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1. Introduction 

Cell-mediated cytotoxic (CMC) activity is the main cellular immunological response to kill 
tumor cells, virus-infected cells and parasites (Groscurth, 1989). In mammalian species this 
is carried out by several leucocyte populations depending on the non-specific/innate and 
specific/adaptive immune response. Among the last ones, the CMC activity is carried out 
by cytotoxic T lymphocytes (CTLs), expressing the co-receptor CD8, after repeated antigen 
contact and restricted to major histocompatibility complex (MHC) I. Among the innate 
cytotoxic cells, acting without previous neither sensitization nor MHC I restriction, the most 
important are the natural killer (NK) cells, which consist on large granular lymphocytes 
(markers: CD16/56+CD8-). However, other cell types such as the lymphokine-activated 
killer cells (LAK), adherent lymphokine-activated killer cells (ALAK), antibody-dependent 
cytotoxic cells (ADCC), macrophages, neutrophils and acidophils are also responsible for 
innate CMC activity (Groscurth, 1989). This CMC activity has been described in all the 
vertebrate animals with substantial differences. In the case of fish, the first vertebrate group 
showing both innate and adaptive immune system, they are not an exception. However, 
deeper studies are needed to clearly understand the appearance and evolution of the fish 
cytotoxic cells and their activity from an evolutionary point of view. Furthermore, the great 
potential of aquaculture industry and lack of commercial antiviral and antiparasitic vaccines 
for fish make necessary to increase the knowledge on the CMC activity of fish. 

2. Cell-mediated cytotoxic activity in fish 

In all the fish studied so far, different populations of leucocytes from head-kidney (the main 
haematopoietic tissue in fish), peripheral blood, spleen, thymus, peritoneal exudates or gut 
display variable cytotoxic activity. The fish innate CMC, not restricted to the MHC, is 
mainly carried out by the named non-specific cytotoxic cells (NCC), which show great 
differences at morphological and functional levels between fish species (Carlson et al., 1985; 
Evans et al., 1984a-d, 1987; Graves et al., 1984). The adaptive cytotoxic activity is restricted to 
the MHC, shows memory and is formed by CTLs (Fischer et al., 2006; Nakanishi et al., 2002, 
in press; Somamoto et al., 2000; Verlhac et al., 1990). Most of the data from fish CMC come 
from the activity against xenogeneic tumor cells but recently the interest to evaluate their 
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potential against viral infections and the generation of proper tools is increasing. One of the 
main problems associated with the study of the fish immune system, and the CMC in 
particular, is the lack of proper tools. Most of the studies are based on morpho-functional 
data but the lack of commercial antibodies is a serious task to definitely identify the 
leucocyte-types involved. Furthermore, most data obtained in mammalian CMC come from 
very few species such as human, rat and mouse which show some differences at molecular 
and cellular levels. However, in fish, the number of evaluated species is larger, including 
nurse shark (Ginglymostoma cirratum), rainbow trout (Oncorhynchus mykiss), common carp 
(Cyprinus carpio), tilapia (Oreochromis niloticus or Tilapia mossambica), channel catfish 
(Ictalurus punctatus), bicolour damselfish (Stegastes partitus), Atlantic salmon (Salmo salar), 
Japanese flounder (Paralichthys olivaceus), orange-spotted grouper (Epinephelus coioides), 
zebrafish (Danio rerio), European sea bass (Dicentrarchus labrax) or gilthead seabream (Sparus 
aurata), what greatly increases the variability and difficult the interpretation and correlation 
between species. However, most of the knowledge comes from the cytotoxic activity against 
xenogeneic or allogeneic cells and there is few information regarding the role and 
importance in combating fish virus and parasites. 

2.1 Fish innate cytotoxic cells 

First evidences showed that head-kidney leucocytes from several freshwater fish (common 
carp; crucian carp, Carassius cuvieri; grass carp, Ctenopharyngodon idella; pond loach, 
Misgurnus anguillicandatus; and northern snakehead, Channa argus) were cytotoxic towards 
mammalian cell lines (Hinuma et al., 1980). Afterwards, a series of reports on channel catfish 
widely described the morphology, biochemical and physical requirements, killing 
mechanisms, etc. of these leucocytes (Carlson et al., 1985; Evans et al., 1984a-d, 1987; Graves 
et al., 1984). They showed for the first time that head-kidney catfish have small non-
adherent, non-phagocytic and agranular cells displaying the cytotoxic activity, which were 
catalogued as monocyte-like but also resembled to lymphocytes (Evans et al., 1988). 
Obviously, they showed different morphological features than the mammalian NK cells, but 
very similar functional properties. These leucocytes were called non-specific cytotoxic cells 
(NCC) and are considered phylogenetical precursors of the mammalian NK cells. However, 
studies since then, including more fish species, have shown that there are many different 
leucocyte-types displaying the innate CMC activity but sharing the NK cell functions. Thus, 
the term of fish NCC population should be renamed as NCC activity more than a 
subpopulation since it is not a discrete and concrete leucocyte type. After that, fish NCCs 
have been characterized as single or heterogeneous population of leucocytes (Table 1) 
including lymphocytes, monocyte-macrophages and/or granulocytes (neutrophils and/or 
acidophils) (Bielek, 1988, 1991; Cammarata et al., 2000; Cuesta et al., 1999; Greenlee et al., 
1991; Kurata et al., 1995; McKinney et al., 1986; Meseguer et al., 1994, 1996; Mulero et al., 
1994; Ordás et al., 2011; Pettey & McKinney, 1983; Sasaki et al., 2002; Seeley & Weeks-
Perkins, 1993). 

Though very different in terms of origin and morphology, fish NCCs share the cytotoxic 
activity and showed the same mechanism as the mammalian NK cells (Groscurth, 1989; 
Lancki, 1998; Roitt et al., 1996): target recognition and binding, activation and delivery of the 
lethal hit and finally the target death. In the first step, some membrane molecules have been 
identified playing a role in the fish CMC. Vimentin-like proteins were identified in the  
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Fish species Tissues Effector cells References 

Ictalurus punctatus HK, Sp, PBL Small agranular, non-
adherent leucocytes 
(NCC) 

Evans et al., 1984c 
Evans et al., 1988 
Graves et al., 1984 

Oncorhynchus mykiss HK, Th, PBL, 
Sp 

Small agranular 
monocuclear leucocytes  
RTS11 cell line 

Greenlee et al., 1991 
Hayden & Laux, 1985 
Moody et al., 1985 
Ordás et al., 2011 

Salmo salar HK, PBL, Sp Small agranular 
monocuclear leucocytes  

Moody et al., 1985 

Ginglymostoma 
cirratum 

PBL Macrophages  McKinney et al., 1986 
Pettey & McKinney, 1983 

Notemigonus 
crysoleucas 

HK, PBL, Sp ND Moody et al., 1985 

Stegastes partitus HK, Sp ND McKinney & Schmale, 
1994a 

Oreochromis sp. HK, PBL, Sp, 
PE 

Lymphocytes 
Monocyte-macrophages 
Granulocytes 

Faisal et al., 1989 
Jaso-Friedmann & Evans, 
1999 

Fundulus heteroclitus HK, Sp ND Faisal et al., 1991 

Opsanus tau HK, PBL, Sp, 
PE  

Lymphocytes? Seeley & Weeks-Perkins, 
1993 

Cyprinus carpio HK, Sp, PBL, 
Th 

Lymphocytes 
Monocyte-macrophages 
Neutrophils 

Bielek 1988, 1991 
Kurata et al., 1995 

Sparus aurata HK, PBL, Sp, 
PE, Th 

Lymphocytes 
Monocyte-macrophages 
Acidophils 

Cuesta et al., 1999 
Meseguer et al., 1994, 1996 
Mulero et al., 1994 

Diecentrarchus labrax HK, PBL, Sp, 
PE, Th 

Lymphocytes 
Monocyte-macrophages 
Neutrophils 

Cammarata et al., 2000 
Meseguer et al., 1994, 1996 
Mulero et al., 1994 

Danio rerio PE ND Moss et al., 2009 

HK, head-kidney; PBL, peripheral blood leucocytes; Th, thymus; Sp, spleen; PE, peritoneal exudate; 
ND, not determined. 

Table 1. Characteristics of representative fish NCCs.  

catfish NCCs and inferred to be important in the recognition and binding to the target cells 
(Jaso-Friedmann et al., 1993). However, the best characterization of this first step was 
achieved by the finding of the non-specific cytotoxic cell receptor protein-1 (NCCRP-1) by 
the generation and selection of a monoclonal antibody (5C6) that completely blocked catfish 
NCC activity (Evans et al., 1988; Jaso-Friedmann et al., 1988, 2001). This receptor showed 
important features: 1) the 5C6 antibody recognizes the NCCs of most studied fish and even 
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the mammalian NK and LAK cells, demonstrating its conservation (Cuesta et al., 2005a; 
Evans et al., 1988; Jaso-Friedmann & Evans, 1999; McKinney & Schmale, 1997); 2) the NCC 
activity is blocked by the 5C6 antibody (Evans et al., 1988; Iwanowicz et al., 2004; Jaso-
Friedmann et al., 1988, 2001); 3) the NCCRP-1 is a 32-34 kDa protein found in the membrane 
of NCCs and binds to a 42 and 46 kDa from the tumor targets and protozoan that they kill, 
respectively (Evans et al., 1996; Jaso-Friedmann et al., 1997a, 1997b, 2001; Lester et al., 1994); 
and 4) it is a type-III membrane protein and its activation led to tyrosine and serine 
phosphorylation and uses the Jak-STAT signalling pathway (Evans et al., 1999; Jaso-
Friedmann et al., 1995, 2001). After binding to the target cell, mammalian NKs and fish 
NCCs share the same killing mechanisms including granule-dependent (release of perforin 
and granzymes) and granule-independent (Fas/FasL system) (Cuesta et al., 2003a; Hogan et 
al., 1999; Jaso-Friedmann et al., 2000; Shen et al., 2002). The release of perforin and granzyme 
contained in the granules is calcium-dependent and the NCC activity is greatly inhibited or 
completely abrogated by Ca2+-chelators demonstrating their involvement in the NCC-
mediated cytotoxic activity (Carlson et al., 1985; Hogan et al., 1999). In the last decade, fish 
perforin (Athanasopoulou et al., 2009; Hwang et al., 2004; Toda et al., 2011a) and granzyme 
(Huang et al., 2010; Praveen et al., 2004, 2006; Wernersson et al., 2006) sequences have been 
obtained but their gene expression or function has been scarcely related to the innate 
cytotoxic activity (Ordás et al., 2011; Praveen et al., 2006). The granule-independent killing 
mechanism has also been identified in fish NCCs by the use of commercial antibodies or 
functional studies (Ca-chelators) leading to the identification of the Fas/FasL system in fish 
NCCs (Bishop et al., 2002; Cuesta et al., 2003a; Evans et al., 200, 2001; Jaso-Friedmann et al., 
2000; Kaur et al., 2004; Long et al., 2004). After the delivery of the lethal hit, the killing of the 
target cells occurs by two conserved pathways: necrosis and apoptosis (Cuesta et al., 1999; 
Meseguer et al., 1994, 1996; Mulero et al., 1994). At the end of the cytotoxic reaction, while 
NK cells are able to recycle, inactivate or dye (Leibson, 1997) the very few data available in 
fish NCCs demonstrate that they are unable to recycle and dye by apoptosis after encounter 
the target cells and kill them (Bishop et al., 2000; Evans et al., 1984a). Finally, it is important 
to note that in most studies the ratios between fish NCCs and targets is usually higher than 
when using mammalian NK cells, a fact demonstrated by the very low fish NCC kinetic 
parameters (Vmax or KM) observed (Cuesta et al., 2002a; Evans et al., 1984a). Further 
characterization of the fish NCCs at molecular and cellular levels will help to elucidate their 
role in the immune response against virus-infected cells and parasites and the mechanisms 
involved. 

Apart from fish NCCs, other innate cytotoxic cells resembling the mammalian NK cells have 
been discovered. In catfish peripheral blood leucocytes (PBL), two populations of NK-like 
cells have been identified: one able to kill allogeneic, but not autologous, cells and the other 
able to kill virus-infected catfish cells (Hogan et al., 1996, 1999; Shen et al., 2002, 2004; Stuge 
et al., 1997, 2000; Yoshida et al., 1995). These NK-like cells were able to proliferate after weak 
alloantigen stimulation and presence of specific growth factors giving to clonal NK-like 
cells, what has greatly allowed further characterization. First, they morphologically 
resembled the mammalian NK cells and resulted in large granular lymphocytes, similarly to 
those previously identified in carp (Bielek, 1988, 1991; Shen et al., 2002, 2004). Second, they 
were negative for 5C6 antibody and this NCC-marker failed to block the NK-like cells-
mediated cytotoxic activity (Shen et al., 2002, 2004). Moreover, they express neither T (T cell 
receptor –TCR-  or chains) nor B (immunoglobulin -Ig- chains) lymphocyte markers 
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(Shen et al., 2002, 2004). Clonal catfish NK cells induced apoptosis in their target cells by 
means of the calcium-dependent perforin/granzyme-mediated secretory lytic pathway since 
Ca-chelators completely abolished their cytotoxic activity (Hogan et al., 1999). Moreover, an 
antibody against leucocyte-function-associated antigen (LFA)-1, which is an adhesion 
molecule, inhibited the clonal catfish NK-like cell activity (Yoshida et al., 1995). Finally, 
clonal catfish NK-like cells bound to IgM through an FcR and exerted an ADCC activity 
(Shen et al., 2002, 2003, 2004), which has been related to the presence of a similar antibody 
receptor (CD16) in mammalian NK cells.  

Unfortunately, very little is still known about the fish innate receptors involved in the 
proper recognition of target cells. In mammals, it is widely known the presence of activating 
and inhibitory NK receptors that mediate the recognition and differentiate between self, 
normal and altered cells (Bakker et al., 2000). In humans, they belong to the killer 
immunoglobulin (KIR) or C-type lectin membrane (NKG2/CD94) receptors with either 
activating (ITAM) or inhibitory (ITIM) intracellular motifs. In fish, orthologs to human KIR 
and NKG2/CD94 gene receptors have been identified and named novel immune-type 
receptor (NITR) and KLR, respectively (Litman et al., 2001; Yoder 2004). Functional 
characterization of these receptors will help to elucidate the innate cytotoxic populations in 
fish, their regulation and role in disease. 

2.2 Specific cytotoxic cells or CTLs 

First evidences of the existence of specific cytotoxic cells in fish come from in vivo studies 
of allograft rejection (skin and scales), graft-versus-host reaction or delayed 
hypersensitivity reaction (DTH) (Manning & Nakanishi 1996; Nakanishi et al., 2002, in 
press). These experiments showed a great infiltration of lymphocytes and macrophages to 
the graft site, thymectomy greatly reduced these responses and the second exposure 
greatly reduced the time of response and increased the fish survival. All together clearly 
demonstrated the necessity of repeated sensitization and suggested the role of T 
lymphocytes. Afterwards, with the use of specific antibodies, it has been clearly 
demonstrated that the infiltrated lymphocytes were T-type, and very recently that were 
CD4+ (T helper) and CD8+ (T cytotoxic or CTL) (Abelli et al., 1999; Nakanishi et al., in 
press). However, these aspects are not reviewed here in depth since these concepts do not 
apply to aquaculture industry. 

In vitro studies with PBLs from channel catfish, rainbow trout and ginbuna crucian carp 
(Carassius auratus langsdorfii) have been used as models for fish CTL characterization and 
have also demonstrated the restriction to the MHC class I (Fischer et al., 2006; Manning & 
Nakanishi 1996; Nakanishi et al., 2002, in press; Shen et al., 2002; Somamoto et al., 2002). 
These have demonstrated that immunized fish are able to kill hapten-modified 
autologous cells, allogeneic cell lines and allogeneic erythrocytes (Fischer et al., 1998; 
Nakanishi et al., 2002; Verlhac et al., 1990). In the case of channel catfish, the use of mixed 
leucocyte reactions (MLR) from PBLs and cloning of the cytotoxic effectors resulted in five 
types of clones (Stuge et al., 1997, 2000). The first type of clones (I) was related to catfish 
CTLs since they showed the following characteristics: exerted specific cytotoxic activity to 
the allogeneic cells used for immunization, expressed TCR genes but not the Ig, were 
large granular lymphocytes and killed their targets by the calcium-dependent 
perforin/granzyme-mediated secretory lytic pathway (Shen et al., 2002; Stuge et al., 1997, 
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2000). Unfortunately, it is not known whether they express the CD8 co-receptor that 
will definitely demonstrate that they are CTLs. This approach also produced other type of 
clones: group II) clones consisting on TCR and CD4+ lymphocytes showing non-
specific cytotoxic cells and killing the targets by both the perforin/granzyme and 
Fas/FasL system pathways (Edholm et al., 2007; Stuge et al., 2000; Zhou et al., 2001); 
group III) alloantigen-specific TCR non-cytotoxic cells presumed to be T helper 
lymphocytes; group IV) TCR non-specific cytotoxic cells defined as NK-like cells and 
described above (Shen et al., 2002, 2004); and group V) TCR alloantigen-specific 
cytotoxic cells presumed to be T cells (Zhou et al., 2001). In the model using rainbow 
trout PBLs, the presence and function of CTLs has been documented thanks to the use of 
clonal trout effectors and MHC I-matching RTG-2 cell line targets, both sharing the same 
allele (Dijkstra et al., 2003). Sensitized-rainbow trout showed that only sorted IgM 
negative (sIgM-) PBLs were able to kill the targets in a specific manner (Fischer et al., 2003, 
2006). These data suggested the involvement of trout CTLs that was further evidenced by 
the up-regulation of TCR and CD8 genes in these sIgM- cells after allogeneic cell 
immunization. The generation of monoclonal antibodies for rainbow trout CD8 has 
allowed further characterization of this population (Takizawa et al., 2011). Sorted trout 
CD8+ lymphocytes showed great expression of perforin or NK-lysin genes (related to the 
cytotoxic activity, either specific or not), as well as their up-regulation upon stimulation 
with the T-lymphocyte-mitogen PHA-L. However, further studies are still needed to 
clearly identify them as the trout specific cytotoxic cells or effectors since tissue 
distribution and gene expression pattern in CD8 cells show some contradictory results 
and deserve deeper analysis. In the last model, the use of clonal ginbuna crucian carp has 
been very productive. They firstly proved the existence of specific cytotoxic response 
against syngeneic virus-infected cells (Somamoto et al., 2000, 2002, 2006). Afterwards, 
they have purified CD8+, CD4+, IgM+ and CD8-CD4-IgM- leucocytes by means of 
house-produced antibodies and found that only the CD8+ population was able to kill the 
allotargets in a specific manner, what definitely demonstrates the specific cytotoxic 
activity of fish CTLs (Toda et al., 2009). Moreover, they have also showed that these CTLs 
mediate the target cell killing by the perforin-mediated pathway since perforin and 
granzyme B inhibitors abolished almost completely the cytotoxic activity (Toda et al., 
2011a, 2011b). 

Further studies in other fish species have documented the presence of TCR and CD8 genes 
indicating presence of CTLs, but functional characterization of the CTL-mediated CMC 
activity is still lacking. Thus, CD8 genes, alpha or beta chains, have also been sequenced in 
fugu (Takifugu rubripes) (Suetake et al., 2007), Atlantic salmon (Salmo salar) (Moore et al., 
2005), European sea bass (Buonocore et al., 2006), gilthead seabream (Randelli et al., 2006), 
Atlantic halibut (Hippoglossus hippoglossus) (Patel et al., 2008), common carp (Sun et al., 2007) 
or orange-spotted grouper (Xu et al., 2011). Unfortunately, CD8 gene might not be the 
definite CTL marker. In mammals, CTLs are characterized by the presence of the CD8 
while the expression of the homodimer CD8 is detected in NK cells, T cells and 
intestinal intraepithelial lymphocytes (Bonneville & Lang, 2002). Thus, unexpected data 
obtained in the functional characterization of CD8+-purified lymphocytes could reside in 
the potential purification of other cells different to CTLs with non-specific activity. 
However, further studies are needed to clearly ascertain the CTL presence, distribution and 
role in these fish species, some of them with aquaculture interest. 
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3. Cytotoxic response against fish tumors 

Fish tumors are quite rare in the wild. However, aquaculture management, intensive culture 
conditions and environmental contamination may increase the incidence of fish tumors. 
Although some aspects, such as tumour structure and nature, metastasis or lethal effects 
have been studied, little information exists concerning the involvement of the immune 
system in protection against tumours (Campbell et al., 2001; McKinney & Schmale, 1994a, 
1994b, 1997; Romano & Marozzi, 2004; Schmale et al., 1994, 2004; Thompson & Kostiala, 
1990; Vicha & Schmale, 1994). Thus, most of the information regarding fish cytotoxic activity 
comes from the use of hapten-modified autologous cells or xenogeneic/allogeneic cell lines 
(Evans et al., 1984a-d, 1987; Fischer et al., 2006; Graves et al., 1984; Manning & Nakanishi, 
1996; Nakanishi et al., 2002; Shen et al., 2002; Verlhac et al., 1990). So far, fish immune 
response against tumors has been slightly evaluated. In the bicolour damselfish naturally 
suffering of neurofibromatosis (DNF) (caused by a retrovirus), study of the immune 
response has provided information with respect to CMC activity, morphology and 
distribution, degranulation of eosinophilic granular cells (EGCs) and lymphocyte 
proliferation (Vicha & Schmale, 1994; McKinney and Schmale, 1994a, 1994b; Campbell et al. 
2001; Schmale et al. 2004). Most of the cytotoxic activity of damselfish leucocytes against 
DNF-derived target cell lines resided in the spleen whilst in the head-kidney it was quite 
low. Interestingly, specificity suggested that this activity was likely carried out by CTLs in 
the spleen and by NCCs in the pronephros (McKinney & Schmale, 1994a). Later, they 
demonstrated that the 5C6- lymphocytes showed all the cytotoxic activity against the 
retrovirus-infected DNF tumor cell lines, suggesting the presence and role of damselfish 
CTLs, whilst the 5C6+ leucocytes were only able to kill xenogeneic erythrocytes (McKinney 
& Schmale, 1997). Unfortunately, deeper characterization of this CMC model has been 
abandoned. 

The use of zebrafish as a model for human cancer would also help to understand the fish 
immune response against tumors, and concretely the role played by cytotoxic cells. As 
mentioned above, zebrafish showed NCCs in the peritoneal cavity that were positive for the 
5C6 antibody and exerted cytotoxic activity against xenogeneic tumor cells (Moss et al., 
2009). Moreover, the complete genome sequence allow to identify major molecules involved 
in the cytotoxic activity such as NCCRP-1, TCR, CD8, perforin, granzymes, Fas/FasL, etc. 
The easy generation of transgenic zebrafish and mutants would also be a very valuable tool 
to study the fish CMC activity against tumors. Further studies should focus on the leucocyte 
infiltration to the tumor site and identification of the potential molecules involved in the 
activity of the cytotoxic cells. 

4. Cytotoxic response against parasites 

Fish parasites represent a serious problem in the aquaculture since there are no available 
vaccines or effective treatments. Whilst some aspects of the fish immune response against 
parasites have been studied very little is known about the role of the cell-mediated cytotoxic 
activity (Buchmann et al., 2001; Jones, 2001). First study evaluated the NCC activity in 
catfish parasitized with Ichthyophthirius multifiliis (Graves et al., 1985a). They found that 
moribund Ichthyophthirius multifiliis-infected fish showed decreased NCC activity in the 
head-kidney against xenogeneic cells when compared to control specimens. Strikingly, this 
activity was increased in the PBLs of the same fish as consequence of an activation of the  
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NCC killing capacity and affinity (Graves et a., 1985a). A second study determined that 
catfish NCC were able to bind and kill 50-60% of Tetrahymena pyriformis after 10 h of co-
incubation (Graves et al., 1985b). Furthermore, NCC binding to xenogeneic tumor cells and 
Ichthyophthirius multifiliis or Tetrahymena pyriformis parasites shared the same antigen, that in 
the case of parasites, consist on a 46 kDa (Evans et al., 1998a, 1996; Graves et al., 1985a; Jaso-
Friedmann et al., 1997b; Lester et al., 1994). In another study, gilthead seabream specimens 
were parasitized with the enteric Enteromyxum leei parasite (Cuesta et al., 2006). This 
parasitation increased head-kidney NCC activity against tumor cells indicating that 
parasitized fish posses enhanced cytotoxic cells activity. Moreover, parasite-exposed fish 
either parasitized or not, showed increased NCC activity. However, no other study has 
evaluated the role of the cell-mediated cytotoxicity against fish parasites and deserves 
further evaluation due to the interest for aquaculture industry.  

5. Cytotoxic response against viral infections 

Viral diseases are responsible for most of the economic losses suffered in modern 
aquaculture since they produce high levels of mortality and no effective antiviral 
treatments are available. Moreover, fish farming practices such as growth under very high 
densities, introduction of species in new areas, continuous transport between hatcheries, 
nurseries and growing plants are increasing the spread of pathogens and the number of 
susceptible and reservoir species. However, while most available information focuses on 
the mechanisms involved in pathogen susceptible fish immune responses, further 
knowledge is also important in pathogen-reservoir fish systems. Among the major 
immune mechanisms to kill virus, the interferon (IFN) and the CMC are the most 
important, but most efforts have only focused on the IFN pathway (Ellis, 2001; Robertsen, 
2006). Regarding the CMC activity against virus, this can be mediated by innate or 
specific cytotoxic cells (Table 2). Regarding the innate CMC activity against virus-infected 
cells, first studies demonstrated that salmonid kidney, spleen and PBL leucocytes were 
able to kill infectious pancreatic necrosis virus (IPNV)-infected cells much more than to 
non-infected cells (Moody et al., 1985; Yoshinaga et al., 1994), and similarly in catfish 
against channel catfish virus (CCV)-infected cells (Hogan et al., 1996), demonstrating the 
antiviral activity of fish NCC and NK-like cells, respectively. In the orange-spotted 
grouper, CD8+ PBLs also showed non-specific cytotoxic activity against nodavirus 
(nervous necrosis virus or NNV)-infected cells suggesting a role for NK-like or T cells 
(Chang et al., 2011). Fish exposure to virus also increases the fish innate cytotoxic activity. 
Thus, gilthead seabream injected with viral hemorrhagic septicemia virus (VHSV), which 
did not replicate at the assayed conditions, increased the NCC activity, demonstrating the 
importance of studying the antiviral immune response in reservoir fish species (Esteban et 
al., 2008). Moreover, NNV-infection increased the NCC activity of head-kidney leucocytes 
from 1 to 15 days post-injection in both gilthead seabream and European sea bass 
(unpublished data). Recently, we have also demonstrated that trout RTS11 (monocyte-
macrophage cell line) cells exposed to VHSV increased their cytotoxic activity against 
xenogeneic tumor cells and up-regulated the NKEF (natural killer enhancing factor), 
granzyme and perforin gene expression whilst trout head-kidney leucocyte infection with 
the VHSV increased the innate cytotoxic activity but failed to significantly change the 
expression of these genes (Ordás et al., 2011).  
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Fish CMC activity References 

Channel catfish NK-like activity against CCV-infected cells Hogan et al., 1996 

Atlantic salmon CMC activity against IPNV-infected cells Moody et al., 1985 

Rainbow trout CMC activity against IPNV-infected cells Moody et al., 1985 
Yoshinaga et al., 1994 

VHSV infection induced innate CMC activity, up-
regulated NKEF, CD8perforin and granzyme 
genes 

Cuesta & Tafalla, 2009 
Utke et al., 2007 
Unpublished data 

VHSV infection elicited specific CMC activity, up-
regulated CD8 gene 

Fischer et al., 2006 
Utke et al., 2007 

VHSV DNA vaccine elicited specific CMC activity Utke et al., 2008 

VHSV and IPNV DNA vaccines up-regulated 
NKEF, perforin and granzyme genes 

Cuesta & Tafalla, 2009 
Cuesta et al., 2010 
Unpublished data 

VHSV infection of RTS11 cells increased the CMC 
activity, up-regulated NKEF, granzyme and 
perforin genes 

Ordás et al., 2011 

Ginbuna crucian 
carp 

IPNV or EVA infection elicited specific CMC 
activity 

Somamoto et al., 2000 

CHNV infection elicited specific CMC activity, up-
regulated TCR and CD8 genes 

Somamoto et al., 2002 
Somamoto et al., 2006 

Generation of in vitro virus-specific CTLs and up-
regulation of TCR and CD8 genes 

Somamoto et al., 2009 

Anal immunization with CHNV-infected cells 
elicited specific CMC activity 

Sato & Okamoto, 2010 

Common carp SVCV infection up-regulated, granzyme A/K or 
CD8 genes  

Forlenza et al., 2008 
Huang et al., 2010 

Gilthead 
seabream 

NCC activity induced by VHSV injection Esteban et al., 2008 

NCC activity induced by NNV infection Unpublished data 

Sea bass NNV infection no affected TCR and CD8 genes Scapigliati et al., 2010 

Atlantic halibut NNV infection no affected CD8 and CD8 genes Patel et al., 2008 

Orange-spotted 
grouper 

CMC activity against NNV- or RSIV-infected cells Chang et al., 2011 

NNV infection elicited specific CMC activity, 
increased CD8+ cells and CD8 gene 

Chang et al., 2011 

Japanese 
flounder 

VHSV infection up-regulated CD8 gene Byon et al., 2005 

VHSV DNA vaccine up-regulated CD8 gene Byon et al., 2006 

CMC, cell-mediated cytotoxicity; CCV, channel catfish virus; IPNV, infectious pancreatic necrosis virus; 
VHSV, viral hemorrhagic septicaemia virus; EVA, eel virus from America; CHNV, crucian carp 
haematopoietic virus; RSIV, red seabream iridovirus; SVCV, spring viremia carp virus; NNV, nervous 
necrosis virus; CTL, cytotoxic T lymphocytes; TCR, T cell receptor; NKEF, natural killer enhancing factor. 

Table 2. Major studies evaluating the fish CMC activity against virus.  
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Viral infections also elicited the specific immune response by inducing antibody production 
and CTL activity (Table 2) (Nakanishi et al., in press). First studies demonstrated that 
isogeneic ginbuna crucian carp elicited CTL activity against virus. Thus, ginbuna crucian 
carps immunized with hematopoietic necrosis virus (CHNV) specifically killed CHNV-
infected syngeneic cells in a viral antigen and MHC I-restricted manner (Somamoto et al., 
2000, 2002), increased the TCR and CD8 gene expression (Somamoto et al., 2006) and 
helped to establish virus-dependent CTL clones in vitro (Somamoto et al., 2009). In rainbow 
trout, infection with VHSV greatly elicited specific- and MHC I-matched cytotoxic cells but a 
non-specific and MHC I-mismatched cytotoxic activity was also found (Fischer et al., 2006; 
Utke et al., 2007). Surprisingly, they found that specific CMC activity mediated by CTLs was 
produced much earlier than the innate activity, in sharp contrast to all the information at 
this respect. Strikingly, the NKEF gene expression followed the same time-profile than the 
CTL activity but in the case of CD8 was opposite, adding more controversy to these data 
(Utke et al., 2007). Furthermore, trout vaccination with VHSV DNA vaccines also elicited 
CMC activity against MHC I-matched infected cells, suggesting a role for CTLs (Utke et al., 
2008). However, they also found a bit lower CMC activity against non-matching-infected 
cells or cells infected with a different virus, suggesting a role for NCCs or even the ADCC 
activity since these fish showed high antibody levels, but this has not been confirmed. In 
other studies, VHSV infection increased the trout NKEF and CD8 gene in vivo but failed to 
modulate the NKEF, perforin and granzyme genes in vitro (Cuesta & Tafalla, 2009; Ordás et 
al., 2011). VHSV and IPNV DNA vaccination also up-regulated the trout CD8, perforin and 
granzyme gene expression (Cuesta et al., 2010; unpublished data), giving more consistency 
to the involvement of CMC activity against viral infections and its activation by DNA 
vaccines. Moreover, oral vaccination with inactivated CHNV elicited specific CMC activity 
that resulted viral antigen-specific and restricted to the MHC I (Sato & Okamoto, 2010). In 
the orange-spotted grouper, nodavirus infection also elicited a CTL response when viral 
antigens were properly presented by MHC I receptors, as well as increased the CD8 
expression at gene and CTL surfaces (Chang et al., 2011). This study represents the first one 
demonstrating the CTL role against viral infection in marine fish species with great interest 
for aquaculture industry. Further studies would help to understand the CMC activity 
against viral infections and to design and probe viral vaccines. 

6. Modulation of the fish cytotoxic activity 

Fish CMC activity regulation has been widely evaluated and mostly focused on NCC 
modulation. Fish NCC activity has been shown to be modulated by several chemicals, 
cytokines, environmental contaminants, stress factors, immunostimulants, etc. First studies 
dealt with the NCC inhibition by blocking the binding to target in order to characterize the 
role of NCCRP-1, or inhibiting the killing mechanisms in order to evaluate the perforin- or 
Fas/FasL-mediated lytic pathway (Bishop et al., 2002; Carlson et al., 1985; Evans et al., 1988, 
2000; Hogan et al., 1999; Iwanowicz et al., 2004; Jaso-Friedmann et al., 1988, 2001; Kaur et al., 
2004; Shen et al., 2002). Further studies demonstrated that catfish NCC activity is increased 
by leucocyte treatment with ionophore A23187, A23187 plus phorbol myristate acetate 
(PMA) or vanadate but no with PMA alone or poly I:C (a mimic for viral infections) (Evans 
et al., 1984b, 1990, 1998b). Moreover, serum from stressed fish contained cytokine-like 
factors able to increase the tilapia NCC activity suggesting a role for FasL (Jaso-Friedmann 
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et al., 2000; Ruiz et al., 2001). Fish NCC activity is also increased by bacterial infections: 
Edwardsiella ictaluri in channel catfish (Evans et al., 1998b), Aeromonas salmonicida in brook 
trout (Salvelinus fontinalis) (Dautremepuits et al., 2006) or Streptococcus iniae in tilapia (Taylor 
et al., 2001). In our lab, we have been investigating the immunostimulatory role of many 
substances and conditions in the gilthead seabream, one of the most important farmed 
species in the marine aquaculture. This has allowed us to get a lot of information about the 
regulation of the seabream immune response, and concretely the NCC activity. Thus, we 
have shown in vitro and/or in vivo modulation of seabream NCC activity by vitamins C 
(Cuesta et al., 2002b), E (Cuesta et al., 2001), A (Cuesta et al., 2003b) and D3 (Cerezuela et al., 
2009), chitin (Cuesta et al., 2003c; Esteban et al., 2000, 2001), levamisole (Cuesta et al., 2002c), 
lactoferrin (Esteban et al., 2005), melatonin (Cuesta et al., 2008a), propolis (Cuesta et al., 
2005b), inulin (Cerezuela et al., 2008), unmethylated oligodeoxynucleotides (ODNs) 
containing cytosine-phosphodiester-guanosine (CpG) motifs (Cuesta et al., 2008b, 2008c), 
probiotic bacteria (Díaz-Rosales et al., 2006; Salinas et al., 2005, 2006, 2008), yeast (Cuesta et 
al., 2007; Ortuño et al., 2002; Reyes-Becerril et al., 2008; Rodríguez et al., 2003), fungi 
(Rodríguez et al., 2004), virus (Esteban et al., 2008), environmental contaminants (p,p´-DDE 
and lindane) (Cuesta et al., 2008d) or stress factors (air exposure, crowding and anaesthetics) 
(Cuesta et al., 2003d). In general, we have demonstrated great NCC increments after these 
treatments. Moreover, we have also observed that NCC activity reached the greatest 
activation, compared to other innate cellular immune responses such as phagocytosis or 
respiratory burst activity, and did at shorter treatment times and lower dosages. 
Unfortunately, most of this information has been obtained evaluating the NCC activity 
against xenogeneic tumor cells and whether this is correlated to the in vivo activity against 
viral infections deserves further investigation. In this sense, few recent studies have 
correlated the stimulatory role of immunostimulants with an increased viral disease 
resistance. Thus, probiotic-supplemented diets resulted in reduced mortality of Japanese 
flounder specimens exposed to lymphocystis disease virus (LCDV) (Harikrishnan et al., 
2010) whilst feeding of shrimp with immunostimulant herbs reduced their mortality upon 
viral disease (Citarasu et al., 2006). Further characterization of the beneficial 
immunostimulants against viral diseases is needed to control the virus spreading and lethal 
effects. 

Apart from the direct activation of fish cytotoxic activity, the expression of some CMC-
related genes (NCCRP-1, CD8, perforin, granzyme, etc.) is also modulated (Table 2), 
suggesting an increase in the CMC activity. First, the NCCRP-1 gene expression was altered 
after bacterial infection (Reyes-Becerril et al., 2011; Sakata et al., 2005), administration of 
immunostimulants (Cuesta et al., 2008b, 2008d; Lazado et al., ; Reyes-Becerril et al., 2008), 
exposure to contaminants (Cuesta et al., 2008d) or bacterial vaccination (Caipang et al., 
2008), depending on the fish species, tissue, time and dose of exposure, and suggests a 
parallel effect of fish NCC activity. Perforin gene expression is usually up-regulated after 
immunization of ginbuna crucian carp with tumor cells (Toda et al., 2011a), after PHA-L 
(Phaseolus vulgaris leucoagglutinin) stimulation of trout CD8+ cells (Takizawa et al., 2011), 
after VHSV infection of RTS11 cell line (Ordás et al., 2011) and after viral infection or DNA 
vaccination in rainbow trout (unpublished data), whilst down-regulated after cadmium 
exposure (Auslander et al., 2008). In a similar fashion, granzyme genes are up-regulated by 
bacterial vaccination (Caipang et al., 2008), viral infections (VHSV in RTS11 cell line and 
SVCV in carp) (Huang et al., 2010; Ordás et al., 2011) and viral infection or DNA vaccination 
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(unpublished data). The transcript level of CD8 gene is related to the CTL presence, 
abundance and activity. Thus, fish CD8 transcripts are up-regulated by viral and bacterial 
infections, viral DNA vaccines, scale grafts, poly I:C or mitogens (Byon et al., 2005 2006; 
Cuesta et al., 2010; Cuesta & Tafalla, 2009; Forlenza et al., 2008; Overturf & LaPatra, 2006; 
Somamoto et al., 2005, 2006; Utke et al., 2007; Xu et al., 2011). In some studies, these CD8 
gene levels have been correlated with increased CTL activity. Finally, other genes related to 
the cytotoxic activity have received less attention. In this category, the natural killer 
enhancing factor (NKEF), which increase the cytotoxic activity in humans but its role is 
unknown in fish, is up-regulated by viral infections and DNA vaccines (Cuesta & Tafalla, 
2009; Ordás et al., 2011; Utke et al., 2007) while granulysin, which is secreted together to 
granzymes and lyses target cells, gene is up-regulated in CD8+ lymphocytes by mitogen 
stimulation (Takizawa et al., 2011). Further studies are needed to clearly state the gene 
expression with either innate or specific cytotoxic activity in fish. Future development of 
more molecular tools will help to elucidate this fascinating and complex immune response. 

7. Future directions 

As summarized above, fish posses a wide range of cytotoxic cells with killing activity 
against tumor cells, virus-infected cells and parasites. Further studies in the future should 
identify, describe and characterize the cytotoxic cells and mechanisms in the most cultured 
fish species and those susceptible to be farmed in the future. Another issue is the generation 
of molecular tools to evaluate the fish CMC and clearly identify the function of NCCs, NK-
like and CTLs as well as assay models such as clonal fish, cytotoxic cell clones or MHC I-
paired effector and targets (virally infected or not). These tools will also help to design 
powerful and safe vaccines against problematic virus and parasites for fish aquaculture. 
Finally, these studies have also to be applied to marine fish, which culture is continuously 
increasing because of the human demand and high economic value. 

8. Glossary 

ADCC   Antibody-dependent cytotoxic cells 
ALAK  Lymphokine-activated killer cells 
CCV  Channel catfish virus 
CD4+   T helper lymphocyte 
CD8+   T cytotoxic lymphocyte or CTL 
CHNV  Crucian carp haematopoietic virus 
CMC  Cell-mediated cytotoxicity 
CpG  Cytosine-phosphodiester-guanosine  
CTLs  Cytotoxic T lymphocytes 
DNA   Deoxyribonucleic acid 
DNF  Damselfish neurofibromatosis  
DTH  Delayed hypersensitivity reaction 
EGCs  Eosinophilic granular cells 
EVA  Eel virus from America 
HK  Head-kidney 
IgM  Immunoglobulin M 
IPNV  Infectious pancreatic necrosis virus 
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ITAM  Activating intracellular motifs 
ITIM  Inhibitory intracellular motifs 
Jak         Janus kinase 
KIR  Killer immunoglobulin 
LAK  Lymphokine-activated killer cells 
LCDV  Lymphocystis disease virus  
LFA-1  Leucocyte-function-associated antigen-1 
MHC  Major histocompatibility complex 
MLR       Mixed leucocyte reaction 
NCC  Non-specific cytotoxic cells 
NCCRP-1 non-specific cytotoxic cell receptor protein-1 
NITR  Novel immune-type receptor  
NK  Natural killer  
NKEF  Natural killer enhancing factor 
NKG2/CD94 C-type lectin membrane receptors 
NNV  Nervous necrosis virus 
ODNs  Unmethylated oligodeoxynucleotides  
PBL  Peripheral blood leucocytes 
PE  Peritoneal exudate 
PHA-L   Phaseolus vulgaris leucoagglutinin 
PMA  Phorbol myristate acetate 
RSIV  Red seabream iridovirus 
RTG-2  Rainbow trout gonad cell line 
Sp  Spleen 
STAT      Signal Transducer and Activator of Transcription 
SVCV  Spring viremia carp virus 
TCR  T cell receptor  
Th  Thymus 
VHSV  Viral hemorrhagic septicaemia virus 
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