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1. Introduction 

Glioma is among the deadliest tumors worldwide. Despite its relative low onset incidence, 
glioma, especially malignant glioma, causes high mortality. Due to the utmost 
aggressiveness of tumor cells, malignant glioma is almost incurable by conventional 
therapeutic approaches. Finding new molecular targets, which are responsible for tumor 
progression, can amplify our understanding about malignant glioma and targeting these 
molecules combining with conventional approaches may ameliorate the therapeutic 
outcome for patients with malignant glioma. 

Intracellular ions are fundamentally essential for cell behavior and ionic channels have been 

known to play versatile roles in numerous physiological and pathological processes. As for 

glioma biology is concerned, many types of ionic channels such as Ca2+, K+, Na+ and Cl- 

channels are involved in glioma cell proliferation, survival, invasion and also glioma 

angiogenesis. In this chapter, we are going to discuss the implications of ionic channels in 

the therapy of malignant glioma. Our recent work has indicated the role of one type of Ca2+ 

channels, namely the transient receptor potential (TRP) channel in human glioma 

progression. We thus are going to discuss the roles of Ca2+ channels in glioma cell biology as 

well as the possibility of Ca2+ channels to be therapeutic targets in glioma treatment.  

Calcium (Ca2+) is the second messenger for signal transduction to direct many cellular 
processes and Ca2+ channels play critical roles in controlling cell behavior, such as 
neurotransmitter release and muscle contraction. In recent years, the roles of Ca2+ channels 
in tumor cell biology have undergone intensive study. Many types of Ca2+ channels have 
abnormal expression in tumor cells compared to their corresponding normal cells and they 
also have specific functions in tumor cell proliferation, survival and invasion, making them 
appropriate candidate targets in tumor therapy. It has now become clear that TRP channels 
and voltage-gated Ca2+ channels participate in the progression of human glioma, some TRP 
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channel proteins are highly expressed in malignant glioma and function as essential 
regulators of glioma cell proliferation. The potential of these channels to be anti-glioma 
target will be highlighted in this chapter.       

2. Difficulties in treating malignant glioma  

Glioma is the most common form of brain tumor. It accounts for about half of all the brain 
tumors (Central Brain Tumor Registry of the United States [CBTRUS], 2008). According to 
the histological features, glioma has three major types: astrocytoma, oligodendroglioma and 
oligoastrocytoma (Huse & Holland, 2010). The World Health Organization classifies glioma 
as I to IV grade. As for astrocytoma, grade I is the pilocytic astrocytoma, grade II is the 
diffuse astrocytoma, grade III is anaplastic astrocytoma, and grade IV is glioblastoma 
multiforme (GBM) (Wen & Kesari, 2008). Grade I and II are low-grade glioma, high-grade 
glioma including grade III and IV are usually regarded as malignant glioma. GBM is the 
most common type of malignant glioma. It accounts for approximately 60 to 70% of all 
malignant glioma (Wen & Kesari, 2008). Histologically, GBM has several characteristics: 
nuclear atypia, enriched mitosis, necrosis and microvascular enrichment (Behin et al., 2003). 
GBM can be either original or secondary and secondary GBM develops from low-grade 
glioma. 

GBM is extremely lethal, despite advances in therapy approaches, patients with GBM have 

very short survival time, averaging approximately 12 to 15 months (Wen & Kesari, 2008). 

Current therapeutic approaches for GBM include surgery resection, irradiation therapy and 

chemotherapy. However, all these approaches have very limited improvement on patients’ 

survival, largely due to the intrinsic nature of GBM tumor cells, which are highly 

proliferative, invasive and often drug resistant. Finding new and specific drug targets for 

GBM challenges basic research. Current GBM drugs mainly targets DNA synthesis and 

DNA damage repair processes, for example, DNA alkylating agents (Temozolomide, 1,3-

Bis(2-chloroethyl)-1-nitrosourea, BCNU, CCNU) and DNA topoisomerase inhibitors 

(Irinotecan, topotecan) (Brandes et al., 2001; Stupp et al., 2005). Accumulating evidences 

support the notion that intracellular ions, and especially ionic channels play important roles 

in the malignant behavior of glioma cells and it is possible that targeting the glioma-related 

ionic channels could suppress tumor cell growth. In the following, we are going to discuss 

the rationale and practice of this channel-targeting strategy.  

3. Intracellular ions and ionic channels are fundamental for biological 
behavior of cells  

Intracellular ions provide the basic environment for cellular activity and are required for 
maintaining enzyme activity, protein folding, cytoskeleton dynamics, cellular adhesion and 
cellular excitability (Berridge et al., 2003; Kunzelmann, 2005). Because of the important role 
of intracellular ions, ionic channels are of especial importance to cells. They play versatile 
roles in cellular activity, such as action potential generation, muscle contraction and 
neurotransmitter release. Among all the ionic channels, Ca2+, K+, Na+ and Cl- channels are 
four types of channels that receive the most attention. Extensive studies have reported their 
roles in both physiological and pathological processes. For example, Ca2+ channels in 
neuronal plasticity and cell apoptosis (Burgoyne, 2007), K+ channels in regulating neuronal 
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excitability and epilepsy (Lee & Cui, 2010; Zhang et al., 2010), Na+ channels in action 
potential initiation and pain sensory (Cregg et al., 2010), Cl- channels in regulating cell 
volume (Duran et al., 2010). More and more evidence have also shown these four types of 
ionic channels to be important for cell proliferation, migration and survival, suggesting that 
they might serve as potential targets in tumor therapy. Indeed, ionic channels play 
important roles in a wide variety of malignant tumors, including in the breast (S. Yang et al., 
2009), colon (House et al., 2010), liver (Holzer, 2011), stomach (Holzer, 2011), oesophagus 
(Holzer, 2011), ovary (S.L. Yang et al., 2009), prostate (Flourakis et al., 2010), endometrium 
(Wang et al., 2007), lung (S.H. Jang, et al., 2010), skin (Bode et al., 2009) and brain (Ding et 
al., 2010).  

The following parts of the chapter will discuss the above four types of ionic channels in 
glioma cell biology and implications of these channels in glioma therapy (Table 1). 
Schematic topology of each channel is summarized in Table 2.  

4. Involvement of Ca
2+

 signaling and Ca
2+

 channels in GBM progression 

The seminal role of intracellular Ca2+ in cell behavior has been well established. Ca2+ is a 
critical second messenger for signal transduction and Ca2+ signaling is required for gene 
expression, cell proliferation, cell migration, cell survival, cytoskeleton dynamics, 
fertilization, axonal growth cone turning and so on (Berridge, 2003). Intracellular Ca2+ 
signaling consists of many Ca2+ signaling apparatus, including receptors/channels, 
transducers, Ca2+ effectors, Ca2+-sensitive enzymes, Ca2+ pumps and Ca2+ exchangers 
(Roderick & Cook, 2008). Many of these Ca2+ signaling apparatus are involved in regulating 
glioma behavior. For example, the Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionate (AMPA)-type glutamate receptors are expressed in GBM cells and can 
be activated to mediate extracellular Ca2+ entry (Ishiuchi et al., 2002). Overexpression of the 
AMPA receptors facilitates tumor cell proliferation and migration. One of the Ca2+-sensitive 
enzymes is the Ca2+-activated protease calpain, which is required for GBM cell invasion 
(H.S. Jang et al., 2010). 

In the intricate network of Ca2+ signaling, Ca2+ channels are essential contributors to Ca2+ 
signaling transduction in response to different stimuli. Different types of Ca2+ channels are 
activated to initiate specific Ca2+ signaling pathways to allow cells to respond to stimuli. As 
for GBM cells are concerned, Ca2+ channels are involved in cell survival, proliferation, 
invasion and tumor angiogenesis. These GBM-related Ca2+ channels now include the 
transient receptor potential (TRP) channels and voltage-gated Ca2+ channels (VGCC).   

4.1 TRP channels 

TRP channels were first discovered in the fly visual system and participate in light sensing. 

TRP channel family is now known to be a large family containing 28 members in mammals 

(Montell, 2005; Ramsey et al., 2006). TRP channel family encompasses seven subfamilies 

with respect to channel structure similarity, these seven subfamilies include TRPC 

(Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPA (Ankyrin), TRPN (Nompc), TRPP 

(Polycystin) and TRPML (Mucolipdin) (Montell, 2005; Ramsey et al., 2006). All of the TRP 

family members have six transmembrane domains and the pore region is located between 

the fifth and sixth transmembrane domains. Both the N- and C-terminals are located 

www.intechopen.com



 
Novel Therapeutic Concepts in Targeting Glioma 

 

268 

intracellularly. Functional TRP channels are formed as homotetramers or heterotetramers of 

different TRP members. They are non-selective cation channels and are primarily permeable 

to Ca2+ and Na+, some are also permeable to Mg2+. TRP channels were found to functionally 

express in diverse tissues. These channels participate in a variety of physiological and 

pathological processes, such as neuronal survival (Jia et al., 2007), axon guidance (Li et al., 

2005), pain sensory (Cortright et al., 2007), endothelial permeability (Ahmmed & Malik, 

2005), pathogenesis of certain renal disease (Reiser et al., 2005; Winn et al., 2005; Heeringa et 

al., 2009), cardiovascular disease (Kuwahara et al., 2006; Onohara et al., 2006) and so on. The 

functions of many TRP channels still remain to be explored. The glioma-related TRP 

channels now include the TRPC, TRPV and TRPM channels.  

4.1.1 Implication of TRPC channels in glioma progression and therapy 

TRPC channels are the first mammalian TRP subfamily to be discovered and share the 
highest homology with fly TRP (about 30-40% in protein sequence identity) (Montell, 2005). 
In mammalian cells, TRPC channels contain seven members from TRPC1 to TRPC7 
(Vazquez et al., 2004). TRPC channels can be activated by receptor-operated pathway, store-
operated pathway, mechanical stretch, membrane trafficking, oxidative stress and 
Ca2+/Calmodulin (Boulay, 2002; Maroto et al., 2005; Miller, 2006; Montell, 2005; Singh.B et 
al., 2004; Tang et al., 2001; Vazquez et al., 2004; Zhang et al., 2001). The receptor-operated 
and store-operated pathways are the most intensively studied. In the receptor-operated 
pathway, when G-protein coupled receptor or receptor tyrosine kinase on the cell surface 
are activated by ligand binding, their corresponding downstream phospholipase C are 
activated to hydrolyze phosphatidylinositol 4,5-bisphophate (PIP2) into inositol 1,4,5-
triphosphate (IP3) and diacylglycerol (DAG). The DAG can directly bind to and activate 
TRPC channels (Montell, 2005). In the store-operated pathway, when intracellular Ca2+ store 
(mostly refer to the endoplasmic reticulum) are released, for example under thapsigargin 
(inhibitor of Ca2+-ATPase on the ER) treatment, the IP3 receptor or STIM1 on the ER can 
physically interact with TRPC channels on the plasma membrane and activate TRPC 
channels (Bolotina & Csutora, 2005; Ramsey et al., 2006; Varnai et al., 2009). It is worth 
mentioning that under different conditions, one single type of TRPC channels can have 
more than one activation pathways (Ding et al., 2010; Hofmann et al., 1999).   

TRPC channels are found in a wide diversity of tissues and cells, including neurons, glial 
cells, smooth muscle cells, endothelial cells, kidney podocytes and tumor epithelial cells 
(Ahmmed & Malik, 2005; Aydar et al., 2009; El Boustany et al., 2008; Golovina, 2005; Guilbert 
et al., 2008; Heeringa et al., 2009; Jia et al., 2007; Reiser et al., 2005; Winn et al., 2005; S.L. Yang 
et al., 2009; Yu et al., 2003; Yu et al., 2004). They form functional channels as homotetramer or 
heterotetramer, as has been revealed that TRPC1, 4 and 5 can interact with each other and 
TRPC3, 6 and 7 can interact with each other to form functional channels (Hofmann et al., 2002; 
Strubing et al., 2001; Strubing et al., 2003). TRPC channels regulate neuronal survival, neurite 
development, synapse formation, axon guidance, endothelial permeability, cell migration, 
differentiation and proliferation (Ahmmed & Malik, 2005; Cai et al., 2006; Florio Pla et al., 2005; 
Jia et al., 2007; Li et al., 2005; Louis et al., 2008; Tai et al., 2008; Zhou et al., 2008;). Among the 
seven TRPC members, TRPC1 and TRPC6 have been reported to play important roles in 
glioma cell proliferation, migration and invasion, TRPC6 channels are also involved in tumor 
angiogenesis (Bomben et al., 2010; Bomben & Sontheimer, 2010; Chigurupati et al., 2010; Ding 
et al., 2010; Ge et al., 2009; Hamdollah Zadeh et al., 2008). 
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Channel Cell type Functions in 
glioma cells 

Abnormal 
expression 
in glioma 

Pharmacological 
or molecular 
antagonists 

Ways of 
activation 

Animal 
experiments 
or clinical trial 

Distribution 
in normal 
tissues and 
cells 

TRPC1 Cell line 

(D54MG) 

Proliferation, 
cytokinesis, 
EGF-induced 
chemotaxis 

Not 
known 

SKF96365, 
RNAi 

 No Heart, brain, 
testis, ovary, 

TRPC6 Cell lines 

(U251, 

T98G, 

U87) and 

patient 

samples 

Cell cycle 
progression, 

High 
expression

SKF96365, DN-
TRPC6, RNAi 

PDGF Yes, 
intracranially 
implanted 
glioma in 
nude mice 

Neuronal 
cells, cardiac 
myocytes, 
smooth 
muscle cells, 
vascular 
endothelial 
cells, kidney 
podocytes 

Cell line 

(U373MG) 

and 

patient 

samples 

Notch-
induced 
invasion 

High 
expression

SKF96365, 
RNAi 

OAG No 

TRPM2 Cell line 

(A172) 

H2O2-
induced cell 
death 

Not 
known 

 Overexpression 
of wild type 
TRPM2 

No Brain 

TRPM8 Cell line 

(DBTRG) 

Menthol-
induced cell 
migration 

Not 
known 

 Menthol No Prostate, 
Trigeminal 
(TG), dorsal 
root 
gangalion 
(DRG) 

TRPV1 Cell line 

(U373, 

U87) and 

patient 

samples 

Capsaicin-
induced cell 
death in 
TRPV1-high 
cells 

Inversely 
correlated 
with 
glioma 
grade 

 Capsaicin No TG, DRG, 
urinary 
bladder 

TRPV2 Cell line 

(U87) and 

patient 

samples 

Negatively 
regulated 
proliferation

Inversely 
correlated 
with 
glioma 
grade 

RNAi Overexpression 
of wild type 
TRPV2 

No DRG, spinal 
cord (SC), 
brain, spleen, 
small and 
large 
intestine, 
vascular 
myocytes 

Cav3.1 Cell lines 

(U87) 

Promote 
proliferation

Not 
known 

Mibefradil, 
NNC55-0396 

Overexpression 
of wild type 

Cav3.1 1 
subunit 

No Vascular 
smooth 
muscle, 
fibroblasts, 
myocytes Cell lines 

(U87, 

U563, 

U251) and 

patient 

samples 

 Specific 
splicing 
form 
expressed 
in glioma 
cells 

  No

BK 
 

Cell lines 
(U251, 
U87) 

Do not affect 
proliferation

A specific 
isoform 
highly 
expressed

Iberiotoxin, 
paxilline, 
penitrem A 

NS1619 No Neurons, 
smooth 
muscle cells 
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Channel Cell type Functions in 
glioma cells 

Abnormal 
expression 
in glioma 

Pharmacological 
or molecular 
antagonists 

Ways of 
activation 

Animal 
experiments 
or clinical trial 

Distribution 
in normal 
tissues and 
cells 

Animal 
model 

Increase the 
permeability 
of BTB 

 Iberiotoxin NS1619 Yes, 
intracranial 
RG2 cell 
implantation 
in Wistar rat

IK Cell lines 
(U251, 
U87) 

Do not affect 
proliferation, 
but promote 
cell 
migration 

Not 
known 

Clotrimazole 
and TRAM-34 

 No Neurons, 
smooth 
muscle cells 

HUVEC, 
HMVEC 

Promote 
angiogenesis

 TRAM-34  Yes, in vivo 
matrigel plug 
assay in nude 
mice

 

KATP Cell lines 
(U251, 
U87) 

Promote 
proliferation, 
cell cycle 
progression 
through 
G0/G1 phase

High 
expression

Tolbutamide Diazoxide 
Minoxidil 
sulfate 

Yes, 
subcutaneous 
coinjection of 
drugs with 
glioma cells in 
nude mice 

Heart, 
skeletal 
muscle cells, 
pancreatic 
islet cells, 
vascular 
smooth 
muscle cells, 

Animal 
model 

Increase 
permeability 
of BTB 

  Minoxidil 
sulfate 

Yes, 
intracranial 
implanted 
GBM in nude 
mice

TASK3  Negatively 
regulate cell 
survival 

Not 
known 

Bupivacaine, 
spermine 

Isoflurane No Brain, kidney, 
liver, lung, 
colon, 
stomach, 
spleen, testis, 
skeletal 
muscle 

hERG1 Cell lines 
(U138, 
A172) and 
patient 
samples 

Modulate 
VEGF 
secretion 

High 
expression

WAY  No Heart, 
pancreas, 
colon 

ASIC1 Cell line 
(D54MG) 

Promote cell 
migration 

Not 
known 

Amiloride, 
psalmotoxin1 
(PcTX-1) 

 No CNS, PNS 

ClC2 Cell line 
(D54MG) 

Mediated Cl-
current 

High 
expression

  No  

ClC3 
 

Cell line 
(D54MG) 

Mediate Cl- 
current 
required for 
M phase 
progression 

High 
expression

Chlorotoxin  Yes, phase I 
clinical trial 

Neurons 

Cell lines 
(STTG1, 
U251) 

Cell invasion High 
expression

  No 

Table 1. Glioma-related ionic channels. The glioma-related ioninc channels are summarized 
in this table. Detailed information can be retrieved from the body text.  
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Table 2. Schematic topology of subunit and subunit assembly of glioma-related ion 
channels. Transmembrane domains are represented as grey bars and pore-forming regions 
are indicated by the short arrows. 

TRPC1 is the first TRPC member to be cloned (Wes et al., 1995). TRPC1 channels function in 

the regulation of neural stem cell proliferation, skeletal myoblast migration and 

differentiation, cell apoptosis and so on (Florio Pla et al., 2005; Louis et al., 2008; Bollimuntha 

et al., 2005). TRPC1 channels can be gated by receptor-operated pathway, store-operated 

pathway or even by mechanical stretch, depending on the cell types examined (Kim et al., 
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2003; Maroto et al., 2005; Saleh et al., 2008). Glioma-related TRPC1 channels are involved in 

glioma cell proliferation and cell migration. In D54MG glioma cells, TRPC1 channels were 

gated by store-operated pathway. Pharmacological inhibition or shRNA-mediated 

suppression of TRPC1 channels inhibited glioma cell cytokinesis and resulted in 

multinucleated cells and eventually slowed glioma cell proliferation (Bomben & Sontheimer, 

2010). Although Ca2+ signaling is important for cytokinesis in cell division, the channel 

through which the Ca2+ enters cells remains unknown. It is possible that TRPC1-mediated 

Ca2+ signaling is indispensable for cytokinesis in glioma cells, though the detailed molecular 

mechanism needs further exploration. Besides cytokinesis and proliferation, TRPC1 is also 

required for glioma cell migration. In response to the epidermal growth factor (EGF), TRPC1 

protein was enriched in the leading edge of D54MG glioma cells and co-localized with lipid 

raft proteins. Inhibition of TRPC1 channels pharmacologically or by shRNA knockdown 

retarded EGF-induced cell migration, but did not affect the motility of un-stimulated cells. 

These results suggest that TRPC1 channels contribute to glioma chemotaxis in response to 

specific stimuli (Bomben et al., 2010). 

Another TRPC channel member, TRPC6 channel is also essential for glioma progression. 

The TRPC6 channels are known to regulate axon growth cone turning (Li et al., 2005), 

survival of cerebellum granule neuron (Jia et al., 2007), dendrite development (Tai et al., 

2008), synapse formation (Zhou et al., 2008), proliferation of pulmonary artery smooth 

muscle cells (Yu et al., 2004), cardiac myocytes (Kuwahara et al., 2006), vascular endothelial 

cells (Ge et al., 2009; Hamdollah Zadeh et al., 2008) and tumor cells (Cai et al., 2009; El 

Boustany et al., 2008; Thebault et al., 2006; Shi et al., 2009). Furthermore, TRPC6 functional 

mutations also contribute to the pathogenesis of a familiar renal disease named focal 

segmental glomerulosclerosis (Heeringa et al., 2009; Reiser et al., 2005; Winn et al., 2005). 

TRPC6 can be activated by receptor-operated pathway or by store-operated pathway as 

determined by different cell types. For example, in tumor cells, TRPC6 channels in most 

cases are store-operated and can be activated by thapsigargin or other ER Ca2+-ATPase 

inhibitors (Ding et al., 2010; El Boustany et al., 2008), and in neuronal cells, TRPC6 channels 

are often receptor-operated and can be activated by neurotrophic factors or growth factors, 

such as brain-derived neurotrophic factor (BDNF) (Jia et al., 2007; Li et al., 2005).  

The expression of TRPC6 was elevated in glioma tissues compared to normal brain tissues. 
By using neuronal marker, NeuN to distinguish normal neurons and normal glial cells in 
normal brain tissues, it was found that normal neurons expressed a high level of TRPC6, 
which was comparable to that in glioma cells, however in normal glial cells, the level of 
TRPC6 was barely detectable, suggesting that TRPC6 was specifically up-regulated in 
glioma cells, but not in neurons or in normal glial cells. Moreover, compared to low-grade 
glioma, TRPC6 expression level was even higher in GBM, suggesting that TRPC6 expression 
level was associated with glioma grade. TRPC3 is a closely related homolog to TRPC6, but 
unlike TRPC6, its expression level in glioma tissues was not significantly different from that 
of normal brain tissues. The selective up-regulation of TRPC6 channels in GBM implies the 
reliance of GBM tumor cell behavior on TRPC6 channels.  

SKF96365 is a putative, but non-specific inhibitor for TRPC channels, treatment of glioma 
cells with SKF96365 could dramatically inhibit glioma cell proliferation. Specific inhibition 
of TRPC6 channels by a dominant-negative mutant channel (DN-TRPC6) (Hofmann et al., 
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2002) or by RNA interference (RNAi) could also significantly inhibit glioma cell proliferation 
in vitro and in nude mice subcutaneous xenograft model. In nude mice intracranial 
xenograft model, DN-TRPC6 slowed the growth of tumors and significantly prolonged 
survival of tumor-bearing animals. Flowcytometry assay revealed that this inhibition of 
glioma cell proliferation was through arresting cell cycle in G2/M phase, not through 
induction of cell death, suggesting that TRPC6 channels are important for G2/M phase 
progression of glioma cells. Further analysis revealed that inhibition of TRPC6 channels 
down-regulated the expression of central cell cycle regulators, such as CDC25C, a 
phosphatase in activating CDC2/Cyclin B complex, which can drive cell cycle through 
G2/M phase (Boutros et al., 2007; Grana & Reddy, 1995). As has been known that Ca2+ 
signaling is essential for gene transcription (Greer & Greenberg, 2008), it is possible that 
TRPC6-mediated Ca2+ signaling contributes to the transcription of many cell cycle proteins 
in order to regulate glioma cell cycle progression.  

As a Ca2+-permeable channel in glioma cells, TRPC6 is functionally expressed. In U87-MG 
glioma cells, PDGF triggered a transient wave of intracellular Ca2+ elevation as reflected by 
Fura 2-AM Ca2+ image. This Ca2+ elevation was dramatically attenuated by SKF96365 
perfusion, or by DN-TRPC6, or by TRPC6 RNAi, suggesting the contribution of TRPC6 
channels to this induced Ca2+ wave. In Ca2+-free medium, PDGF could only trigger a much 
smaller wave, but when Ca2+ was re-applied, the Ca2+ wave became much larger. When 2-
APB (an IP3 receptor inhibitor blocking Ca2+ release from ER) (Maruyama et al., 1997) was 
present in the bath, PDGF-induced Ca2+ elevation was completely abolished. These results 
implied that PDGF might first trigger Ca2+ release from the ER and then through the store-
operated pathway activate extracellular entry, which might through TRPC6 channels. It is 
known that when using cyclopiazonic acid (CPA, another ER Ca2+-ATPase inhibitor as 
thapsigargin) (Demaurex et al., 1992) to deplete ER Ca2+ store under Ca2+-free condition, 
Ca2+ re-application could induce the classical store-operated Ca2+ entry. Further experiments 
revealed that DN-TRPC6 could decrease the CPA-induced store-operated Ca2+ entry. This 
result clearly indicates that TRPC6 in glioma cells can be activated by PDGF and can 
mediate Ca2+ entry via the store-operated pathway. Since it has been well established that 
PDGF is a critical regulator for glioma tumorigenesis and development, these results 
indicated that TRPC6-mediated Ca2+ signaling might contribute to PDGF-induced glioma 
pathogenesis.  

Besides cell proliferation and cell cycle, TRPC6 is also essential for hypoxia-induced glioma 
invasion and migration. Under hypoxia condition, Notch signaling pathway was activated 
and TRPC6 expression level increased in a Notch-dependent manner. Hypoxia treatment 
(CoCl2 treatment) could activate TRPC6 channels and boost the ability of glioma 
proliferation and invasion. Inhibition of TRPC6 channels reversed the hypoxia-induced 
proliferation and invasion (Chigurupati et al., 2010). It is known that Notch signaling 
pathway is important for development and for maintaining cells in an undifferentiated state 
by regulating the transcription of many critical proteins (Artavanis-Tsakonas et al., 1999), 
these results suggest that Notch-induced TRPC6 expression may enhance undifferentiated 
state of glioma cells and therefore enhance the aggressiveness of glioma cells. 

TRPC6 channels are also essential for angiogenesis, which is another important feature of 
malignant glioma (Wong & Brem, 2010). Human microvascular endothelial cell (HMVEC) is 
a good experimental model to study angiogenesis. In HMVECs, VEGF could trigger 
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intracellular Ca2+ elevation and inhibition of TRPC6 channels by DN-TRPC6 alleviated 
VEGF-induced Ca2+ elevation. Meanwhile, DN-TRPC6 also inhibited the migration, 
sprouting and proliferation of HMVECs. On the contrary, overexpression of TRPC6 
increased the migration and proliferation of HMVECs (Hamdollah Zadeh et al., 2008). In 
Human umbilical vein endothelial cells (HUVEC), similar phenomenon was observed. 
Inhibition of TRPC6 channels by SKF96365 or DN-TRPC6 arrested HUVEC cell cycle in 
G2/M phase and suppressed VEGF-induced cell proliferation and tube formation. 
Furthermore, inhibition of TRPCs abolished VEGF-, but not FGF-induced angiogenesis in 
the chick embryo chorioallantoic membrane (Ge et al., 2009). These results suggest that 
TRPC6 channels play an important role in VEGF-induced angiogenesis. Targeting TRPC6 in 
microvascular endothelial cells may inhibit the neo-angiogenesis of malignant glioma and 
eventually suppress tumor progression. 

Based on the above basic findings, TRPC1 and TRPC6 channels could be potential drug 
targets in the therapy of malignant glioma. However, one major problem for TRPC channels 
as targets is that there is a severe lack of specific TRPC channel blockers. SKF96365 is a 
putative TRPC channel inhibitor, it can inhibit both TRPC1 and TRPC6 channels, but it can 
also inhibit many other types of channels and result in strong non-specific effect (Clapham, 
2007; Fiorio Pla et al., 2005; Kim et al., 2003; Malkia et al., 2007; Mason et al., 1993; Merritt et 
al., 1990; Vazquez et al., 2004). Based on this situation, the currently available and efficient 
way of specifically inhibiting TRPC channels is to transfect cells with dominant-negative 
mutant form of specific channel proteins or with specific siRNA sequence to inhibit channel 
activity or knockdown gene expression. The DN-TRPC6 is a pore region-mutated channel, 
in which Leu678, Phe679 and Trp680 are mutated to Ala (Hofmann et al., 2002). DN-TRPC6 
channel is impermeable, thus when overexpressed in glioma cell, DN-TRPC6 can chelate 
endogenous TRPC6 channels to form impermeable channel tetramers and achieve channel-
specific blockade. Because TRPC6 can form functional tetramers with other TRPC channels, 
such as TRPC3, DN-TRPC6 also has certain side effects by inhibiting the activity of these 
TRPC6 binding channels. Besides DN-TRPC6, siRNA targeting TRPC6 is the most specific 
way of inhibiting TRPC6 channels without affecting other channel expression. Although 
channel dominant-negative and siRNA knockdown approaches are highly selective and 
have little side effects, the way of in vivo delivery of these nucleotide molecules will hinder 
their clinical use, because their inhibition effect largely relies on transfection efficiency. In 
order to get high transfection efficiency in cultured glioma cells, viral vectors have to be 
employed. In our publication, we used adenoviral vectors to deliver DN-TRPC6 and 
lentiviral vectors to deliver siRNA targeting TRPC6. Both these two types of vectors have 
high affinity to glioma cells and enable sufficient expression of DN-TRPC6 or siRNA to 
inhibit endogenous glioma TRPC6 channels (Ding et al., 2010). However, when systemically 
applied, the toxicities of virus will greatly restrict their usage, since adenovirus has high 
immunogenicity and lentivirus is genome integrative. Specific monoclonal antibody raised 
against the pore region of TRPC channels is another blockade approach. Such blockade 
antibody for TRPC5 channels has been reported. Monoclonal antibody against the third 
extracellular domain of TRPC5 was generated, by utilizing the specific recognition of 
antibody and antigen, this antibody can specifically bind to and inhibit TRPC5 channel 
activity (Xu et al., 2005). But such antibodies for TRPC1 or TRPC6 channels have not yet 
been reported. Therefore, in order to facilitate the clinical significance of TRPC channels in 
glioma therapy, developing specific blockers, especially small-molecule agents, to target 
TRPC1 and TRPC6 channels is an urgent need. 
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Besides the development of specific inhibitors, side effects of targeting TRPC channels also 
need a serious consideration. Since TRPC1 and TRPC6 channels have expression in many 
normal tissues and cells, especially in neuronal cells, cardiac myocytes, smooth muscle cells 
and vascular endothelial cells, side effects to these normal tissues and cells must be paid 
great attention to.  

4.1.2 Implication of TRPM channels in glioma progression and therapy 

The TRPM subfamily is composed of eight mammalian members, TRPM1 to TRPM8. 
Besides Ca2+ and Na+, TRPM channels, such as TRPM6 and 7 channels are also permeable to 
Mg2+. Different from other TRP channels, some TRPM members (TRPM2, 6 and 7) have 
enzyme activity in their C-terminal domain. TRPM2 has a ADP-ribose pyrophosphatase 
domain and TRPM6/7 have protein kinase domains. These TRPM channels are the so-called 
chanzymes (Montell, 2005). TRPM channels can be activated by menthol, cold temperature, 
osmolarity alteration and so on. TRPM channels function in temperature sensing, redox 
sensing, taste sensing, ischemia, neuronal cell survival and regulation of Mg2+ ion 
homeostasis (Aarts et al., 2003; Montell, 2005; Wei et al., 2007). TRPM2 and TRPM8 channels 
have been reported to be involved in glioma cell survival and cell migration. 

TRPM2 channels can be activated by reactive oxygen species and mediate cell death in 

several types of cells (Kaneko et al., 2006; Miller, 2006). In A172 glioblastoma cells, TRPM2 

channels could be targeted to the plasma membrane and mediate the Ca2+ influx induced by 

H2O2 treatment. This Ca2+ influx is important for H2O2-induced glioma cell death. However, 

overexpression of TRPM2 did not affect glioma cell proliferation, migration or invasion 

(Ishii et al., 2007). These results suggested that activation of TRPM2 channels can promote 

glioma cell death and that TRPM2 can be a candidate for glioblastoma therapy.  

TRPM8 channels are also implicated in glioma migration. In DBTRG glioblastoma cells, 

menthol could activate Ca2+ entry and promote cell migration, and TRPM8 channels were 

found to mediate menthol-induced intracellular Ca2+ elevation and cell migration, 

suggesting that Ca2+ influx via TRPM8 is necessary for glioma cell migration in response to 

menthol stimuli (Wondergem et al., 2008).  

4.1.3 Implication of TRPV channels in glioma progression and therapy 

Mammalian cells have six TRPV subfamily members, TRPV1 to TRPV6. The TRPV channels 

can be activated by heat (>43C) or warm temperature (30-39C), membrane stretch, 

osmolarity alteration etc. Therefore, TRPV channels mainly function in sensing hot pain or 

warm temperature and osmolarity (Montell, 2005). In glioma cells, TRPV channels are also 

functionally expressed and TRPV1 and TRPV2 channels are involved in glioma cell death 

and proliferation. 

In glioma cells, TRPV1 regulates capcaisin-induced cell death. TRPV1 expression level 

inversely correlated with glioma grade and in a majority of Grade IV glioblastoma, TRPV1 

was markedly lost. Concordantly, capcaisin could only induce cell death in TRPV1 high 

expression cells, such as U373 cells, but not in TRPV1 low expression cells, such as U87 cells 

(Amantini et al., 2007). These results suggest that TRPV1 activation can promote glioma cell 

death and TRPV1 may be a good target for low-grade glioma, but not necessarily good for 
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malignant glioma. The glioma-related TRPV2 channels are very much alike, its expression 

level was found to negatively correlate with glioma grade. Down-regulation of TRPV2 by 

RNA interference actually promoted U87MG glioma cell proliferation and rescued Fas-

induced cell apoptosis. On the contrary, overexpression of TRPV2 in MZC glioma cells 

resulted in reduced cell viability and increased spontaneous and Fas-induced apoptosis 

(Nabissi et al., 2010). 

The studies on glioma-related TRPM and TRPV channels suggest that activating these 

channels could inhibit glioma progression and further imply that agonists of these channels 

may serve as potential drugs for glioma therapy. TRPM8 channels are found to negatively 

regulate cell survival of prostate cancer and melanoma (Yamamura et al., 2008; Zhang & 

Barritt, 2004). Menthol, an activator of TRPM8 channels, can inhibit the growth of prostate 

cancer cells and melanoma cells and it seems to be a candidate drug also in glioma therapy. 

Since menthol is also an activator for many other pathways (Galeotti et al., 2002) and 

TRPM8 channels are functionally expressed in dorsal root ganglia (DRG) neurons (Montell, 

2005), side effects of menthol in treating glioma have to be considered. Capsaicin is an 

ingredient of red chili peppers and an activator of TRPV1 channels. Capsaicin has been 

reported to possess anti-tumor activity, for example in prostate cancer and breast cancer, 

also in glioma (Sanchez et al., 2006; Mori et al., 2006; Thoennissen et al., 2010; Kim et al., 

2010). Although the anti-tumor activity of capsaicin may not necessarily be through 

activation of TRPV1 channels (Ziglioli et al., 2009), capsaicin might be another potential anti-

glioma drug and side effects to the DRG neurons should be considered, where TRPV1 

channels are highly expressed. 

4.2 Implication of voltage-gated Ca
2+

 channels (VGCC) in glioma progression and 
therapy 

The VGCC are also a channel family including ten members. Each VGCC member is 

assembled through interaction of four subunits (Cav, Cav, Cav and Cav) and each 

VGCC member is distinguished by their channel forming subunit, the Cav subunit. The 

Cav subunit consist of four transmembrane regions, each region contains six 

transmembrane domains. VGCC can be activated by membrane depolarization and based 

on physiological and pharmacological properties, VGCC members can be categorized as 

low-voltage activated VGCC including T-type VGCC (Cav3.1, Cav3.2 and Cav3.3) and high-

voltage activated VGCC including, L-type (Cav1.1, Cav1.2, Cav1.3 and Cav1.4), N-type 

(Cav2.2), P/Q-type (Cav2.1) and R-type VGCC (Cav2.3) (Catterall, 2000). Functions of 

VGCC are involved in neuronal plasticity (e.g. long-term potentiation), exocytosis (e.g. Ca2+-

dependent release of neurotransmitters) and in many pathological processes such as pain 

(Bauer et al., 2002; Wang et al., 2004; Zamponi et al., 2009).  

It has been known that T-type VGCC (Cav3.1) is involved in glioma cell proliferation. The 

Cav3.1 was found to express in both patient glioma tissues and in cultured glioma cell lines 

(U87, U563 and U251) and could promote glioma proliferation. Inhibition of Cav3.1 by its 

selective antagonist, mibefradil, could decrease its expression and suppressed glioma cell 

proliferation. Meanwhile, overexpression of Cav3.1 Cav subunit resulted in an increased 

cell proliferation (Panner et al., 2005), suggesting that Cav3.1 could actually promote glioma 

cell proliferation. Furthermore, our work showed that inhibition of Cav3.1 channels led to 

www.intechopen.com



 
Ionic Channels in the Therapy of Malignant Glioma 

 

277 

glioma cell cycle arrest in S phase (Ding et al., 2010), suggesting that this channel could be 

important for DNA synthesis or DNA damage repair. Inhibition of Cav3.1 may also 

sensitize glioma cells to irradiation. Interestingly, it has been found that besides previous 

known Cav3.1 Cav splicing alternatives, glioma tissues seemed to express a novel splicing 

variant of Cav subunit of Cav3.1 that was distinguished from normal brain tissues or fetal 

astrocytes (Latour et al., 2004). This finding implies that glioma-specific form of Cav3.1 

might contribute to glioma pathogenesis and might be a unique target in glioma therapy. 

Inhibition of T-type VGCC can be achieved by mibefradil, which is a synthetic small-

molecule agent. Mibefradil is a widely used Ca2+ channel blocker and was once a drug for 

the treatment of hypertension (Ertel & Clozel, 1997; SoRelle, 1998). However, the potential 

use of mibefradil as therapeutic drug is greatly restricted by its lack of selectivity and its 

inhibition of other types of VGCCs, such as L-type VGCC (Mehrke et al., 1994; 

Bezprozvanny & Tsien, 1995). Since L-type VGCCs play important roles in many types of 

excitable cells (mainly myocytes and neurons) (Striessnig, 1999 & Greenberg, 1997), normal 

functions of skeletal/cardiac myocytes and the learning/memory abilities might be affected 

if T-type VGCC blockers can also interrupt the normal functions of L-type VGCC. Therefore, 

when targeting T-type VGCCs to treat glioma, these aspects must be seriously considered. 

In recent years, NNC55-0396 is synthesized as another inhibitor that is much more selective 

for T-type VGCC than mibefradil (Huang et al., 2004). In tumor research field, NNC55-0396 

has been used to suppress human breast cancer cell proliferation in vitro (Taylor et al., 2008), 

but no studies on its use in glioma have yet been reported.  

5. K
+
, Na

+
 channels and glioma 

The K+ channel family has 78 members and can be classified into four categories based on 

their activation mechanism and the number of transmembrane domains: inward-rectifying 

K+ channels, two-pore K+ channels, Ca2+-activated K+ channels and voltage-gated K+ 

channels (Wulff et al., 2009). The K+ channels play critical roles in cellular behavior and are 

involved in numerous biological processes, such as regulation of membrane potential and 

neuronal excitability and regulation of cell volume and cell proliferation (Bielanska et al., 

2009; Grunnet et al., 2003; Jentsch, 2000; Trimarchi et al., 2002; Wang et al., 2007). The 

glioma-related K+ channels include the BK and IK1 channels (Ca2+-activated K+ channels), 

ATP-sensitive K+ channels (inward-rectifying K+ channels), TASK3 (two-pore K+ channels) 

and hERG1 (voltage-gated K+ channels). 

Na+ channels are mostly voltage-gated, with a few ligand-activated Na+ channels. Their 

primary function is to generate action potential in the nervous system and they are often 

involved in epilepsy and pain (Kohling, 2002; Lampert et al., 2010; Naundorf et al., 2006). In 

glioma cells, one type of ligand-activated Na+ channels, the acid-sensing ion channels (ASIC, 

one type of the amiloride-sensitive Na+ channel) is known to participate in glioma cell 

migration. 

5.1 Implication of BK, IK1 channels in glioma cell proliferation and glioma therapy 

The Ca2+-activated K+ channels include the big conductance channels (BK), intermediate 
conductance channels (IK) and small conductance channels (SK). BK channels are composed 
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of four  subunits and four  subunits, IK and SK channels are composed of four pore-
forming subunits and four calmodulin (Ledoux et al., 2006). BK channels and IK channels 
have been verified to express in glioma cell lines and primary glioma cells and can be 
properly activated to mediate K+ current. Moreover, a specific BK channel isoform was 
found to be highly expressed in human glioma and was positively correlated with glioma 
grades (Liu et al., 2002). Inhibition of BK channels by its blocker iberiotoxin or paxilline 
suppressed U251 glioma cell migration. It was found that other BK channel blockers, 
paxilline and penitrem A, could also inhibit U251 and U87 cell proliferation (Abdullaev et 
al., 2010; Weaver et al., 2004; Weaver et al., 2006). However, in gene knockdown 
experiments, specific siRNA targeting BK channels failed to affect glioma cell proliferation, 
despite the siRNA could well down-regulate protein expression and inhibit channel current 
(Abdullaev et al., 2010). The inconsistency between pharmacological and molecular results 
suggests that BK channel pharmacological blockers might have some side effects or that BK 
channels do not to regulate glioma cell proliferation. As for IK1 channel, its blocker 
clotrimazole and TRAM-34 suppressed U251 and U87 cell proliferation, but the anti-
proliferation effect failed to be repeated in siRNA knockdown experiments (Abdullaev et al., 
2010). In another study, TRAM-34 or IK1 specific siRNA knockdown abolished CXCL12-
induced glioma cell migration (Sciaccaluga et al., 2010). All these studies suggest that BK 
and IK1 channels do not participate in glioma cell proliferation, but IK1 channels indeed 
play a role in glioma cell migration. Moreover besides cell proliferation and migration, IK1 
channels are found to regulate angiogenesis (Grgic et al., 2005). IK1 channels were expressed 
in HUVEC and HMVEC cells and could be stimulated by bFGF or VEGF to mediate KCa 
current. Blockade of IK1 channels by TRAM-34 suppressed bFGF- and VEGF-induced 
HUVEC or HMVEC cell proliferation. And in mice matrigel plug assay, administration of 
TRAM-34 could inhibit angiogenesis. This aspect concerning the in vivo use of TRAM-34 
will be further discussed in the following section. Although BK channels do not seem to 
regulate cell proliferation, many studies have reported its role in regulating the permeability 
of blood-brain tumor barrier (BTB), which limits the chemotherapy agent delivery for 
glioma. This aspect will also be discussed in the following section.  

Because BK and IK channels are essential for the regulation of smooth muscle contraction 

and neuronal excitability (McCarron et al., 2002; Vergara et al., 1998), side effects to smooth 

muscle cells and neurons must be considered. 

5.2 Implication of ATP-sensitive K
+
 channels (KATP) in glioma cell proliferation and 

glioma therapy 

The KATP channels are consisted of two different types of subunits, the inward-rectifying K+ 

channel member Kir6 and sulfonylurea receptor (SUR) subunit (Akrouh et al., 2009). KATP 

channels are found to be important for glioma cell proliferation and cell cycle progression 

(Huang et al., 2009). Compard to normal glial cells, KATP channels were highly expressed in 

glioma cell lines and glioma tissue samples and inhibiting KATP channels by its blocker 

tolbutamide or by siRNA targeting Kir6.2 subunit could decrease U251 and U87 glioma cell 

proliferation. Moreover, enhancing KATP channel activity by its opener diazoxide or by 

overexpressing Kir6.2 or SUR1 subunit could increase glioma cell proliferation. The 

regulation of proliferation was through regulation of cell cycle progression because 

inhibition of KATP channels led to cell cycle arrest in G0/G1 phase. In animal experiments, 
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subcutaneous co-injection of glioma cells with tolbutamide or with diazoxide could decrease 

or increase the growth of xenograft tumor, respectively. These results indicate KATP channels 

to be a potential target in glioma therapy. 

KATP channels are mainly present in heart (Snyders, 1999), pancreatic cells (Bokvist et al., 
1999) and smooth muscle cells (Quayle et al., 1997), side effects to these tissues and cells 
have to be considered. 

5.3 Implication of two-pore domain K
+
 channel TASK3 in glioma cell death and glioma 

therapy 

The TASK3 (TWIK-related acid-sensitive K+ channel, KCNK9) channel belongs to the two-
pore domain K+ channels (Enyedi & Czirjak, 2010). It is involved in regulating glioma cell 
death (Meuth et al., 2008). In high [K+]ex medium, activation of TASK3 channel by its opener 
isoflurane resulted in a reduction of glioma cell survival and inhibition of TASK3 channel by 
its blocker bupivacaine or spermine could reverse isoflurane-induced cell death. These 
results suggest that under high K+ environment, TASK3 channel activation actually 
promotes glioma cell death. 

As a newly discovered gene, many normal functions of TASK3 remain to be discovered. But 
since TASK3 has been found to express in many organs, including brain, kidney, liver, lung, 
colon, stomach, spleen, testis and skeletal muscle (Kim et al., 2000), the side effect of 
targeting TASK3 channels has also to be considered. 

5.4 Implication of hERG1 in glioma angiogenesis and glioma therapy 

The hERG1 (human ether a go-go related) channels (KCNH2 or Kv11.1) belong to the voltage-

gated K+ channel family and are composed of four  subunits (Asher et al., 2010). hERG1 is 

overexpressed in many types of human cancers (Arcangeli, 2005). hERG1 is also 

overexpressed in human glioblastoma and is important for VEGF secretion in glioma cells 

(Masi et al., 2005). hERG1 current was recorded in primary glioma cells and by 

immunohistochemistry analysis, hERG1 was found to be highly expressed in glioblastoma 

multiforme. It is well known that secretion of angiogenic factors by glioma cells can promote 

angiogenesis and tumor malignancy. In U138 glioma cells which expressed functional 

hERG1 channels, channel blocker WAY could inhibit cellular VEGF secretion and this 

inhibition was not observed in A172 glioma cells, which did not express functional hERG1 

channels. These results suggest that hERG1 channels may boost glioma malignancy by 

promoting angiogenic factor secretion and this channel is a possible target for anti-glioma 

therapy. 

Side effects to heart, pancreas and colon should be considered, where hERG1 is abundantly 
expressed (Luo et al., 2008). 

5.5 Implication of acid-sensing ion channels (ASIC) in glioma cell migration and 
glioma therapy  

The ASIC channels are a group of amiloride-sensitive, voltage-independent Na+ channels 
and can be activated by decreased pH. The ASIC channels are homotetrameric, which are 
assembled by the known subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. 
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ASIC subunits have two transmembrane domains. Functions of ASIC channels involve 
perception of pain, ischaemic stroke, mechanosensation and so on (Krishtal et al., 2003; 
Wemmie et al., 2006). 

ASIC channels are functionally expressed in glioma cells and contribute to glioma cell 
migration (Kapoor et al., 2009). In D54-MG glioma cells, ASIC1 was found to express higher 
than in primary human astrocytes. D54-MG glioma cells showed amiloride and psalmotoxin 
(ASIC inhibitors)-sensitive whole cell current under basal condition, indicating that glioma 
cells expressed functional ASICs. ASIC1 dominant-negative mutant transfection could 
decrease the whole cell current, and meanwhile, it also inhibited D54-MG cell migration as 
indicated by transwell assay. These results suggest that targeting ASIC1 channels might be 
another anti-glioma approach by disrupting glioma cell migration. 

ASICs are widely expressed throughout the central nervous system and peripheral nervous 
system, targeting ASIC channels therefore should avoid side effects to the nervous system 
(Krishtal et al., 2003; Wemmie et al., 2006). 

6. Cl
-
 channels and glioma 

The Cl- channel is a superfamily of ionic channels that are relatively poorly understood. 

They are either voltage-gated or ligand-gated. Three Cl- channel families have been 

identified, the ClC, CFTR and ligand-gated GABA and glycine receptors. The ClC channels 

are dimerized from subunits, which might have 17 intra- or trans-membrane domains 

(Duran et al., 2010). Cl- channels take function in the regulation of cell resting membrane 

potential, cell volume, cell migration, proliferation and differentiation. Two types of voltage-

gated Cl- channel family members 2 and 3 (ClC2 and 3) were found to functionally express 

in D54MG glioma cells (Olsen et al., 2003). ClC3 has been reported to be involved in glioma 

cell invasion and cell cycle progression. In D54MG glioma cells, ClC3 channels mediated the 

Cl- current, which was required for pre-mitotic condensation (PMC) (Habela et al., 2008). 

PMC refers to obligatory cytoplasmic condensation process happened before mitotic phase 

and it is required for M phase progression. Besides cell cycle progression, ClC3 was also 

involved in STTG1 and U251 glioma cell invasion (Lui et al., 2010).  

Chlorotoxin (CTX), a peptide from scorpion venom, is a small-conductance Cl- channel 
blocker. CTX was found to specifically bind to the cell surface of glioma cell both in vitro 
and in vivo (Soroceanu et al., 1998), although the mechanism is still not clear. In vitro and in 
vivo delivery of CTX could well inhibit glioma invasion. This is because besides Cl- 
channels, CTX has many other targets, for example matrix metalloproteinase 2 (MMP2), and 
it has been reported that specifically up-regulation of MMP2 in glioma cells accounted for 
the anti-invasive effect of CTX to glioma cells (Deshane et al., 2003). Iodine-131 labeled 
synthetic CTX (131I-TM-601) has been used for phase I clinical trial of treating recurrent 
malignant glioma (Mamelak et al., 2006). Intracavitary administration of 131I-TM-601 
(0.25mg to 1 mg) was well tolerated with no observed toxicity. 131I-TM-601 could 
specifically bind to tumor tissues and was minimally taken by any other organ system. 
Furthermore, 131I-TM-601 treatment was proved to improve patient outcome to certain 
extent. Based upon these studies, CTX seems to be a potential drug for glioma targeting and 
therapy, although the working mechanism may not necessarily be through inhibiting Cl- 
channels.  
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7. Ionic channels in brain tumor stem cells 

In recent years, the concept of cancer stem cell (CSC) stands on the research focus (Gupta et 

al., 2009; Maitland & Collins, 2010; Takebe et al., 2010). CSCs are a population of cancer cells 

found in the tumor mass or hematological tumors. Unlike other cancer cells, CSCs possess 

the ability of reconstituting an entire tumor by giving rise to all cell types within the tumor, 

because CSCs have the characteristics of normal stem cells, which include the ability of self-

renew, differentiation and proliferation. CSCs were firstly identified in leukemia (Bonnet & 

Dick, 1997), and were subsequently identified in many types of solid tumors, including 

brain (Singh. S et al., 2004), breast (Al-Hajj et al., 2003), ovarian (Zhang et al., 2008), colon 

(O’Brien et al., 2007), pancreatic (Li et al., 2007), prostate tumor (Maitland & Collins, 2008) 

and melanoma (Schatton et al., 2008) etc. CSCs have a completely different gene expression 

profile to other tumor cells, are extremely tumorigenic and are usually radiochemo-resistant. 

Although traditional therapy can kill most of the tumor cells, CSCs are considered to be 

mainly responsible for the relapse of tumor. The identification of brain tumor stem cells was 

first reported in 2004 (Singh. S et al., 2004). By dissecting primary surgical GBM or 

medulloblastoma samples, the authors have found that only the CD133+ tumor cells within 

the tumor mass were capable of tumor initiation in SCID (severe combined 

immunodeficient) mouse brains. Injection of 100 CD133+ cells was sufficient for xenograft 

tumor formation, whereas injection of 105 CD133- cells did not cause tumor formation. 

Importantly, the xenograft tumor histologically resembled the original tumor from patients. 

Further studies have revealed that the CD133+ glioma cells promote glioma radioresistance 

and chemoresistance (Bao et al., 2006; Liu et al., 2006). Finding ways of targeting glioma 

stem cells are of great significance for therapy of malignant glioma. 

As for targeting ionic channels, the implications of ionic channels in brain tumor stem cells 
have just begun to be understood. Many types of ionic channels seem to be highly expressed 
in brain tumor stem cells. In neuroblastoma cells, SH-SY5Y, CD133+ cells (cell population in 
which CD133+ cells% > 60%) were isolated as potential tumor stem cells, because CD133 is 
widely used as a cancer stem cell marker. In these CD133+ cells, electrophysiological 
evidence indicated higher current density of large-conductance Ca2+-activated K+ channels 
(BK) and tetrodotoxin (TTX)-sensitive voltage-gated Na+ channels than in CD133- cells. 
Furthermore, RT-PCR analysis showed that mRNA expression of BK and Nav1.7 was higher 
in CD133+ cells than in CD133- cell (Park et al., 2010).  

BCNU is a commonly used chemotherapeutic agent for glioblastoma therapy, but in 
primary glioma tumor mass, there is a subpopulation of BCNU-resistant glioma cells, which 
are stem-like cells, because the authors found that this subpopulations expressed CD133, 
CD117, CD90, CD71, and CD45 cell-surface markers, and had the capacity for multipotency 
(Kang & Kang, 2007). In the dissociated BCNU-resistant glioma stem cells, there was a high 
expression of several types of ionic channels, the chloride intracellular channels 1 (CLIC1) 
was one of these high expression channels. When using the Cl- channel blocker, 4,4’-
diisothiocyanostilbene-2,2’-disulfonic acid (DIDS) in combination with BCNU, DIDS 
increased the apoptosis of BCNU-resistant glioma stem cells in vitro and augmented BCNU 
sensitivity ex vivo (Kang & Kang, 2008). These studies suggest that CLIC1 channel may 
contribute to the BCNU-resistance of glioma stem cells and blockade of this channel may 
enhance the BCNU-sensitivity of glioblastoma. 
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Although the relevance of ionic channels with glioma stem cells is still obscure, the present 
studies imply that the expression of some channels are abnormal in glioma stem cells and 
may contribute to the malignant feature of glioma stem cells. Blocking of these channels 
may facilitate chemo- or radio-therapy of glioblastoma.  

8. Targeting ionic channels in animal models 

As discussed above, many types of ionic channels regulate glioma cell behavior and control 
glioma progression. However, a large number of these studies are restricted to in vitro 
experiments, which mainly rely on the results obtained from cultured glioma cell lines. 
Although they shed lights on the concept that ionic channels play important roles in glioma 
progression, they only provide limited information as to whether these ionic channels can 
actually be targeted in vivo and whether these channel blockers exert side effects in systemic 
use. In this section, the in vivo targeting of ionic channels in animal tumor models will be 
discussed. 

In the studies of TRPC6 and glioma cell proliferation and cell cycle progression, the anti-
glioma effect of adenovirus-mediated DN-TRPC6 was tested in intracranial glioma 
xenograft model. U87MG glioma cells were infected by DN-TRPC6 before implantation. In 
this in vivo experiment, the animal bearing DN-TRPC6-infected glioma cells survived 
longer than the animals bearing GFP-infected glioma cells and suggested the potent anti-
glioma effect of DN-TRPC6 (Ding et al., 2010). Nevertheless, from the clinical aspect, the 
most convincing way for delivering adenoviral DN-TRPC6 would be tail vein or in situ 
injection after the implanted tumor has reached certain size. 

SKF96365 is a small-molecule blocker for TRPC channels. SKF96365 was developed in the 

early 1990s as a blocker for receptor-mediated Ca2+ entry, later it was found to block many 

types of TRP channels, including TRPC1, 3, 6 and 7. Additionally, it could block other types 

of TRP channels, such as TRPV2, TRPM8 and TRPP1 (Clapham, 2007; Fiorio Pla et al., 2005; 

Kim et al., 2003; Malkia et al., 2007; Mason et al., 1993; Merritt et al., 1990; Vazquez et al., 

2004). Concerning glioma studies, SKF96365 has not been systemically used in animal 

models, but in the study of the implication of TRPC6 channels in gastric cancer progression, 

this drug has been applied intraperitoneally to suppress the subcutaneously implanted 

human gastric cancer cells in nude mice (6 weeks of age). SKF96365 was applied at the dose 

of 20 mg/kg daily for successive 5 days after 7 days of implantation and could apparently 

slow down the growth of xenograft. On the 51 day of implantation, the tumor volume in 

SKF96365-treated mice was approximately 20-30% smaller than in control mice. Meanwhile, 

physical conditions of the animals were not visibly deteriorating as compared to the animals 

receiving saline injection (Cai et al., 2009). The study suggested that SKF96365 at the above 

dose could be well tolerated by nude mice. However, the non-specificity of SKF96365 

largely restricts the in vivo usage of SKF96365. New and specific TRPC6 channel blockers 

would be potential drugs for glioma therapy and the drug delivery approaches for 

treatment of glioma needs to be carefully designed. Because of the wide tissue distribution 

of TRPC6 channels, local rather than systemic delivery methods would be much desired.  

IK channels regulate glioma progression. Clotrimazole is a putative inhibitor of IK channels 

(Jensen et al., 1998). Besides, it is also an inhibitor of cytochrome P-450 and translation 

initiation (Aktas et al., 1998; Ritter & Franklin, 1987). Application of clotrimazole suppressed 
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proliferation of both human GBM cells and rat glioma cells (C6 and 9L). For in vivo 

experiments, either C6 or 9L cells were intracranially implanted into the brain of male 

Fischer-344 rats (between 250 and 300 g), and after 5 days, the animals were injected 

intraperitoneally daily with clotrimazole at the dose of 125mg/kg body weight for 8 

consecutive days. This treatment caused a significant inhibition of intracranial tumor 

growth. Moreover, the survival of rats with 9L implantation were compared among 

clotrimazole, cisplatin (a commonly used chemotherapy agent for glioma) and combination 

of the two group and animals in the combination group survived longer than other groups 

(Khalid et al., 2005), suggesting that clotrimazole may enhance the glioma sensitivity to 

cisplatin, although conclusion has to be further verified and the mechanism remains to be 

revealed. 

Although based on the current report, BK channels do not involve in glioma cell 
proliferation, it regulates the opening of blood-brain tumor barrier (BTB). NS1619 is the 
agonist of BK channels and iberiotoxin is a putative blocker of BK channels. The 
permeability of BTB was measured by rat glioma model, in which rat glioma cell line RG2 

was intracranially implanted in female Wistar rat (180-200g). NS1619 (26.66 g/kg/min) or 

iberitoxin (0.26g/kg/min) was co-infused with the radiotracer [14C]-aminoisobutyric acid 
([14C]-AIB) by intracarotid infusion. By using quantitative autoradiographic method to 
quantify the radioactivity in the tumor area, the BTB permeability for [14C]-AIB could be 
accurately measured. By using this animal model, NS1619 was found to increase BTB 
permeability and iberiotoxin could decrease BTB permeability (Ningaraj et al., 2002). It was 
also found that infusion NS1619 with bradykinin could selectively enhance BTB 
permeability in brain tumors, not in normal brain (Hu et al., 2007). Moreover, iberiotoxin 
could reverse nitric oxide donors-induced increase in BTB permeability (Yin et al., 2008). NO 
can increase the vascular endothelial permeability and NO donors, such as L-arginine and 
hydroxyurea, could increase BTB permeability. These studies on the regulation of BTB 
permeability by BK channels suggest that pharmacologically regulating BK channel activity 
could potentially be used to improve glioma chemotherapy. The effectiveness and side 
effect of NS1619 and iberiotoxin remain to be verified in future animal experiments.  

Besides BK channels, the KATP channel activator, minoxidil sulfate (MS) could also be used 
in vivo and increase the delivery of anti-glioma drugs such as temozolomide and herceptin 
by increasing the permeability of BTB. In this experiment model, MS (100 μg/kg/min for 15 
min) was intravenously injected into nude rats with xenografted GBM. Temozolomide was 
labeled by [14C], and herceptin was labeled by fluorescein and when they were coinjected, 
the drug delivery to the tumor was significantly increased, suggesting temozolomide or 
herceptin could be used in combination with MS to improve the effectiveness of standard 
chemotherapy (Ningaraj et al., 2009). Based on the present studies, different K+ channel 
agonists can affect BTB permeability, including BK channel agonist and KATP agonists. 

In a in vivo matrigel plug assay, which was used to examine angiogenesis in vivo, the IK 
channel blocker TRAM-34 was found to regulate angiogenesis (Grgic et al., 2005). In this 
experiment, standard matrigel supplemented with bFGF was implanted subcutaneously into 
the flank of C57/BL6 mice. Under control condition, the matrigel would get vascularized, but 
when the mice were treated daily with TRAM-34 (120mg/kg) intraperitoneally for two weeks, 
the vascularization would be decreased by approximately 85%, suggesting that TRAM-34 had 
anti-angiogenesis effect in vivo. Meanwhile, no visible side effects or macroscopic organ 
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damage was observed. These results imply that TRAM-34 might exert anti-glioma effect in 
vivo by suppressing glioma angiogenesis and also imply the limited side effect of systemic use 
of TRAM-34. However, since TRAM-34 was delivered intraperitoneally in this study, whether 
TRAM-34 can pass the BTB remains to be further investigated. 

As seen from the current available studies, several types of ionic channels are indeed 
potentially drug targets in treating glioma based on the in vivo data. The results obtained 
from the in situ (intracranial) glioma model seem to be much more convincing than the 
subcutaneous model, although different brain tumor in situ animal models may affect the 
final readout of these experiments (Barth & Kaur, 2009). 

9. Chapter summary (At a glance) 

Ionic channels play essential roles in glioma cell behavior, several types of Ca2+, K+, Na+ and 
Cl- channels are potential therapeutic targets for malignant glioma. 

TRP channels are newly found anti-glioma targets, some TRP channels are overtly 
expressed in human malignant glioma and they take function in glioma cell proliferation, 
migration or invasion. 

Targeting several ionic channels might facilitate outcome of conventional chemo- or radio-
therapy for malignant glioma.  

Targeting ionic channels to treat malignant glioma remains in preclinical stage. Small-
molecule compounds against ionic channels are experimentally tested in animal models. 
Glioma-related channel biology has to be more carefully studied before the possible clinical 
usage of channel drugs.   

10. Summary and perspective 

Many types of Ca2+, K+, Na+ and Cl- channels have been implicated in glioma progression 
and serve as potential targets for malignant glioma therapy, but the studies linking ionic 
channels and glioma are a relatively new area in glioma therapy and very limited 
knowledge has been provided as to how ionic channels contribute to the glioma 
progression. Therefore, although the relation between ionic channels and glioma are getting 
clearer, there is still a long way to go to use ionic channels as potential drug targets in 
treating glioma. There are several major obstacles in this direction. First of all is the possible 
side effects of targeting ionic channels. Because ionic channels are rather universally 
expressed in different types of normal tissues, possible side effects have to be considered 
when targeting ionic channels to treat glioma. The cardiovascular system is the tissue that 
has to be considered in priority, because many types of ionic channels play important roles 
in regulating the normal functions of cardiovascular system. The possible side effects to 
nervous system also need great attention, because of the critical involvement of ionic 
channels in regulating normal neuronal function. Another obstacle is the permeability of 
BTB of these channel drugs. How they can be efficiently delivered to the glioma tumor 
tissue needs serious attention.  

Because glioma is a multi-gene disease, combinative inhibition of multiple signal pathways 
is a promising strategy in glioma therapy. For example, simultaneous inhibition of EGFR 
and mTOR (Rao et al., 2005), RAF and mTOR (Hjelmeland et al., 2007) have been 
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experimentally studied. However, the ionic channel-related signal pathways in glioma cells 
are poorly understood, and it is not known if there are certain pathways that are overtly 
activated to compensate the inhibition of specific channels. It would be ideal if we can target 
both the ionic channels and their compensatory pathways to maximize inhibition of glioma 
cells.   

The ionic channels have several features as listed below, based on which the channel-
targeting strategy could be theoretically justified. a). Ionic channels have membrane 
localization and are easily accessible to drugs, some types of channels have highly specific 
antagonists. b). Some types of channels have selective up-regulation in glioma cells. For 
example, TRPC6, KATP, hERG1 and ClC3 expression levels are very high in malignant 
glioma cells, but are low in normal glial cells or benign glioma cells. c). Channel blocker may 
boost the effect of standard glioma therapy. For example, TRPC6 blocker could be used as 
radiosensitizer for malignant glioma. Irradiation is a standard and effective therapy for 
malignant glioma and radiosensitizers could reduce the required irradiation dose and 
minimize damage to normal tissues. Inhibition of TRPC6 channels arrests glioma cell cycle 
in G2/M phase, which is an irradiation-sensitive phase, therefore, TRPC6 blocker may be a 
potential radiosensitizer for malignant glioma. d). Channel drugs can be used in 
combination with chemotherapy agents. Since several types of channel drugs can enhance 
the permeability of BTB, thus may facilitating the delivery of standard chemotherapy 
agents, such as temozolomide and BCNU. 
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