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1. Introduction 

Recently a number of imaging modalities have been presented for cellular imaging 

including magnetic resonance imaging (MRI), optical imaging, and positron emission 

tomography (PET) based on the background of growing demand for molecular imaging to 

noninvasively and longitudinally visualize cell migration and track transplanted cells in 

vivo, also to monitor cell biodistribution. Cellular MRI, with its superb ability of resolving 

soft tissue anatomies in three-dimensions (3D) with high spatial resolution in comparison to 

other modalities, is particularly important as a noninvasive tool to provide unique 

information on the dynamics of cell migration in vivo (Modo, 2005; Arbab, 2008a; Zhang, 

2008).  

In vivo MRI of cells is very useful for studying tumors, inflammation, stem cell therapy, and 
immune response, etc. Cells labeled with commercially available iron oxide nanoparticles 
(iron particles) can be imaged for weeks with MRI. The labeling procedure does not exhibit 
any alteration to cell viability or function (Bulte, 2004; Oude Engberink, 2007). 
Superparamagnetic iron oxides (SPIO) and ultra-small superparamagnetic iron oxide 
(USPIO) particles are commercial MR contrast agents for cell labeling due to their 
biocompatibility and strong effects upon T2 and T2* relaxation. Several labeling methods 
have been developed to incorporate sufficient quantities of iron into cells. Cellular MRI has 
now been widely used for tracking transplanted iron-labeled therapeutic cells in vivo (Bulte, 
2004; Oude Engberink, 2007). The technique has recently been introduced into the clinic (de 
Vries, 2005). The effect from iron particles is seen as hypointensity or negative-contrast on 
T2- and T2*-weighted images because of the shortening of T2 and T2* relaxation times. 
However, concerns have been raised that the negative-contrast could be non-specific and 
difficult to differentiate from signal hypo-intensities resulting from susceptibility artifacts 
(i.e. from the presence of air or other field inhomogeneities), flow related signal losses, and 
calcification. Therefore, several positive-contrast and even dual-contrast imaging techniques 
have recently been developed for tracking iron-labeled cells. Dual-contrast imaging 
effectively permits detection of the presence of iron-labeled cells with both negative- and 
positive-contrast within a single image. This chapter illustrates negative- and positive-
contrast MR techniques for tracking iron-labeled cells. Particular attention was paid to 
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recently developed positive-contrast cell tracking techniques, the status of dual-contrast 
approaches of new MRI pulse sequences and image postprocessing techniques and their 
perspectives. The new advanced technology in imaging contrast of iron oxide NPs on 
multimodal platform will also be introduced. 

2. Negative-contrast MRI techniques 

Cellular MRI is a newly emerging field of MR research that allows the “non-invasive, 
quantitative, and repetitive imaging of targeted macromolecules and biological processes in 
living organisms” (Herschman, 2003). Cellular MRI requires that cells are labeled with MR 
contrast agent to make them distinct from the surrounding tissues. Iron oxide nanoparticles 
are regarded as the most extensively applied contrast agent in cell imaging and cell tracking 
studies based on the fact of their strong negative contrast effect, biocompatibility, variety in 
core size and coating surface, as well as ease of detection at microscopic level (Muja, 2009). 
SPIO and USPIO are currently the predominant MRI contrast agents. The description of the 
physical and chemical properties of SPIO and USPIO can be found in recent reviews 
(Herschman, 2003; Thorek, 2006; Muja, 2009). The sizes of monocrystalline iron oxide 
nanoparticles (MIONs) ≈ 3 nm in diameter, USPIO particles ≈ 15-30 nm, SPIO particles ≈ 60-
180 nm and micron sized iron oxide particles (MPIOs) can be as large as 10 μm (Shapiro, 
2005). Some of the SPIO and USPIO agents, such as Endorem (SPIO, Guebert), Ferumoxides 
(SPIO, Berlex) and Resovist (USPIO, Schering), are already approved by the Food and Drug 
Administration (FDA) and are extensively used for imaging of the liver, central nervous 
system (CNS) and lymphatic system (Arbab, 2004b; Helmberger, 2005; Manninger, 2005), 
etc. Cationic transfection agents such as poly-L-lysine or the FDA-approved protamine 
sulfate are used to increase labeling efficiency in vitro. SPIO particles may decrease T2* by 
magnetic susceptibility effect and T2 by dipole-dipole interaction or scalar effect between 
protons and magnetic centre. A large magnetisation difference occurs as a result of the 
nonhomogeneous distribution of superparamagnetic particles, which gives rise to local field 
gradients that accelerate the loss of phase coherence of the spins contributing to the MR 
signal.  Iron-labeled cells cause significant signal dephasing due to the magnetic field 
inhomogeneity induced in water molecules near the cell such that iron-labeled cells were 
visualized as signal voids on T2 and T2* weighted images (negative-contrast MR imaging). 
Negative-contrast techniques are the most commonly used approach for the detection of the 
SPIO-labeled cells. 

While cell-based therapies have attracted well attention as novel therapeutics for the 

treatment of so many kinds of diseases, investigations (Zhang, 2005; Heyn, 2005, 2006) have 

showed that single, living, highly phagocytic large cells, such as macrophages, or human 

endothelial cells can be tracked over time in MRI using a 3.0 T even 1.5 T scanner. As an 

example of stem cell-based studies, investigators (Anderson, 2005) demonstrated that MRI 

of iron-labeled stem cells was directly identified in neovasculature of a glioma model.  The 

cells were labeled using the ferumoxides/poly-L-lysine complex in vitro and the labeled 

cells were then injected in the model, and their migration toward and incorporation into the 

tumor neovasculature was visualized in vivo with negative-contrast MRI. Other studies 

have shown that ferumoxides-TA labeled human MSCs will home to liver (Arbab, 2004a), 

tumors (Khakoo, 2006), or heart (Kraitchman, 2005), illustrated at negative-contrast imaging 

with MR scan and confirmed at histologic evaluation. A group (Zhu, 2006) labeled neural 
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stem cells (NSCs) obtained from patients with traumatic brain injury then performed 

intracerebral injections of either ferumoxide-labeled or unlabeled cells around the injured 

tissue of them as the first study in the field of noninvasive imaging of stem cell treatment of 

brain injury, and their serial MRI about 7-10 weeks demonstrated that stem-cell engraftment 

and migration after implantation can be detected noninvasively with the use of MRI. 

Also, in an early study (Kircher, 2003a), a highly derivatized cross-linked iron oxide (CLIO) 

nanoparticle was used to efficiently label cytotoxic T lymphocytes (CTLs) for in vivo 

tracking of the injected cells to melanoma cell line at near single-cell resolution, with MRI 

and optimized the labeling protocol (three-dimensional nature of the calculated T2 maps), 

showing no cytotoxic and not influencing cell behavior or effector function. Despite the fact 

that the high spatial resolution given by MRI provides accurate evaluation of morphology of 

lymphoid organ, the sensitivity and ability to quantify MR data is still limited when 

compared with nuclear medicine based techniques. For MR cell tracking to be clinically 

useful, it should be defined for the detection limits of the MR method which will be utilized. 

The related clinical studies with 3.0 T scanners suggest that negative-contrast techniques 

possibly detect 150,000 Feridex labeled cells after directly injected into the lymph nodes of 

patients (de Vries, 2005). Another recent example of study by Laboratory for Gene 

Transcript Targeting, Imaging and Repair in Massachusetts General Hospital demonstrated 

that functionalization allows SPIO nanoparticles to be targeted, and it showed that their 

phosphorothioate-modified DNA probes linked to SPIO could be used to identify 

differential gene expression due to amphetamine exposure with high reliability using the 

calculation of rate of signal reduction (R2*) in T2*-weighted MR images (Liu, 2009). There are 

also extensive published works with detailed descriptions of many aspects of labeled cells 

for detection with negative-contrast MRI (Ferrucci, 1990; Bulte, 2004b; Hsiao, 2007; 

Gonzalez-Lare, 2009). Those and many of other preclinical studies have provided evidences 

for the potential translation of iron oxide NPs labeling and cellular MR imaging to the clinic 

applications. 

An important property of USPIO is its ability to shorten T1 and T2 relaxation times (Small, 
1993; Li, 2005). USPIO-labeled cells can be tracked in T1 and T2/T2* weighted images, which 
should increase the accuracy and the specificity for detection of the labeled cells (Kelloff, 
2005), such as in imaging assessment on angiogenesis of tumor (Niu, 2011), atherosclerotic 
plaques (Metz, 2011), or arthritis (Lefevre, 2011). USPIO nanoparticles recently have shown 
potential in the imaging of molecular biomarkers, such as integrins that are heterodimeric 
transmembrane glycoproteins, a family of adhesion molecules playing a major role in 
angiogenesis and tumor metastasis (Chen, 2009; Tan, 2011).  

Much of the progress in detecting individual iron-labeled cells has achieved from 
improvements in contrast agent design that increases targeting and intracellular uptake 
properties (Cerdan, 1989; Weissleder, 1990; Bulte, 2001; Zhao, 2002). Improvements in MR 
hardware and pulse sequence design also have played an important role during recent 
progress in this area of research. Although negative-contrast MRI has shown promise as a 
means to visualize labeled cells (Hogemann, 2003; Heyn, 2005), some remaining issues may 
hamper its wide applications: (1) it is difficult to distinguish the signal voids of labeled cells 
from those of complex background tissue signals; (2) With the resulting signal void as the 
means for detection, partial-volume effects are often severe and go far beyond the real cell 
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size; (3) it is difficult to discriminate iron-induced susceptibility changes from those caused 
by other susceptibility artifacts due to i.e. air/tissue interfaces, or peri-vascular effects. 

3. Positive-contrast and dual-contrast MRI techniques 

The “white-marker imaging” positive-contrast mechanism was introduced by 
Seppenwoolde et al. in 2003 (Seppenwoolde, 2003). Since then, several groups have 
developed positive-contrast or dual-contrast pulse sequences for tracking iron-labeled cells 
in vitro and in vivo (Table 1).  

3.1 Gradient-dephasing technique: “white-marker” imaging 

“White-marker” imaging was initially presented to create positive-contrast around 
paramagnetic intravascular device markers used in magnetic-resonance-based interventional 
procedures (Seppenwoolde, 2003). The gradient-dephasing technique uses a slice gradient to 
dephase the background water signal followed by an incomplete gradient rephasing pulse 
which was exploited for the depiction and tracking of paramagnetic susceptibility markers. 
Local magnetic field inhomogeneities were selectively visualized with positive-contrast, such 
as those created by iron-labeled cells for "white-marker" imaging. Advanced methods were 
developed to separate magnetic susceptibility effects from partial volume effects in “white 
marker” imaging in order to avoid compromising the identification of magnetic structures 
(Seppenwoolde, 2007). However, this method is only sensitive to macroscopic field 
inhomogeneities caused by paramagnetic material, to a volume surrounding the paramagnetic 
material that is free of other field variations (Zurkiya, 2006). 

A similar gradient depashing technique termed gradient echo acquisition for 
superparamagnetic particles (GRASP), by dephasing of the background signal, has been 
used to detect positive-contrast from superparamagnetic particles based on the 
phenomena that the z-rephasing gradient is reduced so that dipolar fields generated by 
the cells are rephrased and positive signal can be observed (Mani, 2006a), also to image 
ferritin deposition in a rabbit model of carotid injury with relatively low concentrations of 
iron oxides at 1.5 T MR scanner (Mani, 2006b). The GRASP technique was used to 
successfully image low concentrations of ferumoxides (0.05 mM Fe corresponding to 2.8 
μg Fe/mL) and ferritin (5 μg Fe/mL) in gel phantoms (Mani, 2006). GRASP “white-
marker” imaging has several advantages including ease of implementation, high 
sensitivity, no influence on positive signal due to both B0 and B1 field inhomogeneities, 
and fast acquisition with various TE values. The feasibility of GRASP was tested to aid in 
dynamically tracking stem cells in a mouse model of myocardial infraction (Mani, 2008). 
Using T2*-GRE and GRASP techniques at 9.4 T scanner, iron-labeled embryonic stem cells 
were visualized in the border zone of infarcted mice at 24 hours, and 1 week following 
implantation. The positive signal in areas containing iron-loaded stem cells corresponded 
precisely with the signal loss detected within images produced with conventional GRE 
sequences. Regions that contained iron-labeled cells were confirmed by histology (Mani, 
2008). The presence of the signal loss because of iron-labeled cells would have been 
difficult to detect on T2*-weighted images without using the positive-contrast sequence. 
The region of the myocardium containing the iron-labeled cells was clearly visible when 
both GRASP and T2*-weighted techniques (dual contrast imaging) were applied. Dual-
contrast effects act to extend the signal change well beyond the location of the particle or  
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MR sequences Contrast 
agents 

Experimental 
conditions 

Biological target Application and 
Results 

gradient-
dephasing 
technique & 
GRASP 

Ferritin 
 
 
 
Ferumoxides 
 
 
 
 
Ferumoxides 
 

In vitro and  
in vivo 
 
 
In vitro and  
in vivo 
 
 
 
In vitro and  
in vivo 
 

Endogeneous 
ferritin 
 
 
Embryonic stem 
cell-derived 
cardiac precursor 
cell 
 
Embryonic stem 
cell line TL-1 
 

Crush injured rabbit 
carotid arteries 
 
Myocardial infraction 
 
 
 
Injected into the hind 
limb of mouse 

off-resonance 
(OR) method 
 
 

Ferumoxides In vitro and  
in vivo 

SPIO-luc-mouse 
embryonic stem 
cell 

Injection into hindlimbs 
of mouse 
 

Off-resonance 
saturation 
 
 

mMION/ 
SPPM 

Gel phantom/ 
in vivo 

the vǃ3-expressing 
microvasculature 

molecular imaging of 

cancer 

IRON 
technique 

MION-47 
 
 
 
MION-47 

In vivo 
 
 
 
In vivo 
 

Macrophage 
 
 
 
Macrophage  

Atherosclerotic plaque  
 
 
MR lymphography 
 

SR-SPSP 
sequence 
 
 

Ferumoxides In vitro and  
in vivo 

Human bone 
marrow stromal 
cells 

Injection into the hind 
legs of mouse 

FLAPS 
sequence 
 
 

Ferumoxides In vitro and  
in vivo 

GFP-R3230Ac cell 
line 

Injection into the hind 
legs of rat 

UTE imaging 
 

Ferumoxides In vitro and  
in vivo 

G6 glioma cells Implanted cellular 
imaging  

SWEET 
sequence 
 

Ferumoxides in vivo Human epidermal 
carcinoma cells 

Visualization of 
magnetically labeled 
tumor cells 

Note: GRASP, superparamagnetic particles/susceptibility; IRON, oxide nanoparticles–resonant water 
suppression; SR-SPSP, self-refocused spatial-spectral; FLAPS, fast low-angle positive contrast steady-
state free precession; UTE, ultrashort echo-time 

Table 1. Summary of Previously Published Studies of Positive- and Dual-contrast 
Techniques 
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cell itself. This form of signal amplification increases sensitivity in detecting the labeled 
cells within a complex image background. With the use of signal amplification, potential 
future applications of (U)SPIO include ‘doping’ of therapeutic cell preparations with a 
small fraction of labeled cells, to allow cell tracking without altering the majority of the 
cells. This would allow for better delineation and identification of labeled cells with both 
techniques. The challenge for both techniques is the difficulty associated with attempting 
to quantify the concentration of the labeled cells in vivo because of the susceptibility 
artifact produced via the iron particles. 

Generally, to resolve issues associated with volume averaging and other artifacts that may 

limit the clinical utility of MRI to detect iron labeled cells (especially in tissues other than the 

brain), GRASP technique has been developed to differentiate between the signal generated 

by the cells and signal loss cause by various artifacts (Mani, 2006, 2008), and to specifically 

avoid the signal loss generated by the iron laden cells to be confused with signal caused by 

other sources (motion, perivascular effects, coil inhomogeneities, etc.). In the recent study 

(Briley-Saebo, 2010), the GRASP sequence was also used to both detect and confirm the 

presence of the Feridex labeled dendritic cells (DCs) in the draining lymph nodes of nude 

mice 24 h after footpad injection. The results showed the possibility to detect and 

longitudinally track ex vivo human DC vaccines in the spleen of mice for up to 2 weeks, 

with greater lymphoid targeting observed following i.v. injection, relative to subcutaneous 

foot-pad injection; also showed good correlation between in vivo R2* values on a 9.47 Tesla 

dedicated mouse scanner and Feridex concentration, with detection limits of 3.2% observed 

for the spleen. But investigators didn’t detect the Feridex labeled cells within the liver and 

spleen using the GRASP sequence while they indicated that, the dipole effects would be 

limited and signal enhancement would not be observed when the iron particles being 

homogenously distributed over a large volume (such as the liver or spleen). They further 

demonstrated the values of nodes the white marker sequence, GRASP, in accurate detection 

and identification of Feridex labeled DCs in superficial lymph, and indicated that the 

appropriate utilization of animals models and MR validated imaging strategies might allow 

for the optimization of human DC vaccine therapies and improved therapeutic success, 

whereas white marker sequences maybe most effective when the iron laden cells being 

compartmentalized within a limited volume (such as in lymph nodes, tumors, or 

myocardium). On the basis of a recent report (Sigovan, 2011) of the feasibility study on a 

positive contrast technique, GRASP at a relatively high field 4.7 T, for a novel 

superparamagnetic nanosystem designed for tumor treatment under MRI monitoring, 

investigators found that the magnetic nanoparticles for drug delivery can be detected using 

positive contrast, and suggested that the combined negative and susceptibility methods 

allow good quality images of large magnetic particles and offer their follow-up for 

theranostic applications. 

3.2 Off-resonance Imaging (ORI) 

Off-resonance MRI approaches have also been developed to produce positive-contrast. With 

this method, a spectrally selective radio frequency (SSRF) pulse was used to excite only the 

susceptibility-shifted, or ‘off-resonance’, water signals (Cunningham, 2005; Foltz, 2006), at 

the frequency shift induced by the iron particles. Since only the off-resonance signal due to 
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iron particles are excited and refocused, the background on-resonance signal is largely 

eliminated.  

Iron-labeled mouse embryonic stem cells were imaged as positive-contrast through 

suppression of background tissue with these off-resonance methods (Suzuki, 2008). A spin-

echo sequence was used with million-fold (120 dB) suppression of on-resonance water by 

matching the profiles of a 90° excitation and a 180° refocusing pulse. The positive-contrast 

signal from the volume of cells was affected by how well the excitation profile was defined. 

The method is therefore inherently limited by the complication associated with unwanted 

magnetization from the regions that suffer from chemical shift or susceptibility-related 

artifacts (e.g., from fat/lipid present in the region of interest and/or imperfect B0 shimming, 

due to air/tissue interfaces, etc.) (Farrar, 2008). Although ORI techniques are being 

increasingly used to image iron oxide imaging agents such as MION, the diagnostic 

accuracy, linearity, and field dependence of ORI have not been fully characterized. After the 

sensitivity, specificity, and linearity of ORI were examined as a function of both MION 

concentration and magnetic field strength (4.7 and 14 T), and MION phantoms with and 

without an air interface as well as MION uptake in a mouse model of healing myocardial 

infarction were imaged, the linear relationship between MION-induced resonance shifts and 

with MION concentration were illustrated, whereas T2 showed comparable to the TE and 

then decreasing after increasing initially with MION concentration and the ORI 

signal/sensitivity being highly non-linear. Improved specificity of ORI in distinguishing 

MION-induced resonance shifts and linearity can be expected at lower fields (4.7 T, on-

resonance water linewidths 15 Hz) with on-resonance water linewidths decreased, air-

induced resonance shifts reduced, and longer T2 values observed, thus ORI will be likely 

optimized at low fields with very short TEs choosing and with moderate MION 

concentrations. Off-resonance approaches generate positive contrast but have a lower 

sensitivity than T2*-weighted imaging and are more complex to perform at high field 

strengths. Superparamagnetic iron-oxide nanoparticles become saturated above 0.5 Tesla 

and thus have equal sensitivity at clinical field strengths (1.5–3.0 T) and at the higher field 

strengths often used in preclinical studies (Sosnovik, 2009). 

An alternative off-resonance technique termed inversion-recovery with on-resonant water 

suppression (IRON) sequence was proposed by a serial studies from one lab (Stuber, 2005, 

2007). The IRON method used a spectrally-selective saturation pre- pulse to suppress the 

signal originating from on-resonant protons in the background tissue while preserving the 

signal from off-resonant spins in proximity to the iron particles. However, since the size of 

the signal-enhanced region is dependent on the bandwidth of the water suppression pulse, 

this scheme requires extra steps to adjust the center frequency and bandwidth of the pre-

pulse to locate the exact site proximal to the cells. IRON sequence has been successfully 

applied for in vivo tracking of iron-loaded stem cells (Stuber, 2007).  

The utility of IRON method combined with injection of the long-circulating MION-47 has 
been recently evaluated by investigators in Johns Hopkins University School of Medicine 
(Korosoglou, 2008a) for developing a novel contrast-enhanced MR angiography technique. 
One important aspect of the study was fat suppression for the IRON sequence with an initial 
radiofrequency pulse offset by 440 Hz at 3.0 T, and with spin inversion, to cause zero 
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longitudinal magnetization of the targeted species for the radiofrequency pulses (105° for 
fat, 100° for water), which obviously shortened the subsequent recovery time. The usage of 
MION-47 allowed acquisition of multiple image sets over a 1- or 2-day period with high 
spatial resolution. 

IRON techniques with a commercially available MION-47 were recently employed to detect 
macrophage-rich atherosclerotic plaques in a rabbit model of atherosclerosis (Korosoglou, 
2008b), in which pre-contrast imaging was performed in 7 Watanabe rabbits and 4 control 
New Zealand rabbits, and post-contrast imaging was repeated on days 1 and 3 after 
intravenous injection of MION-47. A second injection was performed on day 3 after imaging 
and post-contrast imaging performed again on day 6. There was a significant increase in 
signal intensity within aortic atherosclerotic plaques following administration of MION-47 
(48% increase on day 3 and 72% increase on day 6) versus hypointensity (negative-contrast) 
in conventional MR images, but no enhancement was seen in control rabbits that lacked 
atherosclerosis. The positive-contrast regions corresponded to regions demonstrating 
deposition of iron particles within macrophage-rich atherosclerotic plaques. These findings 
not only validated that MION-47 is a successful imaging agent for macrophage-rich 
atherosclerosis, but also suggested that positive-contrast IRON MRI can be applied to the 
general class of iron oxide particles. This is significant as USPIO-enhanced MR imaging has 
been previously studied in human (Trivedi, 2006); enabling IRON MRI sequences to be 
directly applied to patient care.  

Korosoglou et al. also investigated the utility of IRON techniques and MION-47 to create 

positive-contrast MR-lymphography (Korosoglou, 2008c). After six rabbits received a single 

bolus injection of 80 mmol Fe/kg MION-47, MRI was performed at baseline, 1 day, and 3 

days using conventional T1- and T2*-weighted sequences and IRON. On T2*-weighted 

images, as expected, signal attenuation was observed in areas of para-aortic lymph nodes 

after MION-47 injection. However, using IRON the para-aortic lymph nodes exhibited very 

high contrast enhancement, which remained 3 days after injection. IRON in conjunction 

with iron particles can be therefore used to perform positive-contrast MR-lymphography, 

particularly 3 days after injection of the contrast agent, when signal is no longer visible 

within blood vessels. The proposed method may have the potential as an adjunct for nodal 

staging in cancer screening.  

Iron-labeled radioembolization microspheres were visualized for in vivo tracking during 

trans-catheter delivery to VX2 liver tumors in a rabbit model (Gupta, 2008). The study was 

performed for real-time observation of microsphere delivery with dual-contrast techniques. 

The results showed significant changes in post-injection contrast-to-noise ratio (CNR) values 

from those of pre-injection at positions of microsphere deposition with both negative- and 

positive-contrast. 

The off-resonance MRI method possesses some advantages including no need for dephasing 
gradients or saturation pulses, high suppression efficiency, and flexible selection of the 
excited frequency band to encompass spins in the vicinity of the iron particles without fat 
tissue off-resonance. This technique, however, was not slice-selective such that it can result 
in interference from insufficiently suppressed background signals or less background signal 
with regions of greater susceptibility excluded from the selected slice. This technique can 
also cause less on-resonant signal to be suppressed, has less flexibility in RF pulse design, 
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and can lead to less erroneous off-resonant signal detection in a multi-slice manner with 
individually shimmed slices (Zurkiya, 2006).  

The off-resonance saturation method has been developed by Zurkiya and Hu, in which 
water protons are imaged with and without the presence of an off-resonance saturation 
pulse (Zurkiya, 2006). This method relies on diffusion-mediated saturation transfer to 
reduce the on-resonance MRI signal due to the off-resonance saturation (ORS) pulse, 
similar to chemical exchange saturation transfer techniques (Ward, 2000). This approach 
has been verified that greatly improved tumor detection accuracy over the conventional 
T2*-weighted methods because of its ability to turn "ON" the contrast of 
superparamagnetic polymeric micelles (SPPM) nanoparticles (Khemtong, 2009). SPPM 
nanoparticles encoded with cyclic (RGDfK) ligand (arginine-glycine-aspartic acid), cRGD, 
were able to target the ǂvǃ3-expressing microvasculature in A549 non-small cell lung 
tumor xenografts in mice. The results suggest that the combination of ORS imaging with 
cancer-targeted SPPM nanoparticles will show promise in detecting biochemical markers 
at early stages of non–small cell lung tumor development, and could further enhance the 
sensitivity of contrast and provide new opportunities in imaging biomarkers setting of in 
vivo tumor target. 

The study (Zurkiya, 2008) transfected cells with genes from magnetotactic bacteria (i.e., 

MagA) under doxycycline-regulated gene expression, resulting in the intracellular 

production of iron oxide nanoparticles similar to synthetic SPION. MagA-expressing cells 

could be visualized by MRI after transplantation in the mouse brain after 5 d of induction 

with doxycycline. The generalized implementation of these techniques as treatment 

strategies in stem cell tracking needs to be explored. Investigators have recently inserted 

magnetic reporter genes into cells. After the expression of iron storage proteins formed 

stored iron then MRI can be used to detect it. Another transgene reporter, an adenoviral 

vector carrying a transgene for light- and heavy-chain ferritin protein to transfect cells has 

been shown that they could be detected by in vivo magnetic resonance imaging (Genove, 

2005).  

Balchandani et al. recently developed a self-refocused spatial-spectral (SR-SPSP) pulse, which 
is successful in creating positive-contrast images of SPIO-labeled cells (Balchandani, 2009). 
This pulse can enable slice-selective, spin-echo imaging of off-resonant spins without an 
increase in TE, which is essentially a phase-matched 90◦ SPSP pulse and a 180◦ SPSP pulse 
combined into one pulse. This results in a considerably shorter TE than possible with two 
separate pulses. The simultaneous spatial and spectral selectivity allows the imaging of off-
resonant spins while selecting a single slice. The SR-SPSP pulse is also suitable for any 
application requiring spatial and spectral selectivity, such as tracking metallic devices or 
replacing standard pulses in MR spectroscopic imaging sequences. More recently a novel 
combination of off-resonance (ORI) positive-contrast MRI and T(2ρ) relaxation in the rotating 
frame (ORI-T2ρ method) for positive-contrast MR imaging of USPIO in a mouse model of burn 
trauma and infection with Pseudomonas aeruginosa (PA), was also reported to have direct 
implications in the longitudinal noninvasive monitoring of infection, and show promise in 
testing the new-developed anti-infective compounds (Andronesi, 2010). The same group also 
reported that ORI-T2ρ method proved to have slightly higher sensitivity than ORI, and MR 
imaging clearly showed migration and accumulation of labeled MSCs to the burn area which 
can be confirmed by histology staining for iron labeled cells (Righi, 2010). 
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3.3 Fast low angle steady-state free precession (FLAPS) sequence  

FLAPS imaging has been proposed for time-efficient acquisition of off-resonance positive-

contrast images (Dharmakumar, 2007). The technique takes advantage of the unique spectral 

response of the steady-state free precession (SSFP) signal to achieve signal enhancement 

from off-resonant spins while suppressing signal from on-resonant spins at relatively small 

flip angles (Dharmakumar, 2006). Besides the positive-contrast generated by the weakly off-

resonant spins, the spins in and around the core of the local magnetic susceptibility (LMS)-

shifting media (such as labeled cells) experience large deviations from the central frequency 

leading to intra-voxel dephasing that was observed as negative-contrast in FLAPS images. 

So this technique has the capability to identify the presence of labeled cells with both 

negative- and positive-contrast within a single image.  

Zhang et al. recently investigated the feasibility of imaging iron-labeled green fluorescent 

protein (GFP)-expressing cells with the dual-contrast method and compared its measurements 

with traditional negative-contrast technique (Zhang, 2009). The GFP-cell was incubated for 24 

hours using 20 mg Fe/mL concentration of SPIO and USPIO nanoparticles. The labeled cells 

were imaged using the FLAPS technique, and FLAPS images with positive-contrast were 

compared with negative-contrast T2*-weighted images. The results demonstrated that SPIO 

and USPIO labeling of GFP cells had no effect on cell function or GFP expression, and the 

labeled cells were observed as a narrow band of signal enhancement surrounding signal voids 

in FLAPS images. Positive- and negative-contrast images were both valuable for visualizing 

labeled GFP-cells. MRI of labeled cells with GFP expression holds great potential for 

monitoring the temporal and spatial migration of gene markers and cells, and enhances our 

understanding of cell- and gene-based therapeutic strategies. These findings suggested that the 

dual-contrast nature of the FLAPS approach offers significant advantages to the field of 

cellular MRI. A highly sought feature of cellular imaging is the quantification of labeled cells. 

Past studies have shown that it may be possible to define a relation between number of cells 

and MR transverse relaxation time constants (apparent T2 or T2*). However, since the 

specificity of the labeled cells is often compromised in GRE images, it is often difficult to use 

the time constant thus derived as a reliable metric to quantify the number of cells. These 

previous FLAPS investigations showed that local contrast was exponentially related to the 

number of cells. Furthermore, the dual-contrast filter, using an image metric that is analogous 

to local contrast, can provide additional quantitative information regarding those regions 

containing the labeled cells. This technique still could be limited by the magnetic perturbations 

around MNPs. A careful investigation of how the output of dual-contrast image filters can be 

used to derive quantitative information regarding the concentration of labeled cells from in 

vivo images has been demonstrated (Dharmakumar, 2009). 

3.4 Ultra short echo time methods 

It has been introduced that ultrashort echo-time (UTE) imaging had capability of imaging 

materials with extremely short T2 and very fast signal decay (Robson, 2006; Rahmer, 2009), 

and did as a new and promising approach that allowed the detection of short-T2 signal 

components, such as tendons, ligaments, menisci, periosteum, and cortical bone before 

signals within these tissues decay to a level where they were not observable with 

conventional spin echo pulse sequences. Due to the very short TE (on the order of 1/10 ms) 
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used for UTE imaging, only negligible T2 decay occurs before sampling, and consequently 

high signal from the short-T2 components can be obtained. Coolen et al. reported that MRI 

parameters could be optimized for positive-contrast detection of iron-oxide labeled cells 

using double-echo Ultra-short echo time (d-UTE) sequences (Coolen, 2007). During these 

studies, there was a linear correlation between signal intensity and concentration USPIO 

labeled cells. Another group found that the enhancement due to the presence of short T2 

USPIO accumulation generally agreed with signal loss within GRE images during ex vivo 

MR of aorta atherosclerotic rabbit (Crowe, 2005).  

Liu et al. recently measured ultrashort T2* relaxation in tissues containing a focal area of 
SPIO nanoparticle-labeled cells. MRI experiments in phantoms and rats with iron-labeled 
tumors demonstrated that these cells can be detected even at ultrashort T2* down to 1 ms or 
less (Liu, 2009). The authors suggested that combining ultrashort T2* relaxometry with the 
multiple gradient echo T2* mapping techniques should improve the ability to measure the 
relaxation of tissues with high densities of implanted iron- labeled cells. In another 
investigation, T1-weighted positive contrast enhancement from SPIO particles was achieved 
from the UTE imaging then this sequence, taking advantage of the unique effect of MNPs on 
relaxation time domain, was also examined to validate its positive contrast imaging 
capability of “probe” targeting to U87MG human glioblastoma cells through an SPIO 
conjugated RDG with high affinity to the cells overexpressing integrin ǂvǃ3 (Zhang, 2011). 
So the study was regarded as providing a dual contrast imaging method from UTE 
technique plus T2-weighted TSE images in its application of molecular imaging of glioma 
with potential quantification of SPIO nanoparticles suggested by previously published 
report (Liu, 2009). 

The more recent study (Girard, 2011) showed that both contrast mechanisms of optimizing 
T1 contrast from UTE technique with conventional T2* contrast of SPIO, even an extra 
subtraction of a later echo signal from the UTE signal, could be powerful both in improving 
the specificity by providing long T2* background suppression and increasing detection 
sensitivity, in molecular imaging application of tumor-targeted IONPs in vivo. A hybrid 
sequence, PETRA (Pointwise Encoding Time reduction with Radial Acquisition) (Grodzki, 
2011), combined the features of single point imaging with radial projection imaging with no 
need of hardware changes, to show shorter encoding times over the whole k-space and to 
enable higher resolution for tissue with very short T2, compared to the UTE sequence, so 
that it could avoids problems derived from the UTE but with good image quality and might 
improve e.g. orthopedic MR imaging as well as MR-PET attenuation correction. A 3D 
imaging technique (Seevinck, 2011) from the group in University Medical Center Utrecht, 
The Netherlands, applying center-out RAdial Sampling with Off-Resonance reception (co-
RASOR) by the using of UTE technique (for the minimization of subvoxel dephasing at 
locations with high magnetic field gradients in the vicinity of the magnetized objects), and a 
hard, nonselective RF block pulse and radial sampling of k-space, was also presented to 
depict and accurately localize small paramagnetic objects with high positive contrast but 
ideally without background signal. 

3.5 Others new MRI pulse sequences and image postprocessing techniques  

Several other new sequences were reported on positive- and dual-contrast methods of MR 
cell tracking. Kim et al. recently developed simple means of detecting iron-labeled cells by 
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using susceptibility weighted echo-time encoding technique (SWEET) (Kim, 2006). The 
subtraction of two sets of image volumes acquired at slightly-shifted echo time generates 
positive-contrast at the cell position. In a more recent study, the SWEET method was 
employed to selectively enhance the effect of the magnetic susceptibility caused by SPIO-
labeled KB cells (KB cell is a cell line derived from a human carcinoma of the nasopharynx, 
used as an assay for antineoplastic agent). It was also demonstrated that this method could 
be used to visualize SPIO-labeled KB cells and their tumor formation in mice for at least a 2-
week period (Kim, 2009).  

Dual-contrast images can also be achieved by applying T2*-weighted imaging combined 

with different post-processing techniques from the magnetic field map (Ward, 2000; 

Zurkiya, 2006). A susceptibility gradient mapping (SGM) technique has been recently 

developed, in which a color map of 3D susceptibility-gradient vector for every voxel is 

generated with calculated echo-shifts, and the map presents a 3D form of a positive-contrast 

images (Dahnke, 2008; Liu, 2008). Hyperintensities of SGM were seen in areas surrounding 

the 1×106 ferumoxides/protamine sulfate complex labeled flank C6 glioma cells of 

experimental rat model. The sensitivity of the method was compared to white-marker and 

IRON positive-contrast methods for visualizing the proliferation of tumor cells for labeled 

tumors that were approximately 5mm (small), 10 mm (medium) and 20 mm (large) in 

diameter along the largest dimension (Liu, 2008). The number of positive voxels detected 

around small and medium tumors was significantly greater with the SGM technique than 

those with the other two techniques, while similar as the “white-marker” technique for large 

tumors that could not be visualized with the IRON technique. The SGM is a post-processing 

technique and its positive-contrast images can be derived directly from the T2*-weighted 

images without requiring dedicated positive-contrast pulse sequences, thereby it can 

provide the flexibility to display susceptibility gradients or suppress susceptibility artifacts 

in specific directions; not like the “white marker” or IRON techniques that require 

specialized pulse sequence designs and extra scans in addition to those obtained for 

conventional anatomic imaging. With SGM the hyperintense regions on positive-contrast 

images originating from SPIO labeled cells can be easily differentiated from other signal 

voids in T2 or T2*-weighted images. 

The phase gradient mapping (PGM) techniques have recently developed independently by 

two groups, one related derived phase gradient maps from standard phase images also 

including a phase unwrapping procedure to assist the analysis and characterization of 

object-induced macroscopic phase perturbations (Bakker, 2008); another one utilized fast 

Fourier transform (FFT) to form phase gradients and develop positive contrast maps by the 

use of PGM but without need of phase unwrapping, so as to be appropriate technique for 

the visualization of magnetic nanoparticulate system (Langley, 2011; Zhao, 2011). By the 

method introduced recently of dual contrast with therapeutic iron nanoparticles at 4.7 T 

scanner (Sigovan, 2011), or postprocessing methods, with the measure of the T2*, an efficient 

estimation of nanoparticle concentration can be made (Langley, 2011). Applications of two 

kind of approaches, the traditional relaxometry method and model-based method, have 

demonstrated that, besides the detection of SPIO nanoparticles by positive contrast 

methods, quantification of the SPIO concentration also play important role in clinical 

evaluation of results from different treatments with monitoring cellular therapies, and the 
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former derives from the signal decay associated with areas containing contrast SPIO 

particles (Kuhlpeter, 2007; Rad, 2007; Liu, 2009), assuming that the rate varies linearly with 

contrast agent concentration; the later derives from the formation of magnetic field by SPIO-

containing region (Dixon, 2009). 

3.6 T1 & T2 (T2*) multi-contrast for cell tracking  

As introduced in as earlier as 1990s, it is possible to achieve positive contrast and dual 
contrast with superparamagnetic particles by employing T1- and/or T2-weighted sequences 
(Canet, 1993; Chambon, 1993; Small, 1993). Although most earlier clinical trials with 
magnetic nanoparticles as contrast agents were evaluated almost exclusively on T2-w fast 
spin echo (FSE) and T2*-w gradient echo (GRE) sequences, and the strong T1 contrast 
enhancement effect of magnetic nanoparticles has rarely been used in clinical and molecular 
imaging (Reimer, 1995; Yamamoto, 1995; Tang, 1999), the effect of SPIO or USPIO on proton 
relaxation is not confined to T2 and T2* effect. They should be considered to influence T1 

relaxivity with increased SI on T1-w GRE sequences at low concentrations. For in vivo 
imaging application of MNPs, optimal combination of negative and positive contrast 
methods is still under evaluation. 

Superparamagnetic iron oxide particles (SPIO) were used shortly after gadolinium-chelate 
magnetic resonance (MR) contrast agent as well known, while USPIO being the strong T2 
relaxivity that produces negative contrast also a high T1 relaxivity with an increase in SI on 
T1-weighted images (Small, 1993), so that a biphasic imaging sequence protocol (only 
immediate postadministration and 20-24 hr delayed images) in the in vivo study allowed 
visualization of the dynamic enhancement patterns of both normal tissue and potentially 
tumor based on early T1-shortening effects produced by intravascular USPIO particulate 
agent (BMS 180549, previously AMI-227) and marked T1-shortening produced following 
agent uptake by liver and spleen, as well as showed markedly less T2-shortening at 20-24 hr 
within both liver and spleen. 

The more recent investigation (Zhang, 2011) demonstrated that an appropriate SPIO core 

size and concentration range was paid much attention to obtain positive contrast with UTE 

imaging, and this technique could be used with the receptor targeted SPIO molecular 

imaging probe so as to provide an opportunity for monitoring cancer cells with 

overexpression of integrin ǂvǃ3 in addition to negative contrast by the approach of T2 

relaxometry mapping. 

Investigators recently synthesized a biocompatible water-dispersible Fe3O4–SiO2–Gd–

DTPA–RGD nanoparticle with r1 relaxivity of 4.2 mm−1s−1 and r2 relaxivity of 17.4 mm−1s−1 

at the Gd/Fe molar ratio of 0.3:1, indicating the potential to use this multifunctional agent 

for dual-contrast MR imaging of tumor cells over-expressing high-affinity ǂvǃ3 integrin in 

vitro and in vivo (Yang, 2011). 

4. Imaging contrast of IRON-labeled cell on multimodular platform 

MRI can be commonly used to set up a kind of nanomedicine platform for applications of 

multimodality probe to obtain information about concomitant anatomic, chemical, and 

physiological features of body. This kind of approach has been found under the 
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background that, the nanomedicine platform could capitalize on the availability of 

specific probes, while achieving an theranostic (integrated diagnostic and therapeutic) 

design to allow for the visualization of therapeutic efficacy by noninvasive imaging 

methods such as MRI (Guthi, 2010), for example, in the field of tumor imaging researches, 

the combination of diagnostic capability with therapeutic intervention is critical to 

address the challenges of cancer heterogeneity and adaptive resistance, also molecular 

diagnosis by imaging is important to verify the cancer biomarkers in the tumor tissue and 

to guide target-specific therapy. It has been thought that ideal multimodality imaging 

probes enhance capabilities from complementary imaging modalities to enable both 

noninvasive and invasive molecular imaging (e.g, via probes with MRI and NIR 

fluorescence reporter capabilities) and to facilitate verification of disease detection and 

deliver additional evidences for the pathology (eg, probes with reporter capabilities for 

both positron emission tomography and MRI) (Kircher, 2003b; Lee, 2008). As for the 

establishment and utilizations of multimodular platform, such as optical and 

multimodality molecular imaging; multifunctional PET/MRI contrast agent; focused 

ultrasound/magnetic nanoparticle targeting delivery; design magnetic nanoparticles, etc, 

some topics are beyond of the scope of this chapter, and some good review papers have 

already published, so readers are recommended to check them (Jaffer, 2009; Chomoucka, 

2010; Liu, 2010; Veiseh, 2010). 

Guthi et al. recently introduced a multifunctional methoxy-terminated PEG-b-PDLLA 

micelle system that was encoded with a lung cancer-targeting peptide (LCP) and loaded 

with SPIO together with doxorubicin for MR imaging and therapeutic delivery in their in 

vitro study of a lung cancer (Guthi, 2010), they presented a significantly increased cell 

targeting, micelle uptake, superb T2 relaxivity for ultrasensitive MR detection and cell 

cytotoxicity in ǂvǃ6-expressing lung cancer cells, with confocal laser scanning microscopy of 

Doxo fluorescence also used to study the targeting specificity of LCP-encoded micelles to 

ǂvǃ6-expressing H2009 over the ǂvǃ6-negative H460 cells. The same micelles were previously 

conjugated with a cRGD ligand that can target ǂvǃ3 integrins on tumor endothelial (SLK) 

cells (Nasongkla, 2006), illustrating growth inhibition of tumor SLK cells with ultrasensitive 

detection by MRI. The same lab in University of Texas Southwestern Medical Center at 

Dallas has previously demonstrated a multi-functional micelle design that allows for the 

vascular targeting of tumor endothelial cells, MRI ultrasensitivity, and controlled release of 

doxorubicin (Doxo) for therapeutic drug delivery (Nasongkla, 2006; Khemtong, 2009). 

Investigators (Guthi, 2010) found that SPIO-clustered polymeric micelle design has 

considerably decreased the MR detection limit to subnanomolar concentrations (< nM) of 

micelles through the increased T2 relaxivity and high loading of SPIO per micelle particle; 

suggested that, on that multifunctional platform, the application of positive contrast 

imaging, such as ORS, could further enhance the contrast sensitivity and allow for the in 

vivo imaging of tumor-specific markers. 

The proposed approaches of dual imaging (e.g. with CLIO modified with a NIR 

fluorophore, therapeutic siRNA sequences, and a cell penetrating peptide for cancer) 

Medarova, 2007), even multi-modular imaging (e.g. with triple functional iron oxide 

nanoparticles) (Xie, 2010) demonstrate potential for the creation of targeted multifunctional 

nanomedicine platforms.  
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5. Perspectives 

There is an increasing interest in using cellular MRI to monitor behavior and physiologic 
functions of iron-labeled cells in vivo. Iron particles provide good MR probing capabilities 
and some of these agents are currently available for clinical applications. Based on the fact 
that iron particles exhibit unique nanoscale properties of super-paramagnetism and have the 
potential to be utilized as excellent probes for cellular imaging and molecular imaging, 
several MR techniques have recently been proposed to increase the detection sensitivity for 
image contrast generated with iron-labeled cells, including negative-, positive- and dual-
contrast methods for visualization of iron-labeled cells in vitro and in vivo. 

The hyperintense regions on positive-contrast images originating from iron-labeled cells can 
be easily differentiated from other signal voids on T2 or T2*-weighted images, therefore 
providing a greater degree of certainty in the determination of labeled cells. Moreover, the 
hyperintensities appeared to illustrate a greater sensitivity than the dark spots on regular 
MR images. Because positive-contrast imaging approaches do not provide sufficient 
anatomical information, it is necessary to combine positive-contrast techniques with 
conventional gradient echo or spin echo imaging, to achieve dual-contrast. Also, the 
combinined gadolinium and SPIO-enhanced imaging in a ‘dual contrast’ MRI could be the 
more accurate technique for the detection of rntities, especially of tumors. Additionally, 
some new applications of agents for MR imaging have been tested so as to obtain dual-
contrast agents for noninvasive imaging studies. Dual-contrast MRI techniques for in vivo 
cell tracking will add to the growing armamentarium for preclinical cellular MR imaging 
and further demonstrate the value and diagnostic power of molecular MR imaging, and 
multifunctional iron oxide nanoparticles together with MRI will have unique advantages 
with diagnostic and therapeutic capabilities. Simutaneously, the “concept” of dual-contrast 
imaging can be expaned into imaging evaluation on the platform of dual-modality (or even 
multimodal approach) including the simultaneous MRI-PET of new method for functional 
and morphological imaging with blooming perspectives for further development. 

While much progress has been made to date, many challenges still face cellular MRI 
approaches aimed at assessing the migration, homing and function of transplanted 
therapeutic iron-labeled cells in vivo. For cellular MRI techniques to be successful, the 
combined expertise of basic scientists, clinicians and representatives from industry will 
undoubtedly be essential.  
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