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High Speed Isoelectric Focusing  
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University of New Hampshire, 

Hubbard Center for Genome Studies, Durham, NH, 
USA 

1. Introduction 

1.1 Theoretical resolution of two-dimensional electrophoresis 

While two-dimensional electrophoresis (2-DE) of proteins, as we know it, was first 
described nearly four decades ago (O’Farrell, 1975), it continues to be a critical component of 
comprehensive proteomics analysis today. Continuing refinements of 2-DE, particularly the 
development of immobilized pH gradients (Righetti, 1990), new chaotropes (Vecchio et al. 
1984, Rabilloud 1998) and detergents (Seddon 2004, Rabilloud et al. 1999) that increase and 
maintain the solubility of hydrophobic proteins, and sample fractionation strategies 
(Smejkal and Lazarev 2005, Di Girolamo et al. 2011, Boschetti et al. 2007) that lessen the 
complexity of proteomes, have further increased the utility of the method.  

Immobilized pH gradients (IPGs) are stable and highly reproducible pH gradients for the 
isolectric focusing (IEF) of proteins. IPGs are capable of separating protein charge isoforms 
differing by 0.001 pI units, a resolution an order of magnitude higher than labile carrier 
ampholyte generated pH gradients, which can resolve differences of only 0.01 pI units 
(Hamdan and Righetti, 2005). While carrier ampholytes may be comprised of as many as 686 
chemical entities with 3899 charge species, the polydispersity and focusing properties of 
these compounds curtails dramatically at alkaline pH intervals (Righetti et al. 2007.)  

IPGs spanning 0.1 pH units have been described for the separation of proteins differing by a 
single amino acid substitution (Cossu and Righetti 1987). Hence, thousands of proteins can 
hypothetically be separated over the physiological pH range and this number of theoretical 
proteins is potentially squared when coupled with an orthogonal separation such as sodium 
dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE). Richardson et al. (2008) 
elicited a total of 5,525 proteins from 2D gels of Escherichia coli lysate from multiple IPGs 
covering very narrow overlapping pH ranges. 

IPGs can discriminate single post-translational modifications such as phosphorylation, in 

which the addition of a single phosphate group influences net charge of the protein, but 

changes its molecular mass by less than 78 Da. Only rarely can a single phosphorylation 

event be discriminated by a measureable mobility shift in SDS PAGE, and only if a 
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significant conformation change is induced which is preserved following SDS denaturation 

(Kovacs et al. 2003). For example, the phosphorylation of a single tyrosine in the 609 amino 

acid sequence of human serum albumin shifts the molecular mass from 69,367 to 69,289 Da, 

a mere 0.1% change in total protein mass. 

SDS PAGE may be limited in its capacity to resolve such small mass differences, since it is 

not exclusively based on size separation. Proteins are separated on the basis of their capacity 

to bind SDS and it is generally assumed that all of the proteins in an amalgam will have very 

similar charge:mass ratios. On average, proteins bind 1.4 g SDS per gram of protein, such 

that the protein constitutes only about 42% of the total mass of the nascent SDS-protein 

complex. However, glycoproteins depart from this “rule” since the hydrophilic glycan 

moiety reduces the hydrophobic interactions between the protein and SDS. To the contrary, 

hydrophobic membrane proteins have been shown to bind up to 4.5 g SDS per gram of 

protein (Rath et al. 2009), in which case the protein represents only 19% of the total mass of 

the SDS-protein complex. The transmembrane insulin receptor at 460 kDa binds enough 

Triton X-100 to inflate this mass to over 1,000 kDa (Hjelmeland and Chrambach, 1981).  

Further, the binding of different detergents will yield very different protein masses. For 

example, the molecular mass of cytochrome P-450 is 100 kDa using CHAPS as detergent, but 

over 300 kDa when using sodium cholate (Hjelmeland et. al 1983). Interestingly, adenylate 

cyclase exhibits twice its molecular size in 0.01% Lubrol than it does in 0.1% Lubrol 

(Chrambach 1985). 

The separation efficiency of PAGE, defined as the number of theoretical plates, is increased 

in the presence of SDS which lowers the diffusion coefficient of proteins (Lunney et al. 1971, 

Chen and Chrambach 1979) and as many as 400,000 theoretical plates/meter have been 

predicted for a microfabricated SDS PAGE system (Herr and Singh, 2004). Moreover, 

electrophoresis provides an effective means of concentrating “rare” proteins. A 10,000 fold 

concentration of the cardiac biomarker cTnI has been described (Bottenus et. al 2011). 

1.2 High speed isoelectric focusing of proteins 

Recently, an IEF apparatus operating at an unprecedented 12,000V maximum voltage was 

described, enabling IEF to be completed within three hours (Smejkal and Bauer 2010). The 

IEF-100 is a microprocessor controlled IEF apparatus in which voltage, current, power, and 

temperature are controlled, monitored, and can be outputted by computer interface. In its 

standard configuration, the IEF-100 can run up to six IPG strips and features adjustable 

electrodes that can be moved along the length of the tray to accommodate different IPG strip 

lengths.  

This chapter describes the development of protocols enabling rapid IEF of proteins prior to 

2-DE. Important considerations critical to the expediency of IEF include (i) meticulous 

sample preparation and presentation of samples of low initial conductivity to IEF since 

contaminating ions increase sample conductivity and slows the rate at which maximum 

voltage is reached, (ii) single or dual electrode configurations, (iii) the placement of wicks 

and electrodes, and (iv) the addition of carrier ampholytes. The convention of adding carrier 

ampholytes is challenged, since increased conductivity slows the progression of IEF. 

Similarly, electrode placement and wick geometry may also affect the rate of IEF. The use of 
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oversized wicks provides a reservoir for contaminating ions to accumulate off gel. The rapid 

focusing of contaminating ions such as phosphate, HEPES, and even Tris can result in a 

localized increase of conductivity resulting in a precipitous voltage drop in that vicinity 

which hinders the proper focusing of proteins. For properly prepared samples of extremely 

low conductivity, maximum voltage of 12,000V could be reached in less than two hours 

with IEF being completed within three hours.  

 

 

Fig. 1. IEF with (A) single or (B) dual electrode assembly. Note the positions of the anode (1) 
and cathode (2) in the dual electrode assembly. (From Smejkal and Bauer, 2011. Reproduced 
with permission from American Biotechnology Laboratory.)  

 

Fig. 2. Identical regions enlarged from 2D gels showing reproducibility of duplicate IPGs 
run simultaneously with left (L) or right (R) electrode pairs wired in parallel. IPGs were pH 
3-10 non-linear. SDS PAGE was performed on 11% polyacrylamide gels. (From Smejkal and 
Bauer, 2011. Reproduced with permission from American Biotechnology Laboratory.)  

Finally, using an extra wide vertical PAGE format, two IPGs can be run simultaneously on 

the same second dimension gel, improving reproducibility and doubling throughput while 

halving the number of SDS PAGE gels required. Recipes are provided for casting easy, 

highly reproducible gels with broad linear separation range similar to polyacrylamide 

gradients (Table 2). 

A                                         B 

1                                  2
1                 2          2                  1  
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2. Materials and methods 

2.1 Materials  

The IEF-100 and SE-640 dual vertical gel electrophoresis unit, and the Protein Determination 

Reagent were from Hoefer Scientific (Holliston, MA, USA). IPG BlueStrip IPGs and 

Servalyte pH 3-10 carrier ampholytes were from Serva Electrophoresis GmbH (Heidelberg, 

Germany). AG501-X8 ion-exchange resin was from BioRad (Hercules, CA, USA). 

Tributylphosphine (TBP), 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate 

(CHAPS), Orange G, and protease inhibitors were from Sigma-Aldrich Chemicals (St. Louis, 

MO, USA). m-Cresol purple was from US Biochemicals (Cleveland, OH). Conductivity 

meter B-163 was from Horiba (Kyoto, Japan). The Sonicator 450 probe sonicator was from 

Branson Ultrasonics (Danbury, CT, USA).  

2.2 Preparation of bacterial lysates 

Proteins were prepared from log phase cultures of Echerichia coli strain OP50. One hundred 
milligrams of packed cells (approximately 1011 cells) were recovered from 100 mL cultures 
by centrifugation at 4,000 RCF for 20 minutes at 4⁰ C. The cell pellets were washed once by 
resuspension in water containing protease inhibitors (2 mM 4-(2-aminoethyl) 
benzenesulfonyl fluoride hydrochloride, 1 mM EDTA, 130 uM bestatin, 14 uM trans-
epoxysuccinyl-l-leucylamido-(4-guanidino)butane, 1 uM leupeptin, and 0.3 uM aprotinin) 
followed by centrifugation at 4,000 RCF for 10 minutes at 20⁰ C. The cells were resuspended 
in 4.5 mL of 7M urea, 2M thiourea, 5% CHAPS supplemented with 5 mM TBP, 0.01% m-
cresol purple, and protease inhibitors. All subsequent steps were performed at 18⁰-20⁰ C to 
prevent the precipitation of urea or CHAPS. Cells were disrupted using a probe sonicator at 
70% power and 30% duty cycle for 40X 1 second cycles with cooling to room temperature 
following each 10 cycles. Cellular debris was removed by centrifugation at 14,000 RCF for 10 
minutes. Conductivity of the sample was 350 us/cm. 

2.3 Inactivation of proteases 

The prompt addition of protease inhibitors is required, since contrary to popular belief, 
residual enzyme activity may persist in the presence of urea and CHAPS (Olivieri et al. 
2001, Smejkal et al. 2007) and even SDS (Arikan 2008). For example, proteolysis occurs so 
rapidly and extensively in the moulting microcrustacean Daphnia pulex that protease 
inhibitors must be infused into the live organisms prior to protein extraction in order to 
obtain reliable and reproducible 2-DE (Bauer et al. 2009). Alternatively, thermal 
denaturation has been shown to reliably curtail protease activity (Robinson et al. 2009, 
Grassl et al. 2009) and phosphatase and kinase activity (Smejkal et al. 2011) as evidenced by 
2-DE and mass spectrometry. 

2.4 Simultaneous reduction and alkylation of protein disulfides 

The reduction of protein disulfides must be followed by alkylation to prevent the spurious 

formation of mixed disulfides during IEF, as they may lead to the formation of unnatural 

adducts and artifactual spots in 2-DE (Herbert et al. 2001). Alkylation also prevents the 

desulfuration of cysteines that can generate labile dehydro alanine residues that are 

susceptible to cleavage at the peptide bond (Herbert et al. 2003).  
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reagent formulation comments 

Sample 
Solubilization 
Reagent 

7M urea, 2M 
thiourea, 5% 
CHAPS 

Dissolve solids completely. Add 1 g of AG501-X8 resin 
to each 50 mL of solution and mix by gentle inversion 
until conductivity is less than 10 uS/cm. Add pH 
indicator AFTER ion-exchange. Filter through 0.45 
micron filter and store frozen aliquots for up to six 
months. Add Reducing Reagent fresh before each use.  

Reducing 
Reagent 

200 mM TBP Simultaneous reduction and alkylation is possible 
when the non-thiol TBP is substituted for DTT. 
Provided in single use glass ampules. Rapidly oxidizes 
in air. Use within 30 minutes of opening ampule. 
Add 1/40 volume of TBP to the sample and 1/100th 
volume of alkylating reagent.  

Alkylating 
Reagent 

1M acrylamide For more complete and more specific alkylation of Cys 
residues than iodoacetamide (IAA). Ion-exchange with 
AG501-X8 resin, filter and store at room temperature 
for three months. Do not freeze. 

pH Indicator 1% m-cresol 
purple 

Useful pH indicator during sample preparation. If 
sample turns yellow, add concentrated Tris until color 
transitions to purple. Filter and store at room 
temperature for six months. Add 1/100th volume to 
each sample. 

IEF Tracking 
Dye 

1% Orange G Useful for monitoring the progression of IEF. Filter and 
store at room temperature for six months. Add 1/100th 
volume to each sample. 

Tris 
Concentrate 

1M Trizma base Add 1/1000th volume when sample pH is below 7.6 as 
indicated by color shift of m-cresol purple to yellow. 
Repeat as necessary until color has shifted to purple. 
Filter and store refrigerated for three months. 

Quenching 
Reagent 

2M DTT Add 1/40th volume to quench the alkylation reaction. 
Add 1/40th volume to diluted samples prior to IEF. 
Prepare fresh and store frozen for two months. 

IPG 
Equilibration 
Reagent 

375 mM Tris-HCl 
pH 8.8, 3M urea, 
3% SDS, 50 mM 
DTT, 0.005% BPB, 
0.005% phenol 
red, 0.005% 
bromophenol blue

Filter and store frozen for three months. 

Acrylamide-
Bis 

29.2% acrylamide, 
0.8% methylene 
bisacrylamide 

The solids are completely dissolved, then incubated 
with AG501-X8 resin until conductivity is less than 20 
uS/cm. Filter and store refrigerated for three months in 
amber glass bottles that are half-filled. Do not store in 
plastic containers. Do not freeze. 

Gel Buffer 
Concentrate 

1.5 mM Tris-HCl 
pH 8.8 

Buffer component of second dimension PAGE gels. 
Filter and store refrigerated for three months. 
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APS 
Concentrate 

10% ammonium 
persulfate 

Add 1 mL of water to 1 g of ammonium persulfate and 
immediately listen for “snap, crackle, pop”. (If no 
effervescence occurs upon the addition of water, seek 
fresh source of ammonium persulfate.)  
Adjust volume to 10 mL and use within two hours. 
Frozen aliquots are stable for at least three months. Do 
not freeze thaw.  

Tris-glycine-
SDS Running 
Buffer 

25 mM Tris, 144 
mM glycine, 0.1% 
SDS 

Do not adjust pH with HCl. Can be prepared as a 10X 
concentrate, filtered, and stored for three months at 
room temperature. Do not store refrigerated.  

Table 1. Reagent preparation for IEF and 2-DE. 

 

 final  

stock solution concentration volume (mL) 

30% acrylamide-Bis 11% 18.3 

1.5M Tris-HCl pH 8.8 375 mM 12.5 

H2O - 18.9 

10% ammonium persulfate 0.04% 0.2  

98% TEMED 0.12% 0.06  

total volume  50 

Table 2. Casting second dimensional polyacrylamide gels. 

Degassing is unnecessary. Admix acrylamide-Bis, Tris buffer, and water in a 50 mL tube and 

mix by gentle inversion taking care not to introduce bubbles. This solution is stable at room 

temperature for several hours. Add TEMED and mix by gentle inversion. Add ammonium 

persulfate, mix, and pour gels within one minute. Carefully overlay each gel surface with 25% 

isopropanol within one minute of pouring. Polymerization time should be 15-20 minutes.  

Once polymerized, rinse the top of the gels with water. The polymerized gels can be stored 

at room temperature for 24 hours with a layer of water on top to prevent drying. Do not 

store the gel with running buffer on top. Do not store the gels refrigerated. 

Rinse the top of the gel with running buffer immediately before placing the IPG strip. Do 
not use an agarose overlay. 

Using the non-thiol reducing agent TBP, the alkylation of protein cyteines can proceed 

immediately by adding a molar excess of acrylamide or dimethlyacrylamide. The reactivity 

of acrylamide with cysteine sulfhydryls has been shown to be at least two orders of 

magnitude higher than with lysine NH2 when the reaction is terminated within two hours 

(Hamden et al. 2001, Bordini et al. 2000). Other non-thiols such as tris(carboxyethyl) 

phosphine (TCEP) can be substituted for TBP. However, it should be noted that TCEP is 

provided as TCEP-HCl which acidifies the sample and can result in the precipitative loss of 

proteins unless properly buffered. 

Iodoacetamide (IAA) is relatively inefficient as an alkylating agent. IAA may nonspecifically 

alkylate lysine and methionine residues in addition to cysteines, and may propagate 

apocryphal charge trains in two-dimensional gels. Further, IAA is rapidly consumed in the 
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presence of thiourea (Galvani et al. 2001a) and its activity is inhibited by both SDS and 

CHAPS (Galvani et al. 2001b). Therefore, IAA cannot be used to alkylate proteins during the 

SDS equilibration of IPGs that precedes second dimension PAGE. 

In these experiments, bacterial lysates were alkylated by the addition of 10 mM acrylamide. 
m-Cresol purple was added as pH indicator which transitions from yellow to purple at pH 
7.6. Samples exhibiting a shift to yellow color indicates pH too low for effective alkylation. 
When necessary, the pH is adjusted by adding concentrated Tris until the sample transitions 
to purple. The alkylation reaction was terminated after two hours by the addition of 50 mM 
DTT.  

2.5 Acetone precipitation of proteins 

Proteins were then precipitated by the addition of six volumes of 100% acetone to give a 
final concentration of 86%, followed by incubation for one hour at room temperature with 
intermittent vortexing. Precipitation is carried out at room temperature since urea and 
CHAPS will precipitate at lower temperatures (Smejkal et al. 2007). Protein recoveries from 
E. coli cell lysates by acetone precipitation were typically 90-95% when the initial protein 
concentration was at least 3 mg/mL. Acetone precipitation is not recommended when the 
initial protein concentration is less than 1 mg/mL. Moreover, acetone precipitation cannot 
be used for samples containing PBS or HEPES, since these buffers precipitate and 
concentrate with the proteins and their carryover interferes with IEF (Smejkal et al. 2005). 

The protein flocculent was pelleted by centrifugation at 14,000 RCF for 10 min and 
redissolved in 2 mL of 7M urea, 2M thiourea, 4% CHAPS that was ion-exchanged with the 
AG501-X8 resin. Conductivity of the reagent was less than 10 uS/cm after 30-60 minutes of 
incubation with the ion-exchange resin. The reagent was filtered to remove the resin and 
used immediately. Protein concentration of the reconstituted proteins was 6.4 mg/mL, as 
determined by Bradford assay using the Protein Determination Reagent. Conductivity was 
180 uS/cm.  

For IEF, the proteins were diluted to 1 mg/mL in the ion-exchanged reagent and 
supplemented with 50 mM DTT and 0.01% Orange G tracking dye. The final sample 
conductivity was less than 100 uS/cm. 

2.6 IEF comparing single or dual electrodes 

IPGs pH 3–10 nonlinear, 7 cm length, were rehydrated overnight with 140 µL of bacterial 
lysate in the provided rehydration trays. To prevent drying, the trays were sealed in 
zippered plastic storage bags with a dampened paper towel to maintain a humid 
environment. Unless specified otherwise, hydrated strips were adhered gel side facing 
upward to the IEF-100 running trays with a few drops of mineral oil. Standard 15 X 6 X 1 
mm wicks dampened with deionized H2O were blotted nearly dry and placed with 2–3 mm 
overlapping each end of the IPG strip. Electrodes were positioned and the running tray was 
flooded with mineral oil.  

IEF of 2 X 12 IPGs were programmed to run in a single step for three hours at 12,000V, 50 
uA, 0.6W in two separate IEF-100 units configured with dual electrodes. Current limiting at 
50 uA resulted in the formation of a roughly linear voltage gradient that reached 12,000V 
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maximum voltage in 133 minutes. Temperature remained constant at 20°C ± 1°C. IEF was 
continued at 12,000V until 12 total kiloVolthours (kVh) had elapsed. 

Six additional IPGs were run on the IEF-100 using the standard electrode pair. Run was 
programmed as a single step limited at 12,000V, 25 uA, and 0.3W. Current limiting at 25 uA 
resulted in the formation of a roughly linear voltage gradient that reached 12,000V 
maximum voltage in 124 minutes. IEF was continued at 12,000V until 12 total kVh had 
elapsed.  

2.7 Comparing IEF with or without carrier ampholytes 

IEF was performed with 0% or 0.25% Servalyte pH 3-10 carrier ampholytes. Initial sample 
conductivity of 180 uS/cm was increased to 240 uS following the addition of Servalyte. 

2.8 The use of oversized wicks in IEF 

Standard 15 X 6 X 1 mm wicks provided with the IEF-100 were compared to 30 X 6 X 2 mm 
wicks. Large wicks act as reservoirs in which extraneous ions could run off of the gel at each 
end of the pH gradient, as evidenced by the accumulation of anionic tracking dye in the 
anodal wick, and were standard in the Proteome Systems IsoelectrIQ IEF system. (Sydney, 
NSW, Australia). However, IEF run times of 8-10 hours at 10,000V maximum voltage have 
been reported (Smejkal and Lazarev 2005). In contrast to the standard configuration, IPGs 
were run gel side facing down in the tray. The tray was first flooded with mineral, since the 
strips should not contact the plastic tray directly. Wicks were saturated with distilled water, 
then blotted nearly dry and placed in the plastic tray. IPGs were placed with the gel side 
facing downward with at least 3 mm overlap at each end of the strip. Electrodes were placed 
in contact with the wick approximately 10 mm from the edge of the IPG. Effectively the 

 

Fig. 3. IPGs loaded gel side facing downward in contact with oversized 30 X 6 X 2 mm 
wicks. (A) Empty sample loading cups (3) were used to ensure connectivity between IPGs 
and the large wicks and a stack of glass plates (4) was placed on top the assembly to apply 
uniform pressure. The anode (1) and cathode (2) were positioned with the wick acting as 
bridge between the IPG and electrode. (B) Exploded view following IEF showing the 
accumulation of the Orange G tracking dye in the wick (5) rather that at the acidic end of the 
IPG (6).  

6

A B 

3

1 2

4

3
5
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large wick acted as a bridge between the IPG and the electrode. The IPGs were held in 
uniform contact with the wick using cup loading strips supplied with the IEF-100. The cups 
were filled with mineral oil and a stack of glass plates was placed on top of the assembly 
(Figure 3). 

2.9 Second-dimension PAGE 

11% polyacrylamide gels were cast in 180 X 80 X 1 mm glass cassettes following the recipe 

in Table 2. When prepared as described in Table 1, acrylamide-bisacrylamide solutions do 

not require degassing provided they are stored in glass bottles, since plastics contain 

dissolved oxygen which inhibits polymerization. Likewise, stock solutions should be 

equilibrated to room temperature, since cold solutions contains more dissolved oxygen. 

When necessary, the ammonium persulfate concentration was adjusted to allow 

polymerization in 15–20 minutes. Gels taking longer than 30 minutes to polymerize were 

discarded. This rapid polymerization favors more numerous, but shorter polymers and 

higher conversion of acrylamide monomer than in most commercial precast gels. By 

comparison, precast gels formed at slower polymerization rates have fewer, but longer 

polymer chains and may contain higher amounts of acrylamide monomer. 

(Unpolymerized acrylamide monomer in the gel can react with protein cysteines during 

electrophoresis, if not akylated beforehand.) Exactly 12.5 mL of acrylamide solution was 

added to each gel cassette within one minute of the addition of the catalysts. A sharp 

interface was produced by overlaying the top of the unpolymerized gel immediately with 

25% isopropanol. Following polymerization, the gel surface was washed copiously with 

distilled water.  

Immediately following IEF, the IPG strips were each equilibrated 2X 10 minutes in the SDS 

Equilibration Buffer described in Table 1. The strips were placed on the polyacrylamide gels 

without an agarose overlay and PAGE was performed immediately at 100V for 80 minutes. 

Gels were fixed a minimum of two hours in 25% ethanol, 10% acetic acid and stained 

overnight with colloidal Coomassie Brilliant Blue (CBB) G-250 (Wijte et al. 2006, Smejkal 

2004).  

3. Results and discussion 

IEF throughput can be doubled using a modified electrode module in which two pairs of 

electrodes are wired in parallel (Smejkal and Bauer 2011). The acidic ends of the gradients 

are positioned proximally and the basic ends of the gradients are at opposing ends of the 

running tray (Figure 1). 2D gels produced with either single or dual electrodes were super 

imposable (Figure 2). Compared to the standard single electrode pair, voltage gradients 

were nearly superimposable for paired IPGs run at twice the current and IEF is completed 

in less than three hours (Figure 4). No significant increase in operating temperature was 

observed. From time course IEF, it was judged that the focusing of bacterial proteins was 

completed in 12 kVh (Figure 5). In current limited IEF, maximum voltage reached 12,000V 

in less than two hours. This eliminates the need to program multiple steps. A single step 

in which maximum voltage is set to 12,000V results in the formation of a “natural” voltage 

gradient where voltage climbs at a rate limited by the programmed current limit. (In turn, 

the risk of generating heat during IEF is minimized when conservative current limits are 
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used.) Once maximum voltage is reached, 3 kVh is accumulated every 15 min at 12,000 V 

such that IEF in the IEF-100 is at least three times faster than previously described 

protocols.  

The rapid focusing is attributed to the preparation of samples of initially low conductivity, 

since initially high conductivity and delays IEF slowing the nascent voltage gradient.  

Sample preparation is critical to the success of IEF since contaminating ions raise the 

conductivity of the hydrated IPG. Moreover, residual buffer such as PBS must be removed 

prior to IEF and the failure to do so may have disastrous consequences. During IEF, PO4−3 

and HPO4−2 ions accumulate at the anodic end of the IPG. This gross negative charge drives 

water, predominately as H3O+ ions, towards the cathode resulting in the collapse of the IPG 

gel in that region. When this happens, IEF ceases. 

 

 

Fig. 4. Voltage gradients formed during IEF with single (red) or double (blue) electrodes 
current limited at 25 and 50 uA, respectively. Both runs were completed at 12 kVh. 

 

Fig. 5. IEF at 12,000V maximum voltage in the IEF-100. E. coli cell lysates were focused on 
IPGs pH 4-7 for 6, 9, or 12 kVh without carrier ampholytes. IEF for 12 kVh was completed in 
less than three hours. Second dimension PAGE was performed on 11% polyacrylamide gels 
prepared as described in Table 2. Gels were stained with colloidal CBB. (Figure adapted 
from Smejkal and Bauer, 2010. Reproduced with permission from American Biotechnology 
Laboratory.)  
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Fig. 6. Comparison of voltage gradients formed during IEF current limited at 25 uA with or 
without 0.25% Servalyte pH 3-10 carrier ampholytes. IEF without carrier ampholytes (red) 
reached 12,000V maximum voltage in less than two hours. IEF with 0.25% Servalyte (green) 
did not exceed 2,500V and reached only 10 kVh in 5.5 hours. 

 

Fig. 7. The effect of wick size on voltage during IEF. Identical samples were run using 
standard 15 X 6 X 1 mm wicks (red) or 30 X 6 X 2 mm wicks (yellow). Using the oversized 
wick, voltage reached less than 1000V after two hours and IEF failed to reach maximum 
voltage of 12,000V after three hours. Only 6.8 kVh were accumulated. 

The addition of 0.25% Servalyte carrier ampholytes also delayed IEF. When 0.25% carrier 
ampholytes were added to the samples, the voltage did not exceed 3,500V after three hours 
of IEF (Figure 6). This is because carrier ampholytes focus in the IPG where resulting in a 
minimum of conductivity gaps. Hence, conductivity remains constant. In samples lacking 
carrier ampholytes, conductivity gaps are rapidly created and voltage must increase to 
maintain constant current.  

Similarly, IEF was prolonged when using oversized wicks (Figure 7). Voltage was less than 
1000V after two hours and IEF failed to reach maximum voltage of 12,000V after three 
hours. The accumulation of ions in the enlarged wicks results in a precipitous voltage in that 
region which bridges the IPG to the electrode. 
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