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Chemical Transformations in Inhibited  
Flames over Range of Stoichiometry 

O.P. Korobeinichev, A.G. Shmakov and V.M. Shvartsberg 
Institute of Chemical Kinetics & Combustion,  

Siberian Brunch of Russian Academy of Sciences, Novosibirsk, 
Russia  

1. Introduction  

Addition of chemically active compounds to flame, which are able to change the flame 

velocity, the flame propagation limits and the other macrokinetic parameters, seems to be 

the most effective way to control combustion. Of special interest are chemically active 

inhibitors producing a noticeable effect on flame at low concentrations, which do not change 

the flame stoichiometry. Thousands of elementary reactions involving hundreds of species 

proceed in hydrocarbon flame. However, the key reactions are those involving atoms and 

free radicals; with their reaction rates being much faster than those of the other reactions. 

The inhibitors mainly interact and affect the above processes. 

2. Methods and approaches 

2.1 Flame structure  

Knowledge of the chemistry and mechanism of combustion at the molecular level makes it 

possible to create combustion models capable of predicting many combustion characteristics 

important for practice, such as the rate and completeness of combustion, temperature and 

composition of the products under various conditions, and also to control the process of 

combustion by means of selecting conditions that would ensure the required characteristics 

of combustion. The flame structure is the main source of information on the chemistry of 

combustion. One of the most effective method for studying the flame structure is probe 

mass spectrometry, a versatile method capable of (1) identifying the components present in 

the flame, (2) determining their quantitative composition (concentrations), and (3) 

measuring these concentrations in the combustion zone (examine the structure of these 

flames). An efficient approach to studying combustion chemistry is to combine experimental 

methods with numerical simulations within the framework of a detailed kinetic mechanism. 

This combination makes it possible not only to understand the chemical mechanism of the 

process, but also to develop a kinetic model and constantly refine it by comparing its 

predictions with experimental data. At present, this approach is widely used in combustion 

research, including its application to studying the chemistry of combustion of 

organophosphorus compounds (OPCs). The most efficient method for determining the 

chemical structure of flames is the probing molecular-beam mass spectrometry (MBMS) 
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with soft ionization, a technique that makes it possible to detect atoms, radicals, and labile 

components in the flame. It was successfully applied to studying the combustion of OPCs at 

the Cornel University (USA) (Werner & Cool, 1999) and at the Institute of Chemical Kinetics 

and Combustion of the Siberian Division of the Russian Academy of Sciences 

(Korobeinichev et al., 1996).  

2.1.1 Molecular beam mass spectrometry  

The best way to analyze the combustion products in situ is to use molecular beam sampling 
from the flame with the help of a sonic probe that forms a supersonic outflow of products 
into vacuum, which, passing through a skimmer, transforms into a molecular beam. The 
expansion of the products quenches chemical reactions in the sampled gases. The skimmer 
cuts out the central part of the flow, free from the products of possible heterogeneous 
catalytic reactions on the internal walls of the probe. The composition of the molecular beam 
is analyzed by a soft-ionization mass spectrometry. The molecular beam method ensures the 
preservation of the sample during extraction and transport to the analyzer. Mass 
spectrometry makes it possible to simultaneously detect in situ all flame components, a 
capability that is beyond the reach of any other method. Figure 1 shows the setup with 
molecular beam mass spectrometric sampling; for details, see (Korobeinichev et al., 1996).  

 

Fig. 1. Schematic of the MBMS setup for sampling gaseous flames. 
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The setup at the Institute of Chemical Kinetics and Combustion employed soft electron-

impact ionization (7–20 eV). The low scatter of electron energies was achieved by using 

cathode voltage-drop compensation (Dodonov et al., 1990). This technique makes it possible 

to decrease the fragmentation of ions, an effect that interferes with measurements of the 

concentrations of atoms, radicals, and other labile species. The ionization potentials of PO, 

PO2, HOPO, HOPO2, and (HO)3PO were determined by measuring the ionization efficiency 

curves during direct sampling of flames seeded with OPCs. The accuracy of measuring the 

ionization potentials is determined by the ionizing electron energy scatter, signal-to-noise 

ratio, and intensity of the signal itself.  

2.1.2 Microthermocouple measurements of the flame temperature 

The temperature profiles in flames are usually measured with Pt/Pt+10% Rh thermocouples 

0.05-0.02 mm in diameter. The ends of the thermocouple are welded to a 0.2-mm-diameter 

wire fabricated from the same material. Springs provide a steady stretching of the 

thermocouple and made it possible to prevent it from being deformed in the flame 

(Korobeinichev et al., 1996). Upon welding the surface of the thermocouple is coated with 

SiO2 or Ceramobond 569 (Burton et al., 1992) to eliminate catalytic processes on its surface. 

The corrections for thermal emission are estimated using the formula from (Kaskan, 1957). 

To take into account the thermal disturbances introduced into the flame by the probe, the 

spatial variation of the temperature is measured with a thermocouple positioned at a 

distance of 0.25–0.30 mm from the probe tip.  

2.2 Methods for measuring the laminar flame speed  

The laminar flame speed was measured on a Mache–Hebra burner (a modification of the 

Bunsen burner). A quartz tube with a converging nozzle at the end appears as the burner. 

Such a nozzle is needed to make the visible flame contour take the shape of a regular 

cone. The laminar flame speed was calculated from the measured flow rate of the 

combustible mixture and the surface area of the flame cone. The size of the flame cone 

was identified with its luminescent contour or by shadow photography method. The error 

in determination of the flame speed by this method is 5% (for stoichiometric methane–air 

flame). The laminar flame speed was also measured by using the heat flux method (De 

Goey et al., 1993; Van Maaren et al., 1994), which makes it possible to determine this 

parameter with a high accuracy (±1% for a stoichiometric methane–air flame) over a 

wide range of compositions of the combustible mixture. The flat burner was a copper disk 

with small orifices; thermocouples were welded into orifices at various distances from the 

burner axis. The temperature of the disk was 60°С, whereas the combustible mixture 

temperature was 35°C. While passing through the orifices, the mixture was heated. By 

varying the flow rate of the combustible mixture, it is possible to achieve a uniform radial 

distribution of temperature over the disk surface, a situation that corresponds to the 

equality of the heat flux from the flame to the burner surface. In this case, the conditions 

of combustion are close to adiabatic. This means that the velocity of the combustible 

mixture equals the laminar flame speed.  
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2.3 Simulation of the structure and speed of a laminar flame 

The simulation of the flame structure was performed using the PREMIX and CHEMKIN-II 

computer codes (Kee et al., 1989a 1989b), which make it possible to calculate the 

concentration profiles of species in a flame stabilized over a flat burner and the laminar 

flame speed by using a detailed mechanism composed of elementary chemical reactions 

and databases of thermodynamic and transport properties. Due to the existence of the 

heat fluxes from the flame to the sampler and burner, notably at atmospheric pressure, the 

flame structure was calculated employing the experimentally measured temperature 

profile. For this purpose, as in (Biordi et al., 1974), we used the data obtained with the 

help of a thermocouple located near the inlet orifice of the probe. The simplest mechanism 

of methane oxidation included 58 reactions and 20 species. Of these reactions, 23 belong to 

the hydrogen oxidation mechanism. This set of reactions was successfully used in 

modelling the structure of a stoichiometric hydrogen–oxygen flame stabilized over a flat 

burner at a pressure of 47 Torr (Korobeinichev et al., 1999a, 1999b, 2000) and of lean 

methane–oxygen flame stabilized at 76 Torr (Korobeinichev et al., 1999c, 2001). The 

structure and laminar flame speed of methane–oxygen flames at atmospheric pressure 

was calculated using the GRI 3.0 mechanism (Smith et al., 1999), a more complex kinetic 

mechanism composed of 325 reactions involving 53 species. The structure of propane–

oxygen flames was simulated using 469 reactions involving 77 species (Curran et al., 2003, 

2004). The structure of hydrogen–oxygen flames seeded with trimethylphosphate (TMP) 

and Dimethylmethylphosphonate (DMMP) was determined using a kinetic model of 

OPCs destruction in flames involved 35 steps. This model was initially developed on the 

basis of experimental data on the structure of flames seeded with DMMP (Werner & Cool, 

1999; Korobeinichev et al., 1996), thermochemical data obtained by Melius, and the 

mechanism proposed by Twarowski (Twarowski, 1993a, 1993b, 1995); it was tested by 

comparing the experimental and theoretical results on the structure of H2–O2–Ar flames 

seeded with TMP and DMMP (Korobeinichev et al., 1999b, 2000, 2001) at a pressure of 47 

Torr and methane–oxygen flames seeded with TMP at 76 Torr (Korobeinichev et al., 

2001). This model includes the mechanism developed by Twarowski (Twarowski, 1993a, 

1993b, 1995) with modified rate constants from (Korobeinichev et al., 2000). Later, the 

model was refined by altering the rate constants of six key steps and was successfully 

applied to calculating the structure of flames at atmospheric pressure. The enthalpies of 

formation of phosphorus oxyacids were calculated by various quantum-chemical methods 

(Glaude et al., 2000; Mackie et al., 2002; Korobeinichev et al., 2005). At the same time, the 

enthalpies of formation of some activated complexes were calculated by varying their 

structures (intermediate states) for different pathways of the key reactions. As a result, it 

was found that some of the steps in the mechanism of the destruction of OPCs are 

nonelementary, consisting of a sequence of elementary transformations (Korobeinichev et 

al., 2005, Jayaweera et al., 2005). Based on the calculations performed, the authors of 

(Korobeinichev et al., 2005, Jayaweera et al., 2005) developed a more detailed mechanism 

of the destruction of OPCs, which, in addition, was capable of describing propane–air 

mixtures of various compositions at atmospheric pressure. This mechanism consists of 210 

reactions and 41 phosphorus-containing species.  
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3. Phosphorus containing compounds 

3.1 Inhibition and promotion. Low-pressure hydrogen flames 

One of the most interesting finding, made during investigation of OPCs combustion 

chemistry, is the promotion effect of phosphorus-containing compounds on hydrogen low-

pressure flames.  

Hastie and Bonnell (Hastie & Bonnell, 1980) studied the effect of TMP on atmospheric-

pressure methane–oxygen and hydrogen–oxygen flames of various types and compositions 

by using MBMS and optical and spectroscopic methods. Although these authors have not 

observed flame promotion but inhibition only, they proposed reactions for flame inhibition 

via H and OH recombination catalyzed by phosphorus-containing compounds. Analyzing 

the proposed mechanism Hastie and Bonnell suggested that this kinetic scheme can provide 

promotion effect. 

The first experimental observations of a decrease of the flame zone and a rise of the 

temperature of low-pressure H2/O2/Ar flame as TMP was added were made by 

Korobeinichev et al. (Korobeinichev et al., 1994, 1996) (see Fig. 2). This phenomenon was 

termed promotion. The singularity of the phenomenon consisted in the following. A 

decrease in the width of the flame zone and a rise in the flame temperature occurred 

simultaneously with a decrease of radicals concentration in the flame (Korobeinichev et al., 

1999b, 2001). Later it was shown that the promotion effectiveness for a stoichiometric flame 

at 47 Torr increases with OPCs loading and riches its maximum at concentration of 0.6% by 

volume (Korobeinichev et al., 2001). A further increase of OPCs loading results in a drop of 

the flame speed (Fig. 3). 

It is noteworthy that Korobeinichev and co-authors (Korobeinichev et al., 1999d) measured 

concentration profiles of phosphorus oxides and acids PO, PO2, HOPO, HOPO2, and 

(HO)3PO in the flame that are the key flame species responsible for H and OH catalytic 

recombination. In the same work the authors demonstrated that the same chemical 

processes are responsible for both promotion and inhibition.  

Twarowski (Twarowski, 1993a 1993b, 1995) made a significant progress in understanding 

the chemistry of catalytic recombination of H and OH with participation of phosphorus-

containing flame species. Using a flash photolysis method, Twarowski studied the rate of H 

and OH recombination in the sampled combustion products (T=2000 K) of H2/O2/Ar/P2H6 

flame. A phosphine additive was demonstrated to accelerate H and OH recombination. 

Twarowski assumed this process to be a recombination of H and OH radicals catalyzed by 

phosphorus oxides and acids (PO, PO2, HOPO, and HOPO2). He developed a reaction 

mechanism for phosphorus-catalyzed recombination. Later Twarowski refined his model 

(Twarowski, 1996).  

A more detailed explanation of the nature of the promotion effect was given by Bolshova 

and Korobeinichev (Bolshova & Korobeinichev, 2006). The authors simulated the structure 

and speed of various low-pressure and atmospheric-pressure flames with various 

equivalence ratios. The authors revealed the influence of equivalence ratio on the inhibition 

and promotion effectiveness. In particular, the lean H2/O2/Ar flames were shown to be 

promoted most effectively and the promotion efficiency decreased as the equivalence ratio 
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rose. As to inhibition, an inverse dependence was observed: higher inhibition efficiency was 

observed for richer atmospheric-pressure H2/O2/Ar flames. 

 

Fig. 2. Effect of a 0.2% TMP additive (lower plot) on the concentration profiles of the stable 
components of a hydrogen–oxygen flame stabilized over a flat burner at a pressure of 47 
Torr; the points and lines are the experimental and simulation results, respectively. 

 

Fig. 3. Dependence of the speed of hydrogen–oxygen–TMP flame on the initial 
concentration of TMP at (1) 47 and (2) 760 Torr. 
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Bolshova and Korobeinichev performed the sensitivity analysis and revealed that a rise of low-
pressure H2/O2/Ar flame speed, as TMP loading is increased, is accompanied by a rise of the 
net rate of the chain-branching reaction H + O2 = O +OH. It occurs due to a rise of the flame 
temperature throughout the flame zone. The flame temperature rise is explained by a release 
of additional heat due to catalytic pathway for water formation from H and OH. Increasing the 
additive loading increases both the branching rate and the chain termination rate. However, 
because of the high concentration of the chain carriers in low-pressure H2/O2/Ar flames, the 
increase in the branching reaction rate dominates over the chain termination, resulting in the 
growth of the flame speed. In the case of atmospheric-pressure flames, where the radicals 
concentration is much lower and the catalytic recombination does not result in the flame 
temperature rise, the OPC addition to flame leads to a decrease in the flame speed. 

It is noteworthy that OPCs additive increases the chain-termination rate, thus accelerating 
approach of the system to thermodynamic equilibrium. Therefore, at certain concentration, 
e.g. 0.6% by volume for the stoichiometric flame at 47 Torr, the promotion efficiency reaches 
its maximum. 

3.2 Mechanism for inhibition of hydrogen flames at atmospheric pressure 

3.2.1 Effect of the equivalence ratio and the degree of dilution with an inert on the 
speed of a H2/O2/N2 flame doped with TMP  

At present time a number of kinetic models for flame inhibition and promotion by OPCs are 
available. The last and the most justified version of the mechanism, which was developed on 
the basis of experimental results on speed of TMP-doped C3H8/air flames and quantum-
mechanical calculations (Korobeinichev et al., 2005; Jayaweera et al., 2005) was used for 
predicting many experimental data including flame suppression (Shmakov et al., 2006), 
chemical structure of diffusive counterflow (Knyazkov et al., 2007) and premixed 
(Korobeinichev et al., 2007) hydrocarbon/air flames doped with OPCs. In spite of a 
satisfactory prediction of speed and structure of lean and stoichiometric flames, the 
mechanism predicted concentration profiles of labile species in rich flames with lower 
accuracy (Korobeinichev et al., 2007). To explain a sharp decrease of the inhibition 
effectiveness of hydrocarbon flames at equivalence ratio >1.2–1.3 and a disagreement 
between modeling and experiment (Korobeinichev et al., 2007), a formation of inactive P- 
and C-containing species in rich flames, which are not considered by the model was 
proposed. Therefore, it was important to check on this suggestion and to validate the 
mechanism by comparing the measured and simulated speed and structure of atmospheric-
pressure H2/O2/N2 flames of various fuel/oxidizer ratios. 

Figure 4 presents the measured speeds of H2/O2/N2 flames versus  (equivalence ratio 

=([H2]/[O2])/([H2]st/[O2]st), where [H2], [O2], [H2]st, [O2]st – concentration of hydrogen and 
oxygen in studied and stoichiometric combustible mixture, respectively) in the range from 
0.32 to 2.8 with the dilution ratio D (D=[O2]/([O2]+[N2]), where [O2] and [N2] concentration 
of oxygen and nitrogen in combustible mixture) in the range from 0.209 to 0.077. The same 
figure shows data (Egolfopoulos, 1990) obtained using a counterflow burner for a 
combustible mixture at room temperature and converted to the conditions of our 
experiments (t0=350C). Good agreement between our and literature data indicates the 
correctness of our measurements. The flame speeds predicted by the model are slightly 
lower than the experimental data.  
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Fig. 4. Speed of H2/O2/N2 flames with different dilution ratios (D) versus equivalence ratio; 
symbols – experiment (gray symbols – (Korobeinichev et al., 2009), open symbols - 
(Egolfopoulos & Law,1990)), lines – modeling. 

The addition of 0.04% TMP (by volume) to the flames leads to a significant decrease in their 
speed. Figure 5 gives the measured flame speeds (symbols) and those calculated (dashed 

curves) using the model of (Jayaweera, 2005) versus  for a flame doped with TMP. It is 
evident from Fig. 5 that the experimental and calculated results differ by a factor of 1.3 to 2. 
This difference, however, is not due to systematic measurement errors. The observed 
disagreements between the measured and calculated speeds are different for flames with 
and without TMP additives: for undoped flames, the flame speed predicted by the model is 
slightly underestimated, and for flames with the additive, it is overestimated.  
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Fig. 5. Speed of H2/O2/N2 flames doped with 0.04% TMP with different D versus 
equivalence ratio; symbols – experiment, dashed lines – modeling using mechanism 
(Jayaweera et al., 2005), solid lines – modeling using the updated mechanism. 

An analysis of the speed sensitivity of a H2/O2/N2 flame doped with TMP with respect to 
the rate constants of the reactions involving P-containing species shows that, in contrast to 
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hydrocarbon–air flames, the H2/O2/N2 flame speed is the most significantly sensitive to the 
primary stages involving TMP and its primary destruction products, which proceed in the 
low-temperature flame zone. These reactions are given in Table 1. It should be noted that in 
methane–air and propane–air flames, the flame speed was most significantly affected by the 
atom and radical recombination reactions involving phosphorus oxyacids, which proceed in 
the high-temperature flame zone (Korobeinichev et al., 1999b). Because the rate constants of 
the stages presented in Table 1 have previously been estimated only approximately (Glaude 
et al., 2000), we changed the pre-exponential factors of their rate constants as is shown in 
Table 1 in order to obtain agreement between the calculated and measured speeds of TMP-
doped flames.  

Reaction A a , (Jayaweera et al., 2005) Amodifieda 

(CH3O)3PO + H = (CH3O)2PO(OCH2) + H2 2.2109 4.4109 

(CH3O)2PO(OCH2) + O = OP(OCH3)2O + CH2O  5.01013 1.01013 

(CH3O)2PO(OCH2) = OP(OCH3)2 + CH2O  2.01013 2.01012 

aUnits are cm3, mole, s. 

Table 1. Three important reactions and pre-exponential factors of their rate constants before 

and after modification. 

The results of flame speed calculations using the changed reaction rate constants are given 

in Fig. 5. It is evident that the changed mechanism provides an adequate description of the 

experimental data on the effect of TMP additives on the H2/O2/N2 flame speed. We note 

that the sensitivity coefficients for the same reactions in CH4/air flames doped with TMP are 

negligibly small. For example, for a CH4/air flame (=1.1, 0.06% TMP), the flame speeds 

calculated for the original mechanism and the mechanism with the changed rate constants 

of the three reactions given above differ by only 0.2 %. Thus, the changed mechanism 

describes the propagation speed of both hydrocarbon–oxygen and hydrogen–oxygen flames 

doped with TMP. The calculations showed that the change in the rate constants of the 

reactions did not lead to appreciable changes in the flame structure for =1.6, including the 

concentration profiles of the final products of TMP conversion – PO, PO2, HOPO and 

HOPO2.  

The changed rate constants of the three reaction were used to calculate the dependence of 

the inhibition effectiveness F (F=(U0-U)/U0, where U0 and U are the speeds of the undoped 

flames and flames doped with 0.04 % TMP, respectively) on . The calculated dependences 

are presented in Fig. 6. It can be seen that F increases as  increases from 1 to 3 and as D 

decreases from 0.209 to 0.077. Modeling data with updated mechanism for D=0.077 are in a 

good agreement with experiment. 

It is important to note that the dependence of F on  for H2/O2/N2 differs from that for 

hydrocarbon flames (Korobeinichev et al., 2007; Rybitskaya et al., 2007). In hydrocarbon 

flames doped with 0.06% TMP, the inhibition effectiveness F increases slightly as  increases 

from 0.7 to 1.2–1.3, and a further increase in  from 1.3 to 1.5 leads to an abrupt decrease in F 

by a factor of 1.5 to 2 (Korobeinichev et al., 2007).  
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Fig. 6. Inhibition effectiveness F for H2/O2/N2 flames doped with 0.04% TMP with different 
dilution ratios (D) versus equivalence ratio; symbols – experiment, lines – modeling using 
the updated mechanism. 

The addition of TMP to flames reduces the maximum concentration of H atoms in the 
chemical reaction zone of a flame. Figure 7 shows the relative reduction in the maximum 

concentration of H atoms [H]max ([H]max=1-[H]dmax/[H]0max) and OH radicals [OH]max 

([OH]max=1-[OH]dmax/[OH]0max) due to the addition of TMP versus , obtained from 
structure simulations for freely-propagating flames without additives and with 0.04% TMP 
added. Where [H]max and [OH]max – maximal concentrations of H and OH in the flame zone, 
subscripts “d” and “0” are related to doped and clear flames respectively. It is evident from 

Figs. 6 and 7, that there is a correlation between the dependences of F and [H]max and 

[OH]max on  and D.  
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Fig. 7. Relative decrease of H (solid lines) and OH (dashed lines) maximal concentration in 
flames doped with 0.04% TMP with different D versus equivalence ratio; modeling data 
using the updated mechanism. 
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An analysis of the flame speed sensitivity coefficients with respect to the reaction rate 

constants for a flame with D=0.09 shows (Fig. 8) that an increase in  from 1.1 to 1.9 

primarily enhances the role of the reactions of hydrogen atoms with TMP and its primary 

destruction product:  

 (CH3O)3PO + H = (CH3O)2PO(OCH2) + H2 (1) 

 (CH3O)2PO(OCH2) + H=(CH3O)3PO (2) 

and the reactions with the HOPO species: 

 HOPO+H=H2+PO2 (3) 
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Fig. 8. Sensitivity coefficients of speed of H2/O2/N2 flames ( = 1.6, D = 0.077, 0.09, and 

0.209) doped with 0.04% TMP to rate constants of reactions (1)–(3) involving P-containing 

species; modeling is based on mechanism (Jayaweera et al., 2005) 

These reactions are involved in the catalytic recombination cycles of H atoms with the 

formation of H2. It is these reactions that are responsible for the rise in the inhibition 

effectiveness with increasing of . Under the catalytic recombination responsible for 

scavenging of radicals in OPC-doped flames, all the authors meant reactions involving 

phosphorus oxides and acids (PO, PO2, HOPO, and HOPO2). It was assumed that 

organophosphorus combustion intermediates play a negligible role in the inhibition 

processes. However, in these specific flames reactions of OPCs with active species are of 

importance.  

An analysis of the speed sensitivity coefficients of TMP-doped H2/O2/N2 flames with 

respect to the rate constants of the main hydrogen combustion reactions and the reactions 

involving P-containing species revealed the main stages responsible for an increase in F with 

decreasing D. From the data given in Fig. 9 for the main hydrogen combustion reactions, it 

is evident that a decrease in D leads primarily to a growth in the role of the H+O2=O+OH 

branching reaction. In flames with =1.6, the flame speed sensitivity coefficient with respect 
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to the rate constant of this reaction increased by a factor of 4 as D decreased from 0.209 to 

0.077. In addition, the sensitivity coefficient for this reaction is much larger than that of the 

remaining reactions. Furthermore, dilution with N2 changes the role of the 

H+O2(+M)=HO2(+M) recombination reaction, for which the sensitivity coefficient is 

negative for flames with dilution coefficients D=0.077 and D=0.09 and is positive for 

D=0.209.  

D
=

0
.2

0
9

D
=

0
.0

9

Sensitivity coefficients

-0.2 0.0 0.2 0.4 0.6 0.8

D
=

0
.0

7
7

HO2+OH=H2O+O2
HO2+O=OH+O2

H2+M=H+H+M

HO2+H=OH+OH

HO2+H=H2+O2
H+O2(+M)=HO2(+M)

H2O+M=H+OH+M

 H+O2=O+OH

OH+H2=H+H2O
O+H2=H+OH

 
Fig. 9. Sensitivity coefficients of speed of H2/O2/N2 flame ( = 1.6, D = 0.077, 0.09, 0.209) 

doped with 0.04% TMP to rate constants of 10 key reactions of hydrogen combustion. 

However, an analysis of the flame speed sensitivity to the rate constants of chain 

termination reactions – radical recombination upon interaction with TMP and its destruction 

products (Fig. 10) – shows that decreasing D increases the sensitivity to these reactions 

much more strongly than the sensitivity to the branching reaction constant rate. For 

example, as D decreases from 0.209 to 0.077, the sensitivity coefficient with respect to the 

rate constants of reactions (1) and (2) increases by a factor of 8 and 20 times, respectively. 

This is much greater than the increase in the flame speed sensitivity coefficient with respect 

to the branching reaction. An analysis of the simulation results shows that, a decrease in D 

from 0.209 to 0.077 also results in a factor of 2-5 increase in the ratio of the maximum rate of 

recombination of H atoms by reactions (1) and (2) to the maximum rate of the branching 

reaction. It is this factor that is responsible for the increase in the inhibition effectiveness F 

with decreasing D, and, possibly, for the increase in F with increasing of . Thus, the ratio of 

the chain termination rate to the chain branching rate is an important parameter that 

determines the hydrogen–oxygen flame speed.  
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Fig. 10. Sensitivity coefficients of speed of H2/O2/N2 flame ( = 1.6, D = 0.077, 0.09, 0.209) 
doped with 0.04% TMP to rate constants of 13 key reactions of the inhibition mechanism 
(Jayaweera et al., 2005) involving P-containing species. 

3.3 The mechanism for inhibition of hydrocarbon flames at atmospheric pressure 

The inhibition effectiveness of hydrocarbon flames by phosphorus-containing inhibitors also 
increases with the rise of fuel excess in unburnt gases. 

The burning velocities of propane–air and methane–air flames were measured on a flat 
burner using the heat flux method (De Goey et al., 1993; Van Maaren et al.,1994). This 
technique allows burning velocities to be measured with much higher accuracy (3% for 
stoichiometric flames and 5–10% for lean and rich flames) over a wide range of equivalence 
ratios. 

Experimental data (Rybitskaya et al., 2007) on the burning velocities of propane–air and 

methane–air flames without additives (Fig. 11.) are in good agreement with literature data 

obtained using the same method (Bosschaart et al., 2004).  
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(Bosschaart et al, 2004)

(Jayaweera et al., 2005)) 

(Jayaweera et al., 2005)) 

(Bosschaart et al, 2004)

(Jayaweera et al., 2005)) 

(Jayaweera et al., 2005)) 

(mech. (Smith et al., 1999) + (Jayaweera et al., 2005)) 

(mech. (Smith et al., 1999) + (Jayaweera et al., 2005)) 

 

Fig. 11. Burning velocity of a propane–air flame (left) and methane-air flame (right) versus 
equivalence ratio without (a) and with the addition of 600 ppm TMP (b). 

A comparison of the experimental data and modeling results for flames without additives 
and with 0.06% TMP showed to be in a satisfactory agreement for propane flames and differ 
somewhat for methane–air flames (Rybitskaya et al., 2007). For methane–air flames, the 
predictions using the GRI 3.0 mechanism are in better agreement with the experimental data 
for near stoichiometric flames, whereas the mechanism (Jayaweera, et al., 2005) provides a 
better agreement for lean and rich flames. Figure 12 presents the inhibition effectiveness of 
propane–air and methane–air flames by TMP, which is defined as F = (u0 − u)/u0, where u0 
and u are the burning velocities of the undoped and doped flames, respectively. The 
simulation predicts that the effectiveness increases with φ up to 1.3 and 1.2 for C3H8 and 
CH4 flames, respectively, and then decreases in the region of rich flames. In the experiments, 
the inhibition effectiveness is also observed to decrease sharply in rich flames, whereas in 

lean and near-stoichiometric flames, the experimental dependence F() is weakly expressed. 
The discrepancies between the simulation and measurement data may be due to drawbacks 
of both the mechanism for the reactions involving OPCs and the hydrocarbon combustion 
mechanisms. This is supported by the fact that two different kinetic schemes of hydrocarbon 
combustion (Jayaweera, et al., 2005; Smith et al., 1999) used in burning velocity calculations 
for TMP-doped flames with the same set of TMP reactions yield somewhat differing results. 
It noteworthy that the hydrocarbon combustion mechanisms used in the calculations have 
previously been tested by various researchers by comparing simulation and experimental 
results flame speed, structure, ignition delay in shock waves, and oxidation in a flow 
reactor. Therefore, the application of the two different hydrocarbon combustion mechanisms 
(Jayaweera, et al., 2005; Smith et al., 1999) allows estimating how these models influence the 
predicted speed of TMP-doped flames. 
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  (Jayaweera, et al., 2005)

(Jayaweera, et al., 2005)

Mech. (Jayaweera, et al., 2005)+(Smith et al., 1999) 

 

Fig. 12. Inhibition effectiveness versus equivalence ratio in propane–air (a) and methane–air 
(b) flames with the addition of TMP. 

As the modeling results depend on a mechanism for hydrocarbon combustion, it is 

reasonable to performed modeling using several kinetic schemes. As can be seen from Fig. 

11b, although these two different models give differing absolute values of F for  ≈ 1.2, the 

resulting dependences F() are qualitatively similar. The burning velocity simulation for a 

hydrogen–air flame (at p = 1 bar and T0 = 298 K) without additives and with 0.1% TMP 

predicts the inverse dependence of the inhibition effectiveness. Figure 13 shows flame 

velocity sensitivity coefficients versus  for changes in the rate constants of the most 

important reactions in TMP-doped propane–air and hydrogen–air flames. The sensitivity 

coefficients were determined by the formula [(u − u5A)/u]100%, where u and u5A are the 

burning velocity calculated using the mechanism [(Jayaweera, et al., 2005) and the flame 

speed calculated using the same mechanism modified the pre-exponential factor of the 

reaction rate constant increased by a factor of five. Thus, the reactions PO2+ H+M = 

HOPO+M and HOPO2+H = PO2+H2O are the most significant in lean propane–air flames 

because these flames are dominated by compounds of phosphorus with a greater degree of 

oxidation, such as PO2 and HOPO2. The same reaction HOPO2+H = PO2+H2O makes a 

significant contribution to the inhibition of lean hydrogen–air flames. For rich propane–air 

flames, the major contribution to the inhibition comes from the reaction HOPO + OH = PO2 

+ H2O, which is responsible for the sharp decrease in the effectiveness at  = 1.3. The 

sensitivity coefficient dependence of this reaction (see Fig. 13a) correlates with the 

dependence of the inhibition effectiveness of TMP (see Fig. 12a): both have a maximum at  

 ≈ 1.3.  
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Fig. 13. Burning velocity sensitivity coefficients versus reaction rate constants in propane–air 
(a) and hydrogen–air (b) flames doped with TMP. 

For rich hydrogen–air flames at  > 2.5, the highest contribution to the inhibition comes 
form the reaction HOPO+H = H2 + PO2, which, together with the other reactions, is 

responsible for an increase in the inhibition effectiveness as  rise. Thus, the differences in 
the behavior of the inhibition effect of hydrocarbon–air and hydrogen– air flames occurs 
due to changes in the importance of the reactions of radicals with the phosphorus-
containing products of TMP combustion. The curves of the inhibition effectiveness versus φ 
correlate with the those of the concentrations of H atoms and OH radicals versus in the 

chemical reaction zone  of TMP- doped flames. Figure 14 presents the maximum 
concentrations of H and OH radicals in propane–air flames without additives and doped 
with TMP and their relative decrease versus equivalence ratio. As can be seen from the 
figure, the curve of the relative decrease in the radical concentration (ΔCi/Ci) and the curve 

of the inhibition effectiveness (see Fig. 12) have a break at  = 1.3, which indicates a direct 
relationship between the decrease in the concentration of the active radicals and the effect of 
the TMP additive. Similar curves for hydrogen–air flames are presented in Fig. 15. The 
reduction in the inhibition effectiveness in rich hydrocarbon flames may be due to an 
increase in the concentration of organophosphorus products of incomplete TMP destruction 
in the postflame zone at high equivalence ratios.  
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Fig. 14. Maximum concentrations of active radicals in propane–air flames (a) without 
additives (solid curves) and doped with 0.06% TMP (dashed curves) and the relative 
decrease in the concentrations (b). 

 

Fig. 15. Maximum concentrations of active radicals in hydrogen–air flames (a) without 

additives (solid curves) and with 0.1% TMP (dashed curves) and the relative decrease in the 

concentrations (b). 

www.intechopen.com



 
Stoichiometry and Materials Science – When Numbers Matter 

 

374 

Species such as CH3PO, CH3PO2, CH3OPO, CH3OPO2, and CH2OPO2 are probably 
ineffective or incapable of catalyzing the recombination of H and OH radicals; therefore, a 
rise of their concentration in the combustion products leads to a decrease in the 
concentration of active species and inhibition effectiveness. Figure 16 demonstrates the ratio 
of the total concentration of CH3PO, CH3PO2, CH3OPO, CH3OPO2, and CH2OPO2 in the 
post-flame zone of propane–air and methane–air flames to the TMP loading versus 
equivalence ratio. These data obviously demonstrate that the sharp increase in the total 

concentration of organophosphorus products is observed in propane–air flames at  = 1.4, 
this almost coinciding with the maxima in the effectiveness curves in Fig. 12. It is 
noteworthy that, for the methane–air flames, the similar inhibition effectiveness curve has a 

maximum at  = 1.2–1.3 and a sharp increase in the total concentration of the 

organophosphorus products is observed at the same . Therefore, the accumulation of the 
catalytically ineffective organophosphorus intermediates in the rich OPCs-doped flame 
reduces the inhibition effectiveness. 

 

Fig. 16. Total concentration of CH3PO, CH3PO2, CH3OPO, CH3OPO2, and CH2OPO2 
normalized to the initial TMP concentration in the flame (COPC/CTMP) versus equivalence 
ratio. 

One of the important combustion characteristics of premixed mixtures are flammability 

concentration limits (FCLs). The effect of various fire suppressants and inhibitors 

(chlorofluorohydrocarbons, bromine-containing hydrocarbons) on the FCLs of 

hydrocarbon–oxygen mixtures has been studied earlier (Saito et al., 1995; Shebeko et al., 

2000) but the effect of OPCs have not been examined. Investigation of the inhibitors 

(including OPCs) influence on the FCLs allows, on the one hand, to evaluate the 

possibilities of their use as fire suppressants, and, on the other hand, to validate the 

inhibition mechanism by comparing experimental and modeling results. At present, there 

are a number of methods for determining FCLs, e.g. the method proposed by Coward and 

Jones (Coward & Jones, 1952); the standard method (State Standard No. 12.1.044-89; 

Baratov et al., 1990); a method using a cylindrical burner (Ishizuka, 1991; Hichens et al., 

1999). In practice, these and other methods give different values for the FCLs of the same 
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combustible mixture, the results being greatly dependent on the design features of the 

experimental setups. In addition, there are a number of factors that are difficult to take 

into account in modeling but which have an appreciable influence on FCLs. The most 

important of them are the heat losses due to radiation and convection, the influence of the 

source and method of flame ignition, and the flame stretching effects (due to the presence 

of velocity gradients) (Ishizuka, 1991; Hertzberg, 1976). The opposed-flow burner method 

proposed by Law et al. (Law et al. 1986) to determine FCLs allows one to minimize the 

effect of heat losses on test results and to control the flame stretching. Law et al. (Law et 

al. 1986) used this method for determining FCLs of methane– and propane/air mixtures. 

It was also employed in (Womeldorf et al., 1995; Womeldorf & Grosshandler, 1996; 

Grosshandler et al., 1998) to determine the flammability limits of mixtures of 

fluorochlorohydrocarbons and air. Knyazkov et al (Knyazkov et al., 2008) used this 

method to study the effect of TMP additives on FCLs of methane–air mixtures. A 

significant advantage of the opposed-flow burner method for determining FCLs is that 

processes in this system can be modeled using detailed kinetic schemes. This allows one, 

by comparing calculated and experimental results, to obtain new data on the kinetic 

inhibition mechanism and to improve the employed kinetic scheme in order to increase 

the calculation accuracy.  

The experimental setup used to determine FCLs of premixed combustible mixtures doped 

with OPCs is an opposed-flow burner equipped with a gas supply system and a system for 

supplying additives of the substances studied. TMP was added to both flows of the 

combustible mixture by two saturators. The required TMP vapor concentration was 

achieved by placing the saturators in a water bath at a thermostatically controlled 

temperature. It is known that the effect of any inhibitor on a flame is due to thermal-physics 

and chemical factors.  

Experimental curves of the extinction velocity gradient Kext for methane–air flames with and 

without TMP additives (in the TMP concentration range of 0–0.5% by volume) versus 

volumetric concentration of methane in the mixture are given in Fig. 17. For comparison, the 

figure also gives data for methane–air mixtures doped with CF3Br. The obtained 

experimental points Kext (values at various concentrations of CH4 and a specified 

concentration of TMP) are approximated by lines which extrapolate the data to the value of 

Kext = 0. Figure 17 gives data for the methane concentrations near the lower (Fig. 17a) and 

upper (Fig. 17b) flammability limits of the gas mixture studied. The methane concentrations 

in the mixture corresponding to the upper or lower flammability limits of the combustible 

mixture with and without additives were determined by the points of intersection of the 

straight lines with the abscissa. The data presented in Fig. 17 were used to obtain 

dependences of the upper and lower FCLs of methane– air mixtures on the volumetric 

concentrations of TMP and CF3Br.  

These dependences are given in Fig. 18; for comparison, the figure also shows the data for 

the concentration limits of CH4/air/CF3Br mixtures at a temperature of ≈353 K obtained by 

Saito et al. (Saito et al., 1995) using a cylindrical burner. As can be seen from Fig. 18, the 

flammability limits of CH4/air mixtures are 4±0.2% CH4 (the lower limit) and 16.2 ± 0.2% 

CH4 (the upper limit).  
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Fig. 17. Dependence of the extinction velocity gradient on methane concentration 

extrapolated to the value of Kext = 0 for various TMP contents in the mixture: (a) lean flame; 

(b) rich flame. 

(Saito et al., 1995) 

 
            [Inhibitor], % 

Fig. 18. Upper and lower flammability concentration limits of methane–air mixtures versus 

volumetric concentration of the inhibitor (CF3Br and TMP). 

These data differ from the results of Saito et al. (Saito et al., 1995), according to which the 

flammability limits are in the methane concentration range of 4.75–15.5%. The observed 

difference is obviously not due to the difference between the temperatures of the initial 

combustible mixtures in the experiments because it is only ≈15 K, but it is due, as noted 

above, by the difference between the techniques used in the studies. It should also be noted 
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that if the experiments described in the present paper were performed at a temperature of 

the initial mixture of ≈298 K, the flammability concentration limits would be somewhat 

narrower. Hichens et al. showed (Hichens et al., 1999) that changing the temperature of the 

initial methane–air mixture by 70 K led to an approximately 0.5% change in each limit. In 

view of this, the concentration limit for these conditions should be 4.5–15.7 % CH4. An 

analysis of the literature (Saito et al., 1995; Baratov et al., 1990; Ishizuka, 1991; Hichens et al., 

1999; Womeldorf & Grosshandler, 1996), shows that, for methane– air mixtures under 

normal conditions, various methods give lean flammability limits in the [CH4] range of 4.0 

to 5.3% and rich limits in the range of 13.8–15.6%. Thus, the values of the lower and upper 

limits obtained in the work fall in these ranges, i.e., the employed technique yields 

reasonable results in agreement with literature data. Experiments on determining the effect 

of CF3Br additives on the flammability limits made it possible, on the one hand, to 

reproduce the data of (Saito et al., 1995) and thus to test the procedure of determining the 

limits, and, on the other hand, to compare the effects of TMP and CF3Br on the FCLs. The 

experiments were performed at a 0.6% concentration of CF3Br in the combustible mixture. 

Because the flammability limits of the combustible mixture without additives do not 

coincide with those obtained in (Saito et al., 1995), we compare data on changes in the limit 

(upper or lower) at specified concentrations of CF3Br. From Fig. 18 it is evident that, 

according to (Saito et al., 1995), the addition of 0.6% CF3Br leads to a 1% decrease in the 

upper concentration limit for methane and a ≈0.5% increase in the lower limit. This agrees 

with the result obtained in our work using an opposed-flow burner. The addition of TMP to 

the combustible mixture, as is seen from Fig. 18, narrows the flammability concentration 

limits. The relative effect of TMP reduces as its concentration is increased; in particular, the 

addition of 0.12% TMP changes both limits for [CH4] by ≈0.5%, and to change the limits by 

1%, it is necessary to add ≈0.4% TMP. It is worth noting that, in contrast to CF3Br, the 

addition of TMP has the same effect on both the lower and the upper concentration limit 

within the experimental error. For example, the addition of 0.48% TMP reduces the upper 

limit for [CH4] by ≈1.1% and increases the lower limit by ≈1.3%. As noted above, the effect of 

CF3Br on the upper limit is twice that on the lower limit. The addition of 0.3% TMP increases 

the lower limit four times more effectively than the addition of CF3Br of the same 

concentration. Furthermore, the addition of TMP reduces the upper limit two times more 

effectively than the addition of CF3Br. It is known that many flame inhibitors, such as 

fluorinated hydrocarbons (for example, CF3Br), influence the upper and lower 

concentration limits differently: they reduce the upper limit more strongly and increase 

the lower limit less strongly (Saito et al., 1995; Shebeko et al., 2000). This effect is due 

mainly to the fact that the addition of an inhibitor to a combustible mixture leads to a 

change in the equivalence ratio, and, thus, to a reduction in both concentration limits for 

methane, and, as result, to different effectiveness of the additive for the upper and lower 

limits. In the experiments with the addition of TMP to the combustible mixture, this effect 

was not observed. Figure 19 gives experimental and calculated dependences Kext = 

f([CH4]) for flames without additives and doped with 0.12% TMP. It is evident that, in 

both cases, the experimental dependences Kext = f([CH4]) agree better with the predicted 

dependences for lean mixtures than for rich mixtures. Figure 20 gives experimental and 

calculated dependences of the upper and lower flammability concentration limits on the 

volumetric concentration of TMP in methane–air mixtures. It is evident that, for both the 
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doped undoped flames, the predicted lean concentration limits are also in better 

agreement with the corresponding experimental values than the values of the rich limits. 

In particular, the value of 4.2% predicted for the of the flame without TMP is in good 

agreement with the experimental result of 4%. According to the modeling data, the 

increase in the lower concentration limit due to the addition of 0.12% TMP to the 

combustible mixture was 0.7%, which also agrees with the experimental data (within the 

measurement error). The predicted rich concentration limit for the undoped flame is seen 

to fit well to the experimental value. However, there is a difference between the 

experimental data and modeling results for the reduction in the rich limit due to the 

addition of 0.12% TMP to the mixture. This is most likely due to the drawbacks of the 

kinetic mechanism. For example, the mechanism does not take into account heavy 

hydrocarbons which are known to form in rich flames. The experimental finding that 

TMP has the same effect on both the lower and upper concentration limits (in contrast to, 

for example, CF3Br, which, as noted above, changes the upper limit more strongly than 

the lower limit) agrees qualitatively with data (Korobeinichev et al., 2007) on the effect of 

the addition of TMP on the velocity of premixed propane–air flames with various 

equivalence ratios. It was found that the inhibition effectiveness determined from the 

decrease in the flame propagation velocity drops with increasing  in the range of  > 1.3 

(see explanation above). 

 

Fig. 19. Experimental and calculated extinction velocity gradients versus volumetric 

concentration of CH4 in methane–air mixtures (without additives and doped with 0.12% 

TMP): the solid curves are extrapolations of the experimental data, and the dashed curves 

are extrapolations of the calculation data. 
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Fig. 20. Experimental and calculated upper and lower flammability concentration limits of 

methane–air mixtures versus volumetric concentration of TMP. 

4. Iron-containing compounds 

4.1 The mechanism for inhibiting hydrogen flames at atmospheric pressure 

The first studies of iron-containing species (ICS) as flame inhibitors were performed in the 
early 1960s. Lask and Wagner (Lask & Wagner, 1962) were the first to measure the effect of 
iron pentacarbonyl Fe(CO)5 on the speed of H2/air flame and to show that it was 2 orders of 
magnitude greater than that of CF3Br. Miller et al. (Miller et al., 1963) studied the effect of 
certain inhibitors, including Fe(CO)5, on the speed of H2/air flames for various 
stoichiometry and the inhibitor concentration of 0.5% by volume. Unfortunately, addition of 
Fe(CO)5 at this concentration greatly changed the fuel equivalence ratio of the initial flame 
because 2.5% by volume of carbon monoxide was formed in the flame and as a result the 
effect of iron alone was difficult to assess.  

An increased interest in metal-containing compounds, including iron pentacarbonyl and 
ferrocene Fe(C6H6)2 as flame inhibitors, has arisen after the ban on the production of 
halogenated fire-extinguishing agents (such as CF3Br) with a high ozone depletion potential. 
Searches for new inhibitors and fire suppressants have led scientists to pay attention to ICS 
compounds. Reinelt and Linteris (Reinelt & Linteris, 1996) studied the effect of Fe(CO)5 and 
ferrocene on premixed laminar flame speeds and extinction strain rates of opposed-jet 
diffusion flames. The inhibition effectiveness was shown to strongly depend upon the 
dopant loading; the maximum inhibition was achieved at a concentration as low as 100 
μL/L (μL/L is equivalent to parts per million by volume) and was then little affected by a 
further increase in the concentration. Rumminger et al. (Rumminger et al., 1999) attribute 
this to the formation of iron-containing particles in the flame, resulting in a reduction in the 
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gas-phase concentration of iron species (which are responsible for flame inhibition). 
According to data (Reinelt & Linteris, 1996), an increase in the oxygen volume fraction in a 
O2/N2 mixture reduces the inhibition effect. This may be due to the combustibility of iron 
pentacarbonyl and ferrocene. 

Linteris et al. (Linteris et al., 2000a) performed experimental and modeling studies of the 

effect of Fe(CO)5 and Fe(C6H6)2 additives on the speed of a CH4/O2/N2 flame. The 

numerical study was based on a kinetic model (Rumminger et al., 1999), which provided a 

good fit to experimental results. Ferrocene, whose molecule contains more fuel than that of 

iron pentacarbonyl, showed a lower inhibition effect than Fe(CO)5. 

Rumminger et al. (Rumminger et al., 1999) determined the key chemical processes 

responsible for flame inhibition 

FeOH+H = FeO+H2 

FeO+H2O = Fe(OH)2 

Fe(OH)2+H=FeOH+H2O 

This is equivalent to the recombination of hydrogen atoms H + H=H2. The catalytic 

recombination of O atoms also involves three elementary reactions 

Fe+O2 + M = FeO2 + M 

FeO2 +O = FeO + O2 

FeO + O = Fe + O2 

The role of the formation of iron-containing particles in the inhibition of hydrogen and 
methane flames by a Fe(CO)5 additive was studied by Rumminger & Linteris (Rumminger 
& Linteris, 2000a, 2002). The results showed that the formation of iron particles reduced the 
inhibition effect of the iron pentacarbonyl additive. This supports the hypothesis of a gas-
phase mechanism for flame inhibition by ICS. 

Experimental studies of cup-burner flame suppression by metallic compounds (Linteris et 
al., 2004) have provided further evidence for the gas-phase mechanism of inhibition by ICS. 
Models ignoring solid-phase formation in flame predict the greater inhibition effect than 
experimental data. 

Spatial variations in the temperature and concentration of atomic iron in a low-pressure lean 
(φ = 0.37) H2/O2/Ar/Fe(CO)5 flame were measured using laser-induced fluorescence 
(Wlokas et al., 2009; Staude et al., 2009a). Iron pentacarbonyl was found to decompose in the 
flame to produce atomic iron, which was then transformed to iron oxides and hydroxides. 
On the basis of a previously developed mechanism (Rumminger et al., 1999), a reduced 12-
step mechanism for flame inhibition by Fe(CO)5 was developed and validated by comparing 
measured and simulated concentration profiles of atomic iron. 

A low-pressure, rich (φ=2.3), laminar, premixed propene/oxygen/argon flame doped with 
ferrocene was studied experimentally using molecular beam mass spectrometry (MBMS) 
and laser-induced fluorescence (LIF) and by numerical simulations (Tian et al., 2009). The 

www.intechopen.com



 
Chemical Transformations in Inhibited Flames over Range of Stoichiometry 

 

381 

flame temperature was obtained by two-line OH LIF measurements, and the additive was 
found to increase the postflame temperature by 40 K. MBMS analysis of the species profiles 
of important intermediates in flames with and without ferrocene doping showed a slight 
increase in the maximum concentration of species, such as CH2O, C5H5, and C6H6. At the 
same time, the dopant slightly decreased the maximum concentration of the propargyl 
radical C3H3, which is known to be an intermediate in the formation of soot precursors. The 
MBMS measurements showed that the flame velocity decreased with the addition of 
ferrocene, which was not predicted by the model. 

Staude and Atakan (Staude & Atakan, 2009b) carried out equilibrium calculations for iron-
doped hydrogen/oxygen/argon and propene/oxygen/argon gas mixtures under 
combustion-relevant conditions. It is noteworthy that condensed Fe-containing compounds 
were considered in the calculations. The focus was on iron intermediates and the conditions 
under which condensed phases of iron or iron species could be expected in the flame. The 

stoichiometry (= 0.37, 1, and 2.3), temperature (1000-2500 K), and pressure (0.03-1 bar) were 
varied, allowing for a prediction of which gas-phase iron species might be expected in 
measurable concentrations under the flame conditions used. The effect of the sampling 
probe on the composition of the combustion products, which are cooled during probing, 
was discussed. 

The developed model for flame inhibition by iron compounds was continually validated by 
comparing the measured and modeled burning velocity of near-stoichiometric flames doped 
with Fe(CO)5 and ferrocene. A significant progress in understanding the features of the 
inhibition chemistry under lean and rich conditions was made by measuring and simulating 
the H2/air flame speed over a wide range of equivalence ratios (Fig. 21) (Gerasimov et al., 
2011). Furthermore, Gerasimov et al. (Gerasimov et al., 2011) performed unique 
measurements of the spatial variation of concentration of some of Fe(CO)5 destruction 
products (Fe, FeO2, FeOH, and Fe(OH)2) in premixed atmospheric-pressure H2/O2/N2 flame 
using probing molecular beam mass spectrometry with soft ionization by electron impact. A 
comparison between experimental and numerical results revealed that the mechanism used 
in the study (Rumminger et al., 1999) satisfactorily predicts speeds of atmospheric-pressure 
H2/air flames over a wide range of equivalence ratios and concentration profiles FeO2 and 
Fe(OH)2 in the flame.  

Shvartsberg et al. (Shvartsberg et al., 2010) showed that the inhibition effectiveness 
(expressed as the relative decrease of the flame speed as the dopant is added) substantially 
depends upon the equivalence ratio of unburnt gases: the minimum effectiveness is 

observed at  ≈ 2, and the maximum effectiveness is observed in lean flames (Fig. 22.). At the 
same time the same authors demonstrated that the maximum total rate of the active species 
(H, O, and OH)) consumption is observed in stoichiometric flame that at first glance seems 
contrary to the effectiveness curves (Fig. 23). This illusory contradiction was adjusted by 
suggesting that the inhibition effectiveness over a wide range of equivalence ratios of 
hydrogen flames depends not only by the rate of chain termination in Fe-involving reactions 
but also by the rate of chain branching (H + O2 = O + OH). This suggestion was supported 
by comparing curves of the inhibition effectiveness and the ratio of the integrated 
production rates of chain carriers (H + O + OH) to the chain-branching rate (Shvartsberg et 
al., 2010). The products of atomic iron oxidation in H2/air flames mainly catalyze H atom 
recombination, and the recombination rate is largely determined by the concentration of 
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iron hydroxides FeOH and Fe(OH)2. It happens because the rate of consumption of O atoms 
is much lower than that of H atoms and its sum with rate of OH production gives a value 
close to zero. OH radicals are produced in Fe-involving reaction in atmospheric-pressure 
H2/air flame all over range of equivalence ratios (Shvartsberg et al., 2010).  

 

Fig. 21. Speed of H2/air flames without additives and doped with 100 and 500 μL/L atomic 
iron versus the equivalence ratio at a pressure of 0.1 MPa. Lines, modeling results; symbols, 
literature data. 
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Fig. 22. Inhibition effectiveness of atmospheric-pressure H2/air flames doped with 100 μL/L 

atomic iron, expressed as (1) the decrease in flame speed because of doping (open symbols) 

and (2) the ratio of the integrated production rates of chain carriers (H + O + OH) to the 

chain-branching rate (gray symbols). 
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Fig. 23. Integrated production rate (mol cm-3 s-1)x(cm) of H, O, and OH and the total 
production rate of all of these species in reactions involving ICS in atmospheric-pressure 
H2/air flames doped with 100 μL/L atomic iron versus the equivalence ratio. 

According to (Shvartsberg et al., 2010) the variation of net rate of production/consumption 

of the chain carriers in the Fe-involving reactions versus  is mainly associated with a 

variation of ICS composition and variation of concentration of the chain carriers in the 

reaction zone of the flames with flame stoichiometry. The change of the flame temperature 

with  plays minor role in variation of the rate of production of the active flame species. It 

may be explained by relatively low activation energies of the Fe-involving reactions from 

the mechanism (Linteris et al., 2000a), which do not exceed 6500 J/mol.  

The chemical processes responsible for changes in the production rates of H, O, and OH as  

changes were identified. Three flames were chosen for the analysis: a lean flame with =0.6, 

a stoichiometric flame with the maximum rate of radical production, and the richest flame 

with =5. The rate of H atom production in separate reactions was calculated, and the key 

reactions for each of the chosen flames were determined. In addition, to evaluate the role of 

each reaction qualitatively the authors (Shvartsberg et al., 2010) calculated the contribution 

of each reaction to the total rate of H consumption, considering only the reactions involving 

ICS. It was found out that, regardless of the flame equivalence ratio, the key reactions 

responsible for H atom removal are as follows: 

FeOH+H = FeO+H2 

Fe(OH)2+H = FeOH+H2O 

This was also shown previously for a stoichiometric CH4/O2/N2 flame (Rumminger et al., 

1999). In the richest flame (=5), the reaction FeO2 + H + M = FeOOH + M also makes a 

noticeable contribution to the removal of H atoms from the flame.  

Using analogues approach, the key Fe-involving reactions of O atoms consumption were 

found (Shvartsberg et al., 2010): 
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FeOH + O = FeO + OH 

FeO2 + O = FeO + O2 

Fe + O2 = FeO + O 

Although reaction of FeOH with O atom is a key reaction of O atoms consumption, it is 
unlikely to contribute to the inhibition effectiveness because it transforms one chain carrier 

to another (O  OH). This fact largely determines the symmetry of the O and OH curves of 
rate of production of these species. 

5. Super-effective inhibitors 

Among the chemically active inhibitors (such as phosphorus-, bromine-, iodine- containing 
compounds, etc.), compounds of alkali metals are the least studied experimentally, which is 
explained by their very low volatility.  

The minimum extinguishing concentrations (MECs) are one of the most important 
characteristics of flame suppressants, proving estimates of prospects for their future 
application. Shmakov et al. (Shmakov et al., 2006) applied the cup-burner technique to study 
a number of recently synthesized organophosphorus compounds and inorganic and organic 
potassium salts (K3PO4, KOOCH3, KOOCCOOK, and K4[Fe(CN)6]). Aqueous solutions of 
the examined salts were fed through a nebulizer to the heated air flow in the same way as 
was done for OPCs. The mass median particle diameter of the salt solution aerosols was 10–

20 m, and after water evaporation, it decreased to 2–5 μm. The mass-median diameter of 
the aerosol particles was determined with the aid of a five stage impactor (Korobeinichev et 
al., 2003). Concentrations near the cup were found by sampling the air–aerosol flow through 
the aerosol filter and determining the mass of the aerosol deposited on it. The MECs of the 
examined compounds were calculated taking into account the effect of water contained in 
the solution. Most of the experiments were performed at a constant temperature of the air 
flow of 75oC. Under these conditions, the aerosol particles of the liquid substances 
completely vaporized. 

Among the OPCs tested, the most effective flame suppressant (in terms of the volume 
concentration of vapor) is [(CF3)2CHO]2P(O)CF3; it is followed (in decreasing order of the  
MEC) by [(CF3)2CHO]2P(O)C2H5; [(CF3)2CHO]3P; (CF3CH2O)2P(O)CF3; (CF3CH2O)3P; 
[(CF3)2CHO]2P(O)CH3. The minimum extinguishing concentration of such effective fire 
suppressant as (CF3CH2O)3P varies from 1 to 3% (by volume). The results of experiments (Table 
2) on extinguishing a diffusion n-heptane/air flame by aqueous salt solutions show that 
potassium salts are an order of magnitude more effective than OPCs and halons (Linteris, 2001).  

Salt minimal extinguishing concentration 

mole fraction (100) g/m3 

K3PO4 No extinguishing at 1% 

KOOCH3 0.25 10.9 

KOOCCOOK 0.13 9.6 

K4[Fe(CN)6] 0.035 6.6 

Table 2. The studied salts and their minimal extinguishing concentration 

www.intechopen.com



 
Chemical Transformations in Inhibited Flames over Range of Stoichiometry 

 

385 

The effectiveness of flame suppression by an organic salt per a molecule is directly 
proportional to the number of potassium atoms in it. The possible mechanism for flame 
inhibition by potassium salts is following: 

Potassium salt  K2O, KOH, etc. 

KOH + H  K + H2О  

K + OH + M KOH + M 

_______________________ 

Total: H +OHH2О 

A distinction is observed for K4[Fe(CN)6] because this salt contains not only potassium but 
also iron. Some iron compounds, for example, Fe(CO)5, are known to be effective flame 
inhibitors. In the case of K4[Fe(CN)6], potassium and iron act jointly in extinguishing flames 
but the obtained data do not provide a quantitative estimate of the synergetic effect of their 
joint action. 

The expected effectiveness of K3PO4 should be much higher than the effectiveness of the 
OPC but the experiments disprove this assumption. In flame, thermally stable potassium 
phosphate K3PO4 does not dissociate into reactive inhibitors — potassium oxides and 
phosphorus oxyacids. Thus, the use of combined flame suppressants based on OPCs and 
MCCs is not promising.  

The obtained data suggest very intense chemical reactions of inhibition in the flames doped 
with alkali metal compounds. The inhibition chemistry of the alkali metals has been studied 
insufficiently and may become an object of future research. 

6. Conclusion 

Summarizing the obtained data on inhibition chemistry, we came to following conclusions. 

1. The effectiveness of a certain inhibitor depends on features of its combustion chemistry, 
flame stoichiometry and conditions (pressure). These developments should be 
necessarily taken into consideration in the case of practical application of an inhibitor.  

2. In fact, it is not valid to expect an effective flame inhibitor to be also effective for auto-
ignition. Moreover, the same compound can promote the auto-ignition. As an example 
we can mention iron pentacarbonyl that inhibits atmospheric-pressure H2/air flames 
but can reduce the ignition delay of the same mixtures. 

3. The inhibition effectiveness of flames with appreciably different equivalence ratio is 
explained by not only different rate of the chain carriers consumption. A flame with 
maximum burning velocity (or near-stoichiometric flame) all other things being equal, 
are inhibited less effectively than rich or lean flames.  

4. The inhibition chemistry of essentially rich hydrocarbon flames with equivalence ratio 
close to the flammability limit is not adequately investigated. It is explained by very 
complex combustion chemistry of soot and its precursors formation, which interaction 
with inhibitor was not explored.  

5. A search for novel alternative chemically active inhibitors should be continued and it 
must be based on fundamental understanding of combustion chemistry of certain 
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compounds. Simultaneously the search should involve various flames over a wide range 
of equivalence ratios, auto-ignition of various mixtures, and other objects of study. 
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