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1. Introduction  

Theoretical and computational modeling is becoming increasingly important in the 
devolopment of advanced high performance materials for industrial applications.[1] 
Computer simulations on various metallic systems usually use simple pairwise potentials. 
However, the interactions in real metallic materials can not be represented by simple 
pairwise interactions only. A pure pairwise potential model gives the Cauchy relation, 
C12=C44, between the elastic constants, which is not the case in real metals. Therefore, many-
body interactions should be taken into account in any studies of metals and metal alloys.  

It is very important to calculate the phase diagrams of metallic systems and their alloys in 
order to achieve technological improvements. The phase diagrams are still obtained by 
using experimental techniques because there are no available methods for entirely 
theoretical predictions of all of the phase diagrams of any pure metal. Therefore, in the 
calculations of the phase diagrams some expressions have been formed by using theoretical 
or semi-empirical approach and their validity have been investigated in a selected portion of 
the phase diagrams. The expressions suggested in semi-empirical approaches generally 
contain some factors depending on temperature and pressure. Therefore, the calculated 
phase region is restricted by experimental limits. Today, the free energy concepts, such as 
Gibbs and Helmholtz, on the other hand, have been widely used to calculate the 
macroscopic phase diagrams [2, 3] in which thermodynamics parameters are dominant. In 
microscopic scale, their calculations require some vibrational properties which can be 
derived from elastic constants of the material. So, the correct calculations of the elastic 
constants are important as well as the calculations of phase diagrams. 

MD simulations can be utilized to compute the thermodynamic parameters and the results 
of the external effects, such as temperature and pressure or stress acted on a physical system 
[4, 5]. In the MD simulations, the interatomic interactions are modeled with a suitable 
mathematical function, and its gradient gives the forces between atoms. Hence, Newton’s 
equations of motion of the system are solved numerically and the system is forced to be in a 
state of minimum energy, an equilibrium point of its phase space. Although many 
properties of the system, such as enthalpy, cohesive energy and internal pressure, have been  
directly calculated in the MD simulations, the entropy which  is required for the free energy 
calculations has not been directly obtained and it is possible to obtain it by some approaches 
involved harmonic and anhormonic assumptions. There are some investigations related to 
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these approaches: the calculation of the free energy between FCC and HCP structures [6, 7], 
the investigation of first order phase transition [8], the dependence of the phase diagram on 
the range of attractive intermolecular forces [9], the investigation of harmonic lattice 
dynamics and entropy calculations in metal and alloys [10], the calculation of the P-T 
diagram of hafnium [11], etc. Recently, the P-T diagrams for Ni and Al have been calculated 
by Gurler and Ozgen [12] by using the MD simulations based on the EAM technique [13].  

The reliability of the results obtained from MD simulations depends on the suitable 
modeling of the interatomic interactions. Interatomic interactions are usually results of fits 
to various experimental data. However, it is not clear whether simulations performed at 
other temperatures still reproduce the experimental data accurately. Comparing theoretical 
and experimental elastic constants and other properties at various temperatures can serve as 
a measure of reliability and usefulness of potential models [14, 15]. In fact, there are several 
potential energy functions that can be used for the metallic systems. However, the EAM, 
originally developed by Daw and Baskes [16, 17] to model the interatomic interactions of 
face-centered cubic (FCC) metals, has been successfully used to compute the properties of 
metallic systems such as bulk, surface and interface problems. The reliability of the EAM in 
the bulk and its simple form for use in computer simulations make it attractive. 

When a liquid metal is quenched through the super-cooled region, a phase transition from 
liquid to glass takes place. Several techniques have been proposed to obtain a disordered 
state [18-20]. Among them the rapid solidification  method is widely used for the 
amorphous phase. However, due to the demand of a high cooling rate this method is 
restiricted in most experimental cases. Thus, the computer simulation of molecular 
dynamics is applied.   

In this study, in order to model Au metallic systems we have used the EAM functions 
modified by us (Ciftci and Colakoğlu [21]), developed firstly by Cai [22]. In this work, we 
have carried out MD simulations to obtain the P-V diagrams at 300 K and the P-T diagrams 
of the systems for an ideal FCC lattice with 1372 atoms, by using an anisotropic MD scheme. 
In addition, the bulk modulus and specific heat of the system in solid phase are determined 
and results-driven simulations are interpreted by comparing with the values in literature. 
We have also calculated the pressure derivatives of elastic constants and bulk moduli for 
Au. The obtained results are compared with the values in the literature. The another 
purpose of this work is to explore the glass transition and crystallization of Au using EAM .   

2. Potential energy function  

According to the embedded atom method, the cohesive energy of an assembly of N atoms is 
given by [16, 17] 

 ( ) ( )tot i i ij
i i j

E F r 


                  (1) 

 
( )

( )i ij
j i

f r


  ,       (2) 

where Etot is the total cohesive energy, ρi is the host electron density at the location of atom i 
due to all other atoms, f(rij) is the electronic density function of an atom, rij is the distance 
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between i and j atoms, Fi(ρi) is the embedding energy to embed atom i in an electron density 
ρi, and (rij) is the pairwise potential energy function between atoms i and j.  

In this work, we used a modified pairwise potential function in the framework of the Cai 
version [22] of the EAM. Recently, this potential function has been used by us for predicting 
several physical properties of some transitional metals [21,23-25]. The present form of the 
potential makes it more flexible owing to the constants, m and n in the multiplier forms. 
Such a factor included in the classical Morse function is treated by Verma and Rathore [26] 
to compute the phonon frequencies of Th, based on the central pair potential model. The 
modified parts of the potential and the other terms are as follows: 

 ( )( ) er r
ef r f e   , (3) 

 0 2( ) [1 ln ]
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  
  

, (5) 

where ǂ, ǃ, D1 and D2 are fitting parameters that are determined by the lattice parameter a0, 
the cohesive energy Ec, the vacancy formation energy Evf, the elastic constants Cij. Here ρe is 
the host electron density at equilibrium state, re is the nearest neighbor equilibrium distance, 
and F0=EcEvf . In this potential model, there are four parameters: ǃ and D1 are from two-
body term, m and n are adjustable selected constants. The fitting parameters are determined 
by minimizing the value of exp exp 2[( ) / ]calW X X X  . Here X represents the calculated 
and experimental values of the quantities taken into account in the fitting process. Hence, 
the potential functions can be fitted very well to the experimental properties of the matter, 
such as the vacancy formation energy (Ev), cohesive energy (Ec), elastic constants (Cij), and 
lattice constants (a0) in an equilibrium state. In the fitting process here, the cutoff distance is 
taken to be rcut=1.65a0. In the Eq. (3), the fe parameter is selected as unity for mono atomic 
systems because it is used for alloy modeling as an adjustable parameter to constitute 
suitable electron density. For the selected values of the constants m and n, the computed 
potential parameters and experimental input data for Au are given in Table 1.  

The cohesive energy changes with the variation of lattice constants of Au calculated from 
Eq. (1) and from the general expression of the cohesive energy of metals proposed by Rose 
et al. [32] are compared in Fig.1. The Rose energy is also called as the generalized equation 
of state of metals and written as 

 *
0( *) (1 *) a

RE a E a e        (6) 

 
1/2

0
* 1 /

9
C

m

Ea
a

a B

   
    

   
     (7) 
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where E0 is a constant to be taken as an equilibrium cohesive energy of solid, Bm is the bulk 
modulus, and  is the atomic volume in equilibrium. It has been determined that the 
cohesive energy calculated from Eq. (1) with the parameter given in Table1 for Au  is in 
good agreement with Rose energies in equilibrium.   
 

a0 

(Å) 

r0 

(Å) 

Ec 

(eV) 

Evf 

(eV) 

Bm 

(GPa) 

C11 

(GPa) 

C12 

(Gpa) 

C44 

(GPa) 

Tm 

(K) 

Cp 

(K/mol.K) 

Au 4.079 2.8842 3.81 0.93 180.32 201.63 169.67 45.44 1337 25.42 

 m n 


(Å1) 


D1 

(eV) 

D2 

 (eV) 

Au 7 0.5 4.3482 3.5361 0.0685 0.3097 

Table 1. The experimental properties and potential parameters of Au. The experimental 
lattice parameters (a0) at room temperature are from ref. [27]. Bulk modulus (Bm) and elastic 
constants (Cij) given at zero temperature are from [28], vacancy formation energy (Evf) is 
from ref. [29], melting temperature (Tm), the coefficient of linear thermal expansion ǂ are 
from [30], and specific heat Cp is from [31]. 
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Fig. 1. Rose and EAM energies versus lattice constant for Au. 

3. Molecular dynamics simulation 

The Lagrange function, written for an anisotropic box, i.e. MD cell, containing N particles by 
Parrinello and Rahman, is given by [33, 34] 

 ext
1

1 1
( ) Tr( )

2 2

N
t t

PR i i i tot
i

L m E M P V


    s Gs h h    ,   (8) 
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where mi is mass of particle i, si is the scaled coordinate of atom i and is represented by a 
column vector whose elements are between zero and unity, h=(a, b, c); a, b and c vectors are 
MD cell axes, the metric tensor G is given by matrix product hth, M is an arbitrary constant 
which represents mass of the computational box, Pext is external pressure applied on the cell, 
V is the volume of the MD cell and is obtained from det(h). Thus, square of distance 
between particles i and j is described by 2 t

ij ij ijr s Gs . The classical equations of motion of the 
system obtained from Eq. (1) become 

 
1 1

i i i
im

  s F G Gs    (9) 

 1( )extM P h Π Ι σ ,          (10) 

where 1( x x x ) ( )tV  σ b c, c a, a b h  and microscopic stress tensor, Π, is a dyadic given as 
follows; 

 1

1 1
. .

N N N
ij

i i i i i
iji i j i

F
V m

r


  

 
  

  
 Π v v r r . (11) 

Also the force on an atom i in the system is calculated from the following equation, 

 
1

ˆN
ij

i s i i j j i ij
ijj

j i

E F F
r

  



           
s

F Δ , (12) 

where the primes denote the first derivatives of the functions with respect to their 
arguments.  

In all of the simulation studies, the equation of motion given in Eqs. (9) and (10) were 
numerically solved by using the velocity version of the Verlet algorithm [35]. The size of 
integration step was chosen to be 7.87x1015s for Au. Initial structures of the systems were 
constructed on a lattice with 1372 atoms and an FCC unit cell. It has been observed that, 
with these initial conditions, the systems were equilibrated in 5000 integration steps. Time 
averages of the thermodynamic properties of the system in each simulation run were 
determined by using 30,000 integration steps following the equilibration of the system. The 
structures of the system in solid phase were examined by using the radial distribution 
function. Melting temperatures were determined from the plots of the cohesive energy 
versus temperature. It is possible to classify our simulation runs in two groups as thermal 
and pressure applications. In the thermal applications, the temperature of the system under 
zero pressure is raised from 100K to 2400K  for Au with an increment of 100K in each run of 
35,000 integration step; but near the melting temperatures, the increment is reduced to 20K. 
The pressure applications are also implemented by repeating the thermal applications under 
pressure values of 0.5, 1.0, 1.5, 2.5, 5.0, 7.5, 10.0, 15.0 and 20.0 GPa. The simulation is 
restarted with different pressure in each run, to avoid algorithmic errors.   

The temperature dependency of the elastic constants and the bulk moduli are calculated by 
following the procedure given by Karimi et al [14]. 

 
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For the calculation of glass formation and crystallization, firstly, we run 20 000 time steps to 
make the system into equilibrium state, then  the liquid phase is cooled to  100K  at the rate 
of 1.5833x1013  K/s and 1.5833x1012 K/s , respectively to examine the formation process  of 
amorphization and crystallization. 

4. Results and discussion 

4.1 Thermal and mechanical properties  

We can classify our results on thermal and mechanical properties of Au  in to seven different 
categaries (i) the P-V diagram has been analyzed to determine the bulk modulus under zero 
pressure, (ii) the specific heat has been determined by using the changes of the enthalpy 
with temperature, (iii) the radial distribution function has been obtained in solid and liquid 
phases for the estimation of structural properties, (iv) the P-T graph, which is plotted by 
using the variation in melting temperatures with increasing pressure acted on the system, 
have been examined. (v) the pressure dependence of V/Vo has been obtained, (vi)  elastic 
constants and pressure derivatives of elastic constants and bulk modulus  has been 
investigated.  

The change on the atomic volume with the gradually increasing pressure, which acts on the 
system at 300K temperature, is given in Fig.2 for Au. The bulk modulus calculated from the 
P-V diagram shown in Fig.2 is obtained as B=174.3 GPa for Au. The calculated bulk 
modulus is in good agreement with their experimental values (see Table 1) within an error 
of ~3.4% for Au. 

0 2 4 6 8 10 12 14 16

16.0

16.4

16.8

17.2

17.6

V
(A

3
)

P(GPa)

Au, T=300K

Bm= 173.4 GPa

 
Fig. 2. P-V diagrams for Au.                                       

The variations of enthalpy with temperatures under zero pressure for solid Au is given in 
Fig.3, and this graph is used to compute specific heats under the constant pressure. The 
calculated values of specific heats over 0-300K are found to be Cp= 28.2 J/molK for Au. 
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Considering the experimental data in Table 1, it can be seen that the specific heat is 
calculated with an error of  9.8 %  for Au.          

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
-3 7 0

-3 6 0

-3 5 0

-3 4 0

H
(k

J
/m

o
l)

T(K )

A u   P = 0 G P a

C p= 28 .2  J /m o l.K

 

Fig. 3. Variation of the enthalpy with temperature for Au. 

There are several methods for determining the melting temperature of a crystal. MD 
simulations are performed on system at various temperatures, and the cohesive energy is 
plotted as a function of temperature in one of these methods, as we did here. At the melting 
point, a discontinuity occurs in the cohesive energy. The other way of determining the 
melting temperature is to plot caloric curve which is the change of the total energy of crystal 
versus kinetic energy [36]. Indeed, the melting temperature of metal is obtained as the 
temperature at which the Gibbs free energy of the solid and liquid phases become equal. 
The entropy is required to compute the free energy, but it can not be directly calculated 
from MD simulations. For this reason, some other approaches are required [3]. Another way 
of determining the melting temperature is to simulate the solid-liquid interface [14]. In this 
way, the temperature for which the interface velocity goes to zero is determined as the 
melting temperature and it is reproduced more correctly than the way of caloric curve. 
Karimi et al [14] estimated the melting temperature for Ni as 1630±50K within an error of -
5.6%, using the solid-liquid interface technique. 

In the present work, the variations of cohesive energy with temperature for different 
pressures acted on the system are given in Fig. 4 for Au. We have computed the melting 
temperatures under zero pressure as 1100±20K for Au. When these values are compared 
with the experimental ones of 1337K given in Table 1, the error for Au becomes 21%. 

The radial distribution function (RDF) is used to investigate the structural properties of the 
solid and liquid phases. The plot of radial distribution functions acquired in solid and liquid 
phases for Au is given in Fig. 5. First peak location of radial distribution curves represents 
the distance of the nearest neighbor atoms, r0. The second peak location denotes the 
distances of next nearest neighbors, a0. These distances are found to be 2.907Å and 4.144Å, 
respectively for Au. By comparing with experimental data given in Table1, the calculated 
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error on a0 and r0  are 0.8% and 1.5% for Au. So, the present errors can be omitted since the 
parameters of the potential energy function were fitted to the crystal properties in static 
case. Since the peak locations shown in Fig. 5 satisfy the certain peak locations at 2 , 3 , 

4 , 5 , etc. times r0 in an ideal FCC unit cell, the metal of Au  has an FCC unit cell under 
zero pressure. 

The P-T diagrams plotted by using the melting temperatures under different pressures are 
given in Fig. 6  for Au. The binding energies of the metals can be reduced by increasing 
temperature. At high temperatures near the melting point, it is generally expected that the 
Gibbs free energy is lowered by phase transition like martensitic types from one structure to 
another one which has lower energy at higher temperatures, like a BCC lattice.  

 
Fig. 4. The cohesive energy as a function of temperature at different pressure for Au. The 
symbols     ,    ,   ,    ,     ,    ,  +  reppresents the pressure values of 0.0,  0.5, 1.0, 1.5, 2.5, 5.0, 7.5 
GPa, respectively. 

We calculated V/Vo as a function of pressure (0-45 kbar) for Au and added experimental 
points [37] for comparing with MD results. The plot of V/Vo versus pressure for Au is given 
in Fig. 7. Here Vo is the volume under the zero pressure. MD results are in very good 
agreement with the experimental data at pressures below 25GPa.  

We also calculated elastic constans and pressure derivatives of the elastic constants and bulk 
modulus at 0 K and in P=0 GPa pressure. The results are summarized in Table 2. Obtained 
results are in good agreement with available other theoretical results. 
 

 
C11 

(GPa) 

C12 

(GPa) 

C44 

(GPa) 
 11 T

C P    12 T
C P    44 T

C P    
T

B P   

This study  195.43 163.67 44.56 6.99 3.98 2.01 4.02 
[38] 192.9 162.8 41.5 5.72 4.96 1.52 4.66 
[39] 192.2 162.8 42.0 7.01 6.14 1.79 6.43 

Table 2. Second order elastic constants and pressure derivatives of elastic constants and bulk 
modulus (P=0 GPa). 
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Fig. 5. The radial distribution curves in solid and liquid phases forAu. 

 
 
 

 
 

Fig. 6. P-T diagrams for Au. 
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Fig. 7. Variation of pressure as a function of V/Vo for Au. Experimental points are taken 
from Ref.[37].   

4.2 Glass formation and crystallization  

Traditionally,the heating and cooling processes are applied to examine the formation 
process of amorphization and crystallization. The Fig.8(a) and (b) show the variation of 
volume at the rate of 1.5833x1013  K/s and 1.5833x1012 K/s, respectively. The sudden jump in 
volume in the temperature range of 1000 to 1100K for the heating process is due to the 
melting of the Au. In contrast to heating, cooling  curves show a continuous change in 
volume. 

The slope of the volume versus temperature curve in Fig.8(a) at the rate of 1.5833x1013  K/s 
decreases  below 500K. This is a sign of glass formation. Since the glass is a frozen liquid,  
the change in configurational entropy vanishes. Thus, the derivative of entropy with respect 
to pressure is the derivative of volume with respect to temperature[40]. The Fig. 8(b) at rate 
of 1.5833x1012 K/s shows a sharp change in the volume as the temperature is lowered below 
300K. At 350 K system shows that  the cooled Au has crystallized.  

Different methods are suggested to determine the glass transition temperature (Tg) which is 
observed widely in amorphous materials. According to one of these definitions, which is 
known as Wendt-Abraham ratio [41], to determine Tg in MD simulations, the gmin/gmax 
ratios  of RDF curves  at different temperatures are calculated [39]. Here, gmin is the first 
minimum value and gmax is first maximum value of RDF curve. In such a plot, two lines in 
different slopes occur, and glass transition temperature is taken as intersection point of these 
lines. The graph of gmin/gmax ratios versus temperature obtained in this study is given in Fig. 
9. The Tg is obtained from this figure to be 500K. 

The RDF curves of the model structure during the heating and cooling processes at different 
temperature are given in Fig10. The RDF shows an fcc crystal structure as the sample is 
heated from 0 to 500 K. But, at 1200 K (above the melting temperature) the emergence of  
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Fig. 8. Average volume of Au during heating and cooling at a rate of (a) 1.5833x1013 K/s and 
(b) 1.5833x1012 K/s. 

broad peaks shows that the structure has melted. The sample was heated to 1500K and then 
cooled back to 1200 K, leading to the same structure as for heating, indicating a stable liquid 
state.  Cooling to 500K, from RDF we still see the structure of a liquid, in fact a supercooled 
liquid. However, after cooling to 300K, we see that the second peak of RDF is split.  
This splitting of the second peak is a well-known characteristic feature in the RDF of a 
metallic glass. 
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Fig. 9. Determination of glassy transition temperature. 
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Fig. 10. Radial distribution function (RDF) of Au during the heating and cooling processes at 
rate of 1.5833x1013 K/s (a) at 0K (b)at 500 K , and (c) at 1200K. 

5. Conclusion 

It has been found that the present version of EAM with a recently developed potential 
function, which makes it more flexible owing to the parameter n, represents quite well the 
interactions between the atoms to simulate the studied mono atomic systems. Since the 
parameterization technique of our potential is based on the bulk properties of metals at 0K, 
it can describe the temperature-dependent behaviors of our crystals particularly, 
qualitatively. As a whole, present  model well describes the many physical properties ,and  
our results are in reasonable agreement with the corresponding experimental findings, and 
provide another measure of the quantitative limitations of the EAM for bulk metals. 
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