, and in three, gait became 
normal (25). Gabapentin interacts with the 2- subunit of the P/Q type voltage-dependent 
calcium channels (VDCC) (26), stimulates GABAergic neurotransmission by presynaptic 
mechanisms (27) and increases the concentration of GABA in the brain of healthy adults 
(28). More recently, gabapentin treatment decreased ICARS scores by more than 10% in 11 
patients with SCA 6 (caused by an abnormal expansion in CACNA1A, 19p13, that encodes 
the 1A subunit of the P/Q-type VDCC), indicating that the drug could be beneficial in this 
disease (29).  

Pregabalin, a molecule closely related to gabapentin, improved the scores in the Scale for the 
Assessment and Rating of Ataxia (SARA) (30) in a single blind, placebo controlled trial that 
included two patients with CCA (31).  

A patient with cortical cerebellar ataxia was administered piracetam in a single-blind trial. 
Piracetam (a derivative of GABA that binds to H3–glutamate sites) improved tandem gait 
and gait ataxia in a dose of 60 g per day, and the authors concluded that this drug might 
have an anti-ataxic effect when used in high doses (32). Subsequently, 60 g per day of 
piracetam was given to a group of two patients with hereditary CCA, and six with other 
hereditary ataxias (excluding Friedreich ataxia, FRDA), in an open-label trial. The reduction 
obtained in the mean total score of ICARS (from 39.4±17, to 30.9±14.9), and in that of the 
posture and gait item, reached statistical significance (33).  

Chan-Palay et al induced ataxia in animals through thiamine deprivation, and found a loss 
of serotonergic fibres in the nervous system (34). As a consequence, the authors suggested 
that a deficiency of serotonin might constitute the neurochemical basis for ataxia in humans 
(35). Anyway, neither a deficiency of serotonin nor atrophy of structures that could cause 
serotonergic denervation have been demonstrated in humans with CCA. The modulating 
effect of serotonin on GABAergic neurotransmission could explain some of the results 
reported below (36,37).   

In two studies on the serotonergic precursor L-5-hydroxytryptophan, improved stance and 
speech were obtained in patients with degenerative and secondary ataxias, CCA among 

www.intechopen.com



 
Spinocerebellar Ataxia 

 

178 

them (38,39). However, in a double-blind placebo crossover study of 13 patients with CCA, 
seven with OPCA, and 19 with FRDA, no improvement in ataxia was observed (40), 
although the inclusion of different diseases in the mentioned trials prevented a clear 
assessment of the effect of L-5-hydroxytryptophan on CCA. In addition, this drug was 
administered to six patients with CCA in an open-label study, without finding changes in 
the amplitude of voluntary movement or in the latency of electromyographic activity in 
antagonist muscles, showing that L-5-hydroxytryptophan was not an effective therapeutic 
agent for CCA (41).  

The drug buspirone stimulates the serotonergic 5-HT1A receptor. It is currently used as an 
anxiolytic (42), so this effect must be ruled out in its assessment as a treatment for CCA (43-
47). Trouillas et al studied the effect of buspirone on CCA in an open-label (42) and in two 
placebo-controlled studies (44,45). They defined their results as “a progressive modulation, 
rather than a radical transformation of ataxic symptoms” (43,45), referring to the limited and 
delayed improvement achieved. Lou et al (46) used buspirone in an open-label study in 14 
patients with CCA and six with OPCA; the drug was administered in accordance with the 
severity of the ataxia. The authors found that buspirone was effective in cases of mild or 
moderate ataxia, though they did not individualize its effect on any of the two disorders. 
Andrade-Filho et al (47) noted improvement in 11 patients with CCA, with the addition of 
buspirone to other anti-ataxic and antiepileptic drugs. However, the methodology 
employed in this work did not make clear the aetiology of the ataxias, nor did it measure 
accurately the effectiveness of the drug.  

The serotonergic agonist tandospirone was given during four weeks to 5 patients with SCA 
6, 5 with SCA 1, 6 with SCA 2, 14 with Machado Joseph disease (MJD), and 9 with 
multisystem atrophy. This was an open-label, non blinded trial, and obtained reductions in 
the ICARS scores of the SCA 6 (p 0.043) and MJD (p 0.005) subgroups that reached statistical 
significance. It must be remarked, however, that the two tables in this article mentioned 
different values for the pre-treatment mean ICARS score of the cerebellar-multisystem 
atrophy subgroup, that the discussion incorporated results not specified in the 
corresponding section, and that the value of probability (p<0.0001) for the reduction of 
ICARS scores after treatment with tandospirone for the entire group, was out of proportion 
with the results of p for every subgroup of patients (48). 

A double-blind, placebo controlled study of the serotonergic antagonist ondansetron 
showed worsening of the knee-heel manoeuvre in 15 patients with CCA (49).   

Thyrotropin-releasing hormone (TRH) increases noradrenaline turnover, facilitates 
cholinergic transmission, and adjusts GABAergic neurotransmission (50). Although its 
intravenous administration had no effect on one patient with familial CCA (51), a study of 
patients with CCA, OPCA and FRDA showed an amelioration of postural instability (52). 
Obviously, the risk of hyperthyroidism prevents the prolonged use of this potentially 
beneficial agent.   

The use of the anti-cholinesterase drug physostigmine in two double-blind, placebo 
controlled studies in patients with CCA, obtained no improvement in ataxia. The authors of 
both articles concluded that physostigmine was not effective in the treatment of this disease 
(13,53).   
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The amino-acid D-cycloserine, a partial agonist of the N-metil-D-aspartate (NMDA) 
glutamate receptor, was used in a placebo controlled trial in two patients with CCA, two 
with SCA 6 (53), 10 patients with multisystem atrophy and one with degenerative 
spinocerebellar ataxia. Mild improvements were found in some items of ICARS, and it was 
suggested that activation of NMDA receptors could lead to symptomatic improvement in 
spinocerebellar ataxia (54).  

Finally, the use of acetazolamide in three patients with SCA 6 was found to have no effect 
on ataxia (55). Nevertheless, an open-label study of 9 patients with SCA 6 treated with 500 
mg per day of acetazolamide, achieved a statistically significant improvement in ICARS 
scores and in the results of posturographic analysis (56).  

Some forms of CCA have a non-degenerative etiology. Chronic abuse of ethanol may cause 
loss of neurons with GABA-A receptors, especially in the Purkinje cell layer, and vermian 
atrophy. Abstention from alcohol has been proposed to halt progression of ataxia (57).  

Cerebellar paraneoplastic degeneration is a remote consequence of cancer. It is characterised 
histologically by loss of Purkinje cells and the presence of perivascular and leptomeningeal 
inflammatory infiltrates (58). An autoimmune cause is invoked by the presence of 
antibodies directed against epitopes common to the tumour and: 1) Purkinje cells (Yo, Tr) 
(59,60), 2) Hu and Ri nuclear proteins (60), 3) Tr dendritic protein (61), 4) P/Q-type VDCC 
(62,63), and 5) mGluR1 type glutamate metabotropic receptors (64). The latter are capable of 
altering both the acute and plastic response of Purkinje cells, causing cerebellar dysfunction 
(64). Antineoplastic treatment is recommended, or immunotherapy in its defect (60).  

5. Olivopontocerebellar atrophies 

The olivopontocerebellar atrophies comprise a heterogeneous group of disorders 
(degenerative diseases, prionopathies, hereditary errors of metabolism and mitochondrial 
encephalopathies) whose histological substrate is: 1) loss of neurons in the inferior olive and 
ventral portion of the pons; 2) loss of mossy and climbing fibres, and 3) atrophy of the 
cerebellar cortex (65). There is depletion of Purkinje and granule cells in the cerebellar 
cortex, especially in the hemispheres (8). This expresses clinically a global cerebellar 
syndrome, accompanied by additional neurological signs. It may be sporadic or familial; 
familial cases are associated with a greater frequency of medullar signs (with the exception 
of spasticity), dystonia and oculomotor abnormalities (65). Autosomal dominant 
spinocerebellar ataxias in which OPCA constitutes the pathological or radiological substrate 
are SCA 1, 2, 7, 12 and 13 (66).  

A fourth part of sporadic OPCA cases develop multisystem atrophy (which associates 
parkinsonism and autonomic failure) (66,67). Analysis of pathological material has shown 
immunoreactive inclusions to alpha-synuclein in oligodendrocytes (68) and neurons (69) in 
this disease. However, this is not the case with SCA1 or SCA2 (disorders caused by 
expansion of CAG triplets in 6p22.3 and 12q24.13), in which olivopontocerebellar atrophy 
constitutes the pathological basis (66). The frequency of associated lesions (locus coeruleus, 
red nucleus, substantia nigra, dentate, hypoglossal and dorsal motor nuclei, nucleus 
ambiguus, etc) with those described, blurs the nosological limits of OPCA (70).  

Neurochemical studies in OPCA have demonstrated an important decrease of GABA 
content in the dentate nuclei (9,71,72) and cerebellar cortex (71). 
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The content of glutamate in the cerebellum varied between an important reduction and 
normality, in different sources (9,71,72). Kanazawa et al established correlation in brains 
with OPCA, between: 1) the content of glutamate in the anterior vermis, and the density of 
granule cells; 2) the concentration of glutamate in the posterior vermis and the cerebellar 
hemispheres, and the cellular density of the inferior olive; 3) the content of GABA in the 
dentate nuclei, and the density of Purkinje cells (9). 

In an autoradiographic receptor study, Albin and Gilman found a statistically significant 
reduction in the density of GABA, benzodiazepine (BZD) and glutamate receptors in the 
cerebellar cortex of OPCA brains, compatible with loss of granule and Purkinje cells (73). A 
PET study found diminished flumazenil binding in the brainstem and cerebellum, 
confirming the deficiency of GABA observed in OPCA (74).  

A study of a patient with sporadic OPCA found IgM antibodies directed against the 
glutamate receptor subunit GluR2. Antibodies were demonstrated on Purkinje cells, basal 
portion of the pons and inferior olive, by immunohistochemical methods. The antibodies 
were shown to be able to depolarise neurons in vitro, a fact that pointed to excitotoxicity of 
autoimmune origin in the genesis of the disease (75). 

A low activity of the enzyme glutamate dehydrogenase was previously considered a 
biochemical hallmark of OPCA (76), although later studies demonstrated a lack of specificity 
of this metabolic alteration (77,78). 

PET studies have shown decreases in dopamine and HVA levels in the striatum in familial 
(79) and sporadic (80) OPCA. The density of dopamine D2 receptors was normal in the 
putamen and caudate nuclei in one parkinsonian patient who exhibited OPCA at autopsy, 
demonstrating the possibility of presynaptic parkinsonism in this disease (81).  

A reduced acetylcholinesterase activity and a low density of muscarinic receptors in the 
cerebellar cortex were found in familial OPCA, suggesting that cholinergic denervation was 
a major neurochemical anomaly in this variant (82,83). Nevertheless, choline-
acetyltransferase activity in mossy fibres (1,3) was greater in familial OPCA than in control 
cases (82), disproving the previously mentioned proposal. 

In CSF, in addition to a low content of GABA (9-11), a low glutamate level was found in 
sporadic OPCA (11), as well as low levels of HVA, thiamine and MHPG in hereditary OPCA 
(84-86), with those of tryptophan and 5-HIAA in normal ranges (85). 

In addition, a decrease in the levels of pontine and cerebellar N-acetylaspartate (reflecting 
neuronal loss), was found by high field proton magnetic resonance spectroscopy (1H MRS) 
in patients with SCA 2 and cerebellar multisystem atrophy. An increase in myoinositol, that 
points to involvement of glial cells, was also found in multisystem atrophy (87). 

To summarise, deficiencies of GABA, glutamate, dopamine and possibly noradrenaline, are 
present in the nervous system of OPCA patients, although no deficiencies of serotonin or 
acetylcholine have been documented (79,85).  

In an ataxia-telangiectasia (AT) brain with cerebellar, inferior olive and dentate nuclei 
atrophy, the contents of GABA and glutamate in the cerebellar cortex, and of GABA in the 
dentate nuclei, were lower than those in controls (88). These neurochemical findings were 
similar to those in hereditary OPCA (71), and demonstrate that the neurochemical 
abnormalities of the ataxias are independent of the underlying condition.  
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The neurochemical complexity of OPCA makes successful pharmacological therapy 
difficult. As outlined below, a large number of clinical trials have been done, in an attempt 
to find a remedy. 

A double-blind placebo controlled study using amantadine hydrochloride in 30 patients 
with OPCA without akinesia, obtained improvements in simple and movement reaction 
times in response to visual and auditory stimuli, that reached statistical significance. The 
beneficial results were attributed, either to a dopaminergic effect of the drug, or to blockade 
of NMDA receptors, an effect similar to that exercised by memantine (89). 

In a group of 14 patients (one with sporadic OPCA, four with familial OPCA and nine with 
FRDA), a double-blind comparative trial of vigabatrin (an irreversible inhibitor of GABA-
transaminase) with placebo, yielded no apparent benefit (90). 

A previously mentioned trial (40) did not find improvement in ataxia with L5-
hydroxytryptophan in a group that included seven patients with OPCA. This conclusion 
was shared by Currier et al, using the same drug in a group that included three patients 
with OPCA (91). 

A group of 20 patients (5 with SCA 2, 2 with SCA 3, 4 with FRDA, and the remaining with 
other degenerative ataxias) was given buspirone at doses of 60 mg per day, in a double-
blind, placebo-controlled, cross-over trial; buspirone was not superior to placebo in the 
amelioration of ataxia (92). The potential effects of oestrogen on neuroprotection, and of 
buspirone on ataxia, were combined in an open-label study with 18 OPCA patients. The 
participants were allocated either to buspirone, 15 mg/day, or to buspirone and oestrogen, 
0.625 mg/day. No statistically significant differences were found in ICARS scores, 
compared with baseline, in any group, although a trend of improvement in gait speed and 
knee-tibia test was observed in the first one, suggesting that oestrogen was not beneficial in 
cerebellar dysfunction (93). The work of Lou et al, using buspirone in seven patients with 
OPCA and 14 with CCA, has been detailed earlier (46). 

In another previously mentioned study, the administration of physostigmine to 10 patients 
with OPCA and nine with CCA gave no apparent benefit (53), although this drug was found 
to have a favourable effect when used in a heterogeneous group that included three cases of 
OPCA (94). 

The administration of the cholinergic precursor lecithin to 11 patients with OPCA induced a 
clinical worsening coincident with elevated plasma choline levels (95). Results obtained with 
choline chloride (96) and physostigmine, led Harding (97) and Manyam (13) to conclude 
that cholinergic drugs were not effective to treat cerebellar ataxias, probably because no 
deficit in cholinergic neurotransmission has been confirmed in these diseases (50). In spite of 
this, a double-blind, placebo controlled analysis of the cholinomimetic agent L-
acetylcarnitine obtained a mild improvement in the coordination items of ICARS, in a group 
of 14 patients with sporadic and hereditary OPCA (98), and in another group of 11 patients 
with FRDA (99). 

Based on the hypothesis that stimulation of glutamate metabolism could favour its 
neurotransmission in the cerebellum, and so prevent excitotoxic damage, Mori et al gave 
branched amino-acids to a group of 16 patients (five with sporadic OPCA, and 11 with 
SCA6 and SCA7) in a double-blind crossover study. They used doses of 1.5g, 3g, 6g and 
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placebo (100). Starting with an ICARS score average of 42.44  16.60, reductions of 2.92  
3.35 were obtained with a 1.5g dose, and of 4.31  4.57 with a 3g dose. These modest results 
were nevertheless statistically significant, though the effect on patients with OPCA could 
not be individualized. 

The favourable effect of TRH in a group of patients with several types of ataxia (including 
12 with OPCA) has been referred to already (52). 

In four out of five patients with SCA 2, an improvement of ataxia and intention tremor was 
observed after administration of zolpidem in single doses of 10 mg. In one patient, a SPECT 
scan verified normalization of a previously diminished Tc99exametazime binding. The 
drug’s beneficial effect was attributed to reversion of a phenomenon of diaschisis (101).  

In a randomized, double-blind, placebo-controlled trial, 40 patients (4 with SCA 2, 6 with 
multisystem atrophy, 8 with FRDA, and others with degenerative and acquired ataxias) 
were assigned to riluzole (100 mg/day) or placebo, during 8 weeks. The number of patients 
with a 5-point drop in ICARS compared to baseline (primary endpoint of the study) was 
significantly higher in the riluzole group after 4 and 8 weeks of treatment, with a mean 
change of – 7.05 [± 4.96] points in the total score, versus 0.16 [± 2.65] with placebo (102). 

Gabapentin was found to improve gait in a patient with sporadic OPCA, and dysarthria and 
oscillopsia in another (103). Duhigg described an unexpected regression of ataxia in a 
patient with OPCA that received 30 mg/day of propranolol (104).  

Finally, inhaled betamethasone led to improvement in the ataxia of a patient with infantile 
AT (105), whilst pregabalin in combination with tiagabine ameliorated ataxia in a patient 
with adult-onset AT (106). 

6. Spinocerebellar atrophies 

The most frequent and severe spinocerebellar atrophy is Friedreich’s ataxia. FRDA has 
autosomal recessive inheritance, and an early onset. It is associated with scoliosis, pes cavus, 
cardiomyopathy, dysarthria, deep tendon areflexia, loss of vibration sense and extensor 
plantar responses (107). The lesions are located mainly in the spinal cord, where 
macroscopic atrophy, loss of fibres in the dorsal columns, dorsal and ventral spinocerebellar 
bundles, and direct and crossed corticospinal tracts, are present. Neuronal loss is found in 
the gracilis and cuneatus nuclei, Clarke’s dorsal nuclei and in the dorsal root ganglia. The 
dorsal roots are atrophic, and there is depletion of myelinated fibres in the sensory nerves. 
Neuronal depopulation and loss of iron in the dentate nuclei, as well as atrophy of the 
superior cerebellar peduncles are also found, while the cerebellar cortex is preserved 
(8,97,108). Hypertrophic changes are present in the heart, with increased connective tissue 
and loss of cardiomyocytes (108).  

The genetic anomaly in FRDA is an abnormal expansion of a GAA triplet in the first intron 
of the FXN gene on chromosome 9q13, that inhibits the transcription of the mitochondrial 
protein frataxin. Its deficiency interferes with the synthesis of iron-sulphur complexes, and 
with iron transport. These cause an accumulation of reactive iron in the mitochondria, 
interfere with oxidative phosphorylation and allow the formation of toxic oxygen radicals 
(109).    
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Neurochemical studies in FRDA have demonstrated low concentrations of glutamate and 
glycine in the grey matter of the lumbar cord and of glutamate in the dorsal columns, which 
reflect the loss of corticospinal and sensory glutamatergic fibres (110,111). There was also a 
reduction in the concentrations of glutamate and GABA in the vermis and the cerebellar 
hemispheres (112).   

HVA and 5-HIIA CSF levels were reduced in patients with FRDA (85); this was not the case 
with CSF levels of GABA and homocarnosine (113), nor with the density of BZD receptors in 
the brain (114).  

Pharmacological therapy has only achieved partially favourable results in FRDA. As 
previously mentioned, the results of trials with L-hydroxytryptophan (40,94), physostigmine 
(53), TRH (52), vigabatrin (91), riluzole (102) and buspirone (92), in groups that included 
patients with several types of ataxia, did not permit individualization of the effect of these 
drugs on FRDA. 

Botez et al did not find improvement in ataxia when treating a group of 27 patients with 
FRDA with amantadine hydrochloride (90). The same result was reported by Filla et al, in a 
double-blind cross-over trial using amantadine hydrochloride in 12 patients with FRDA 
(115). No benefit was obtained, either, in an open-label assay of vigabatrin in nine patients 
with FRDA (116).  

Idebenone (a government-supported drug for treatment of FRDA in Canada, among other 
countries) is a synthetic analogue of coenzyme Q10 with powerful antioxidant properties, 
whose effectiveness on the ataxia and cardiomyopthy of FRDA is currently being 
investigated. 

A positive effect of idebenone on the cardiomyopathy of FRDA reported in a preliminary 
trial (117) was confirmed in a randomized placebo-controlled trial with 29 patients, in which 
a reduction of the thickness of the interventricular septum and posterior wall of the left 
ventricle, that reached statistical significance, was evidenced by echocardiography (118). 
Another study found that six (among eight) patients with FRDA exhibited an important 
reduction of cardiac hypertrophy (119), although no improvement in ataxia was noticed in 
any of these trials. 

In a study with an examination period that ranged from 6 to 84 months, Ribat et al observed 
that ataxia and cardiac ejection fraction deteriorated in 88 patients with FRDA while 
receiving 5 mg/kg per day of idebenone (in spite of finding decreased cardiac hypertrophy 
by echocardiography), as well as in 16 non-treated patients (120). An increase in 
interventricular septum and left posterior wall thickness was observed in patients without 
previous myocardiopathy, who received 5 mg/kg per day of idebenone. The authors 
concluded that idebenone did not prevent the development of myocardiopathy, although no 
worsening was found in patients with known cardiac disease (121). 

The phase 3 Idebenone Effects on Neurological ICARS Assessments (IONIA) study 
randomized 70 ambulatory FRDA patients aged 8 to 18, with ICARS scores between 10 and 
54, to placebo and idebenone at doses of 10-20, and 30-54 mg/kg per day. No improvement 
in left ventricular hypertrophy or cardiac function could be demonstrated over a six month 
period (122).  
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Artuch et al (123) reported a statistically significant amelioration in cerebellar function, 
compared with baseline evaluation, in paediatric patients with FRDA receiving idebenone. 

Recently, emphasis has been placed on the use of high doses of idebenone in an effort to 
improve ataxia in FRDA (124,125); accordingly, a randomized, double-blind, placebo-
controlled phase 2 six-month trial (National Institutes of Health Collaboration with Santhera 
in Ataxia [NICOSIA]) of this drug at doses of 5, 15 and 45 mg/kg per day, was performed 
on 48 ambulatory FRDA patients aged between 8 and 18, with ICARS scores between 10 and 
54. Increasing doses of idebenone were associated with reductions in ICARS scores in a 
dose-dependent manner, even though overall statistically significant differences were not 
obtained; thus concluding that high doses of idebenone might be necessary to attain 
beneficial effects on neurological function (126).  

In contrast, the “neurological” arm of the IONIA trial achieved a minimal mean reduction in 
ICARS scores, which did not reach statistical significance when compared to placebo (127). 

The drug mitoquinone (an antioxidant derived from idebenone), which is active in the 
mitochondrion though not so in the cytosol, is expected to be an effective therapeutic agent 
in FRDA (128) 

A double-blind study of 5-hydroxytryptophan and placebo in 19 patients with FRDA (129), 
and of an open-label study of amantadine in 16 (130), only gave slightly positive results. A 
similar benefit was obtained in a previously mentioned study that used L-acetylcarnitine in 
11 patients with FRDA (100). 

It was demonstrated recently that human recombinant erythropoietin (rhuEPO) increased 
frataxin in lymphocytes from patients with FRDA, in vitro; this effect was independent from 
the EPO receptor (131). Thus, a persistent and significant increase in frataxin levels was 
found in peripheral blood lymphocytes of seven (among 10) patients with FRDA who 
received 5.000 units of rhuEPO subcutaneously, three times a week during 8 weeks; 
reductions in the urinary oxidative stress marker 8-hydroxi-2’-deoxyguanosine excretion, 
and in SARA scores, were also found (132). The same favourable results (that reached 
statistical significance) were replicated in a study involving 8 patients with FRDA, who 
received 2.000 units of rhuEPO three times a week during six months; unfortunately, the 
design of the trial could not rule out a placebo effect of the drug (133). 

More specific therapeutic approaches for FRDA are under investigation, such as the histone 
deacetylase inhibitors, which impair abnormal DNA transcription in FRDA; peroxisome 
proliferator-activated receptor gamma agonists, that enhance cell antioxidant activity and 
frataxin levels; deferiprone (a mitochondrion-specific iron chelator) reduced iron content in 
the dentate nuclei (as measured by MRI), and improved neuropathy and gait ataxia in the 
youngest patients among 9 adolescents with FRDA (134); gene-based strategies, as the use of 
viral vectors that express frataxin, which corrected sensitivity to oxidative stress in FRDA 
fibroblasts (128,135); and finally, pluripotent stem cells induced from FRDA fibroblasts were 
able to differentiate into neurons and cardiomyocytes (136).  

An isolated deficiency of vitamin E, caused by mutations in the gene that encodes the alpha-
tocopherol transfer protein in 8q13, can present with an identical phenotype to FRDA. The 
neurological manifestations stabilise or may partially revert with administration of vitamin 
E (137).  
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7. Degenerations of the dentate nucleus and efferent tracts of the cerebellum 

This section deals about about Machado-Joseph disease and dentatorubral-pallidoluysian 
atrophy (DRPLA). 

MJD, also designated SCA3, is caused by an unstable expansion of a CAG triplet in the 
ataxin 3 gene in14q32.1, and exhibits dominant transmission (138). The lesions are found in 
the dentate nuclei and superior cerebellar peduncles, and respect the cerebellar cortex, 
striatum, inferior olive and corticospinal tracts. The pontine nuclei are sometimes affected. 
The dorsal columns, spinocerebellar tracts and Clarke’s dorsal nuclei degenerate in the 
spinal cord (110). Associated lesions may be present in the anterior horns, oculomotor and 
subthalamic nuclei, substantia nigra, medial longitudinal fascicle, and peripheral nerves. 
Among the manifestations of MJD, ataxia is related to lesions in the dentate or pontine 
nuclei; oculomotor disorders, to those in the brainstem; and parkinsonism, to those in the 
substantia nigra. The frequent spasticity cannot be explained by the aforementioned 
findings (138).  

Neurochemical abnormalities in MJD consist of a reduced CSF concentration of HVA, even 
in cases without apparent parkinsonism (85,139). Concentrations of 5-HIAA and MHPG 
were reduced in CSF in one patient with MJD (136), although these changes were not found 
in every instance (85,139).  

Attempts at pharmacological therapy in MJD are outlined below.   

Based on the finding that trimethoprim increased the concentration of tetrahydrobiopterin 
(THB) in CSF in MJD, Sakai et al administered 1 mg/kg of THB and placebo to five patients 
for 10 day periods, in a crossover scheme. They reported a statistically significant 
improvement in the performance of some timed tests of motor function, though deglutition 
and tendon hypereflexia were not modified (140).  

A double-blind, placebo-controlled, crossover trial of trimethoprim-sulfamethoxazole (TS) 
in 20 patients with SCA3, employed: 1) a clinical scale of ataxia and other non-cerebellar 
symptoms; 2) posturographic analysis; 3) the Schoppe motor performance test; and 4) 
achromatic and colour discrimination visual sensitivity tests. After six months of TS 
administration, none of the patients showed improvement in any of the enumerated tests. 
No differences were noted in sub-group analysis according to age, sex, duration of illness, 
phenotype, age at onset, or number of CAG triplets (141). These categorical results contrast 
with the more favourable outcomes obtained in a study that included eight patients with 
MJD (142), and with three other reports of individual patients (143-145) that received TS. 
The reason for the differing results could lie in the absence of molecular diagnosis in the 
latter studies, or in other methodological differences (141).  

An open-label study on the use of the antidepressant drug fluoxetine involved doses of 20 
mg per day given to 13 patients with MJD. In spite of a statistically significant improvement 
according to the Montgomery-Asberg depression rating scale, the EDSS and UPDRS scales 
showed no differences in motor function. The study concluded that serotonergic stimulation 
was not effective in the treatment of MJD (146).  

Buspirone, at a dose of 60 mg per day, did not improve ataxia in a group of 20 patients that 
included 4 with SCA 3 (92). 
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Another open-label study used 10 to 30 mg per day doses of tandospirone. Seven out of 10 
patients with MJD had their ICARS scores slightly improved, with additional mitigation of 
symptoms potentially caused by 5-HT1 receptor dysfunction (insomnia, anorexia, 
depression and cold lower extremities). The authors concluded that MJD manifested 
symptoms derived from these receptors, and recommended further tests with tandospirone 
in this disease (147). An open-label trial of tandospirone in 39 patients (14 with MJD among 
them) has already been commented on (48). 

The antiarrhythmic drug mexiletine was shown to alleviate muscle cramps in MJD, without 
improving ataxia (148).  

Liu et al gave 50 mg/day of lamotrigine to six patients with MJD, and observed 
improvement in one leg stance and tandem gait. They proposed that this beneficial effect 
could be due to enhanced expression of ataxin 3, induced by the drug (149).  

Dentatorubral-pallidoluysian atrophy is a dominantly transmitted illness caused by an 
abnormal expansion of a CAG triplet in the atrophyn gene, in 12p13.31, that codifies 
polyglutamine sequences of abnormal length that exert a toxic action (as in other diseases 
caused by expansion of CAG triplets) (150). An important neuronal loss in the dentate and 
red nuclei is found. Less intense degeneration of the subthalamic nuclei and external part of 
the globus pallidus is also present, while the cerebellar cortex is preserved. Some studies 
have described spinal cord lesions identical to FRDA in DRPLA, in addition to those 
described (151); demyelinization in the superior cerebellar peduncles and efferent tracts of 
the pallidum has been noted, as well. These lesions may be asymmetric (152). Polyglutamine 
nuclear inclusions have been found in neurons and oligodendrocytes (153).  

The clinical manifestations of DRPLA are heterogeneous. Cerebellar ataxia and dementia are 
considered cardinal signs, accompanied by progressive myoclonic epilepsy in cases with 
onset before the age of 20, or choreoathetosis and psychiatric symptoms when onset occurs 
later. It has been determined that there is an inverse correlation between the number of CAG 
triplets and age at onset of the disease. The differential diagnosis includes Huntington’s 
disease due to the possible association of chorea and dementia (150).  

The neurochemical alterations in DRPLA are centred on a reduction of GABA and substance 
P in the globus pallidus and substantia nigra, and reduced choline-acetyltransferase activity 
in the caudate and putamen, in spite of preservation of the small striatal neurons; this result 
points to cell hypofunction as its cause (154). In CSF, the concentration of GABA was found 
to be very low in five cases of DRPLA, whilst levels of HVA and 5-HIAA were normal (151).   

Recently, an accumulation of 8-hydroxi-2’-deoxyguanosine and 8-hydroxyguanosine, and a 
reduction of immunoreactivity to Cu/Zn superoxide dismutase, were found in the lentiform 
and dentate nuclei of DRPLA brains, suggesting the possibility that oxidative stress might 
play a part in the genesis of this disease (155). 

No clinical assay dedicated to the treatment of ataxia caused by DRPLA has been performed 
to date.  

8. Episodic ataxias 

Episodic ataxias are transmitted by autosomal dominant inheritance, and are amenable to 
drug treatment.  
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Episodic ataxia type 1 (EA1), also known as episodic ataxia with myokymia, has its onset in 
infancy or early adolescence, and associates interictal myokymia in the face and limbs 
(identified by electromyography) with brief episodes of unsteadiness, tremor and 
dysarthria. The attacks are brought about by voluntary movement or startle, and may occur 
many times every day. They can be prevented with acetazolamide or phenytoin. EA1 is 
caused by mutations in the KCNA1 gene in 12p13, which encodes the voltage- dependent 
potassium channel KCNA1, widely expressed in the cerebellum and peripheral nerve (156-
159). It has been demonstrated that the mutated channels increase cellular excitability, and 
prevent physiological repolarization (160).   

Episodic ataxia type 2 (EA2) is caused by mutations in CACNA1A, that give rise to truncated 
1A subunits (161). Electrophysiological characterisation of the abnormal proteins has 
demonstrated reduced channel conductance, causing an abnormally low calcium ingress, 
with the consequent cell damage (162,163).  

EA2 appears in infancy and is associated with crises of ataxia, vertigo and nausea that last 
hours or days and are precipitated by emotional stress, fatigue or ingestion of coffee or 
ethanol. Interictal nystagmus, permanent ataxia and atrophy of the cerebellar vermis may 
coexist. Diagnosis may be difficult, as EA2 may be confused with anxiety or paroxysmal 
vertigo. The ataxic episodes respond to prophylaxis with acetazolamide (156,161).   

Episodic ataxia type 3 (EA3) appears between the age of one year, and forty. It is associated 
with ataxia, vertigo and tinnitus, frequently headache, diplopia and blurred vision; interictal 
myokymia is also present. It may be distinguished from EA1 by the presence of vertigo and 
tinnitus, and from EA2 by the absence of interictal nystagmus and the short duration of the 
attacks, which are prevented by acetazolamide (164). The responsible gene is located in 1q42 
(165).   

Episodic ataxia type 4 (EA4), or vestibulocerebellar ataxia, was described by Farmer and 
Mustian in 1963 and is characterised by vertigo, diplopia, and mild or moderate ataxia that 
lasts from a few minutes to several weeks. It appears at an average age of 23 years (166). 
Defects have been found in smooth ocular pursuit and suppression of the vestibulo-ocular 
reflex, in addition to gaze-evoked nystagmus (167). Some patients develop progressive 
ataxia (166). EA4 responds to prophylaxis with dimenhydrinate (166) and is genetically 
distinct from SCA1, 2, 3, 4, 5, EA1, EA2 and DRPLA (168).  

Episodic ataxia type 5 (EA5) is caused by a point mutation in CACNB4 (2q22-q23), that 
causes a change of one amino-acid (C104F) in the 4 subunit of the VDCC. It was described 
in patients with French-Canadian ancestry, and its clinical symptoms (ataxia and vertigo) 
and duration are similar to EA2; there is interictal nystagmus and it responds to prophylaxis 
with acetazolamide. The main difference is a later age of onset (169).  

Episodic ataxia type-6 (EA6) was described in a ten year-old child that exhibited 
transitory episodes of ataxia and dysarthria in addition to epilepsy, migraine and 
alternating hemiplegia. A heterozygote mutation was identified in SLC1A3 (5p13), the 
gene that encodes the excitatory amino-acid transporter 1 (EAAT1, GLAST1), pointing to 
abnormal reuptake of synaptic glutamate as the causing factor of the neurological 
syndrome (170). 
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9. Conclusions 

As may be deduced from the exposed data, pharmacological trials of cerebellar ataxias have 
been flawed by a number of factors, like the recruitment of very scarce numbers of patients, 
the predominance of clinical assays which include patients with more than one disease, the 
lack of an ataxia rating scale of generalized use and that of quantitative means of measuring 
ataxic symptoms, the absence of standard doses of the drugs under investigation, and 
probably the most important, the usual lack of application of the available 
pathophysiological data to the trials performed to date. 

The basic neurochemical anomaly in idiopathic CCA consists in a lowering of the cerebellar 
content of GABA. In OPCA, deficits of glutamate, dopamine, and probably, noradrenaline, 
are present as well. Glutamate is essentially the deficient neurotransmitter in FRDA. A 
deficiency of serotonin has not been demonstrated conclusively in degenerative ataxias. The 
neurotransmitter abnormalities of MJD and DRPLA have not been well defined yet. Thus, it 
seems obvious that the neurochemical complexity of these disorders is one of the reasons for 
the lack of effective treatments.  

Some tests have shown that the drugs gabapentin, pregabalin and tiagabine are effective in 
ataxias that associate a predominant deficiency of GABA in the cerebellum, like CCA and 
OPCA. Presumably, the more selective the deficit of GABA, the more effective the 
GABAergic substitution.   

Agents capable of restoring the physiological action of glutamate (associated with 
neuroprotective molecules to prevent excitotoxic phenomena) could be useful in disorders 
like OPCA and FRDA. Conversely, the usefulness of the peptide TRH is conditioned by the 
risk of hyperthyroidism. Idebenone and other agents used to treat FRDA have to prove their 
effectiveness on ataxia, in a definite manner. The lack of effectiveness of physostigmine and 
choline chloride discards them as therapeutic agents for CCA and OPCA. The use of 
serotonergic agents in the cerebellar ataxias must be considered controversial at least, due to 
insufficient neurochemical evidence, and that of riluzole should be investigated in depth, as 
it could benefit patients with multisystem atrophy.  

Given the severity of many of the ataxias considered in this work, treatable causes, such as 
vitamin E deficiency, should be ruled out when faced with phenotypes similar to FRDA. In a 
similar way, therapeutic trials with acetazolamide should be undertaken in cases with 
uncertain diagnoses, with the aim of recognising ataxias that respond to this drug.  

Research aimed at identifying effective drugs to treat the cerebellar ataxias should, 
ideally, look for agents able to neutralize the causes of these diseases. However, as this is 
not possible in most cases, neurochemical evidence might provide useful clues in the 
search for therapeutic remedies (171,172). The study of animal and experimental models 
of disease, the use of precise methods for the measurement of ataxia (clinical semi-
quantitative scales, quantitative movement analysis, etc) and the recruitment of 
homogenous study populations (22), are all highly recommended. In this way, the 
currently exiguous therapeutic panorama of the cerebellar ataxias could be amplified until 
etiological remedies are found. 
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