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1. Introduction

An ultimate level of theory in molecular simulations [e.g., molecular dynamics (MD) and
Monte Carlo (MC) simulations], which can accurately reproduce or even predict many
experimental values, should be ab initio path integral. In ab initio path-integral simulations,
both electrons and nuclei are treated quantum mechanically and adiabatically. No empirical
parameter is involved, other than those fundamental physical constants (e.g., electronic mass
and Planck’s constant). The only inherent approximations are the Born-Oppenheimer
approximation (to decouple internuclear dynamics from electronic motions) and the ergodicity
in MD simulations or the importance samplings in MC simulations (to partly integrate the
entire phase space). Consequently, correlation energy among electrons, anharmonic zero-point
motions and tunnelling effects in nuclei, and isotope effects can all be incorporated in the
simulations. Proper consideration of the electronic and internuclear quantum effects, even just
partially, can be critical to compare computed values with state-of-the-art experiments, e.g., (I)
hydrogen adsorption in carbon nanotechnology (Tanaka, Kanoh et al. 2005; Kowalczyk,
Gauden et al. 2007; Kowalczyk, Gauden et al. 2008); (II) electronic redistributions and isotope
effects (Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; Gao and Wong
2008) on biochemical reactions in protein (Wong and Gao 2007; Wong and Gao 2011; Wu and
Wong 2009; Warshel, Olsson et al. 2006; Gao, Major et al. 2008; Major, Heroux et al. 2009) and
RNA enzymes (Wong, Lee et al. 2011; Wong, Gu et al. 2012).

However, owing to the extraordinarily high computational cost, ab initio path-integral
simulations are thus far not practical even for modest size molecules, and are limited to only
some relatively simpler or smaller molecular systems, e.g., thirty-two water molecules, and
malonaldehyde [CH>(CHO);]. Nevertheless, the unique information and invaluable insight
for a molecular system, which can be provided perhaps only from ab initio path-integral
simulations, have already been recognized in a number of pure computational publications
in some high-profile journals, e.g., Nature, Science, and Physical Review Letters, etc (Marx and
Parrinello 1995; Tuckerman, Marx et al. 1997; Marx, Tuckerman et al. 1999; Tuckerman and
Marx 2001; Tuckerman, Marx et al. 2002; Ohta, Ohta et al. 2004; Hayashi, Shiga et al. 2006;
Paesani, Tuchi et al. 2007).

In this chapter, after quickly going over the fundamental physical laws tailoring MD
simulations, we (wongky@biomaps.rutgers.edu; kiniu@alumni.cuhk.net) discuss a new
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108 Molecular Dynamics — Theoretical Developments and Applications in Nanotechnology and Energy

theoretical method that combines our novel systematic free-energy expansion approach,
based on Zwanzig's free-energy perturbation theory, with our recently developed
automated integration-free path-integral method, based on Kleinert's variational
perturbation theory, (Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009;
Wong, Gu et al. 2012) to perform ab initio path-integral simulations for realistic
macromolecules at an affordable computational cost. Since in this new method, we can
progressively choose computationally affordable levels of theory, now important physical
quantities, e.g., free-energy barrier, change of binding energy, pK, value, and isotope effect,
can all be computed at an ab initio path-integral level. Therefore, we anticipate this new
systematic approach will become an essential computational tool to catch up with or even
predict experimental results for breaking down subtle mechanisms underlying a variety of
molecular systems in Life and Materials Sciences.

2. Fundamental physical laws governing molecular dynamics simulations

In this section, we lay the theoretical foundation for molecular dynamics (MD) simulations.

2.1 Molecular Schrodinger equation

Ever since quantum mechanics was constructed in the 1920s, solving the non-relativistic
time-independent Schrodinger equation for a system of nuclei and electrons has
become an essential step to understand every single detail of atomic or molecular properties
(Kleppner and Jackiw 2000). The non-relativistic time-independent Schrodinger equation for
a molecular system (the molecular Schrédinger equation) is:

Hmolean = En\Pn/ (1)
where Hmoze is the complete (non-relativistic) molecular Hamiltonian, ¥, and E, are an
energy eigenfunction (or wave function) and an energy eigenvalue at an eigenstate n,
respectively. In contrast to the (intra)nuclear or nucleon Hamiltonian (Dean 2007), the
complete molecular Hamiltonian (Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Kohn
1999; Pople 1999; Helgaker, Jorgensen et al. 2000; Springborg 2000) for N, nuclei and N,
electrons can fortunately be written in an analytic closed form (thanks to the inverse square-
distance proportionality in Coulomb’s electrostatic force law):

NEZ

1 N, ) N, j N, 1
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In Eq. (2), the units are atomic units, M; is the mass ratio of nucleus j to electron, and Z; is the
atomic number of nucleus j. The Laplacian operators V]z and V? denote the second order
differentiation with respect to the coordinates of the jth nucleus and the ith electron,
respectively. The first term in Eq. (2) represents the kinetic energy operator for nuclei; the
second term is the Coulomb repulsion between nuclei; the third term is the operator for the
kinetic energy of electrons; the fourth and fifth terms indicate the Coulomb attraction
between electrons and nuclei, and the repulsion between electrons, respectively. The
distance between the jth and the j'th nuclei is x ;. ; the separation between the ith and the

7

i'th electrons is 7;; ; the distance between the jth nucleus and the ith electrons is 7;.
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2.2 Central quantity in quantum thermodynamics: Quantum partition function

Once the energy eigenvalues or the quantized energy spectrum in Eq. (1) are calculated, it is
straightforward to obtain a central physical quantity in thermodynamics, i.e., the quantum
canonical partition function Q,, (McQuarrie 2000), by the following summation of the

Boltzmann energy distribution:
qu T Zexp(_ﬂEn )/ (3)

where S =1/kyT, kg is Boltzmann's constant, and T is temperature. All standard
thermodynamic quantities for a system of nuclei and electrons, e.g., free energy, internal
energy, entropy, pressure, etc., can be derived from it. In Eq. (3), the lowest energy level E;,
which is often called the ground state energy or zero-point energy (ZPE), is usually the
dominant energy level contributing to the partition function. Further, by virtue of
Heisenberg’s uncertainty principle, the ZPE is always larger than the minimum value of
potential energy because a particle can never be at rest anywhere in a given potential or a
particle with a particular momentum can be everywhere in a given potential.

2.3 Origin of potential energy surface: Born-Oppenheimer approximation

Unfortunately, even though all physics and chemistry of a (time-independent) molecular
system is essentially in the molecular Schrodinger equation [Eq. (1)], it can be exactly solved
only for simplest one-electron atoms or ions. For other systems, approximations must be
introduced to calculate numerical solutions with the aid of computers. The most common
and perhaps the mildest approximation is the Born-Oppenheimer approximation (Born and
Oppenheimer 1927; Hirschfelder and Meath 1967; Kolos 1970; Ballhausen and Hansen 1972;
Hehre, Radom et al. 1986; Szabo and Ostlund 1996; Helgaker, Jorgensen et al. 2000;
Springborg 2000; Mielke, Peterson et al. 2003). It decouples internuclear motions from
electrons so that nuclei effectively move on a potential energy surface (PES) obtained by
solving the electronic part of Schrodinger equation.

This approximation is based on the fact that an electron is much lighter than any nucleus
(e.g., a proton, the lightest nucleus, is about 1840 times heavier than an electron). Nuclei
move, consequently, much slowlier. As a result, from the electronic perspective, for a given
set of nuclear positions, electrons adjust their positions ‘instantly” before nuclei have a
chance to move. On the other hand, from the standpoint of nuclei, electrons are moving so
fast that their effects on nuclei are averaged out over the electronic wave functions.
Mathematically, to simplify the molecular Hamiltonian, we first solve the electronic part of
the Schrodinger equation for a particular set of nuclear configurations {x } . The electronic

j
part of the complete molecular Hamiltonian [Eq. (2)] is called electronic Hamiltonian:

Nn Nc Z Ne
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With this electronic Hamiltonian, we can obtain the electronic energy E,,. from the

corresponding electronic Schrodinger equation:

elec
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I:I elec¥ elec = Eelec ({x i } ) Yelecr (5)

where y,,. is the electronic wave function. Note that the electronic energy Eelec({ ]})
depends parametrically on the nuclear positions { ]}. With this electronic energy, the
molecular Hamiltonian in Eq. (2) can be simplified as follows:

1 N, Z Z .
mole =~ _mvjz + Z x/ < ZVZ ZZ H Z >
] 7]

j<j' i<i' Tii’

_ZL%V?+[ZZ i +Eelec({ ]})} (6)

j<it i
i V()

where ( . > signifies the average over electronic wave functions or the expectation value. In
Eq. (6), V is defined as the sum of the nuclear repulsion energy and electronic energy, which

~Mz - l\”4=2 -~z

effectively turns out to be the internuclear potential energy function as a consequence of the
Born-Oppenheimer approximation:

(I

Xjj

% +Egee({37}) %

'

There are many systematic and rigorous theories in electronic structure calculations to
derive the internuclear potential energy from first principles (i.e., besides the universal
fundamental constants in physics, there is no other empirical parameter involved in the
calculations), e.g., Hartree-Fock theory, configuration interaction method, Mgller-Plesset
perturbation theory, coupled cluster approach, and Kohn-Sham density functional theory.
All these quantum mechanical (QM) approaches for electronic structure calculations are
often known as ab initio methods (Hehre, Radom et al. 1986; Szabo and Ostlund 1996, Kohn
1999; Pople 1999; Helgaker, Jorgensen et al. 2000; Springborg 2000).

In contrast, a complete empirical method to determine an internuclear potential energy
surface is to parameterize the potential energy as an analytic function without treating
electronic degrees of freedom. This type of approach is referred to as molecular mechanical
(MM) method and the empirical potential energy is called force-field energy. Comparing to
ab initio approach, MM methods are computationally much less expensive and can be
applied to describe equilibrium properties in macromolecular systems involving over tens
of thousands of heavy atoms (Hagler, Huler et al. 1974; Brooks, Bruccoleri et al. 1983;
Weiner, Kollman et al. 1984; Jorgensen and Tirado-Rives 1988; Mayo, Olafson et al. 1990).
But for the process involving electronic redistributions (e.g., electronic transfer, chemical
bond breaking or forming, etc.), MM force field is often unable to describe it. Later, a hybrid
approach called combined QM/MM method has emerged to synthesize the efficiency of
MM force field with the accuracy of QM calculations (Field, Bash et al. 1990; Gao and
Truhlar 2002). For the rest of this chapter, discussions are limited to the Born-Oppenheimer
approximation, which adiabatically decouples nuclear and electronic degrees of freedom.
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2.4 Classical free-energy profile vs classical potential of mean force

In practice, quantum effects on internuclear motions are much smaller than those on the
electronic part. In many applications, the internuclear quantum effects are insignificant and
could even be neglected. Thus, the eigenenergy spectrum E, in Eq. (1) would become
continuous. Given an internuclear potential V, the quantum canonical partition function in
Eq. (3) consequently reduces to the classical canonical partition function as:

—0 —00 ] j

where /1 is Planck’s constant and p is the momenta associated with the nuclear coordinates x.
Subsequently, the classical free energy G of a molecular system can be expressed in terms
of the classical partition function Q. as follows:

3N, 1,.3N, 3N, 42
G, =—k;TInQ, = kBTln_[O_J;OCbchie p ﬂ[{;zp—A]/Ij}+V({xj})] . )
Note that the partition function and the free energy defined above are ‘state’ functions,
which is independent of any nuclear coordinate and momentum (as we integrate out the
entire phase space). Given a particular 3 N, -degree-of-freedom molecular system described
by a particular potential energy function V at particular temperature, the partition function
and the free energy are constants.

On the other hand, of significant interest in simulating a many-body biochemical or physical
event is to examine how the free energy of a molecular system varies during the event.
Conventionally, we first predetermine a coordinate which should be able to describe the
event of interest from the start to the end. Next, we generate a free energy profile, which is
an energy function of that predetermined coordinate, to investigate how the profile changes
during the event. In fact, such a kind of free-energy profile can also be termed as potential
energy of ensemble-average or mean force (Kirkwood 1935). Reasons are given below.

The free energy profile of a molecular system as a function of a predetermined coordinate of
interest z can be written as follows:

N, dpssz\r,, 3N

G.(2)=&Tin| | Idxgh—ﬂbza(xz_Z)exp ﬂH;’ﬁIJW({Xj}ﬂ (10)

—00 —00

- —kBTlnﬁdx?’N" B eXP{—ﬂ[V({xj},xz = Z)M +C,

where ¢ is Dirac delta function, 4, is the thermal de Broglie wavelength for the degree of
freedom along z-direction, and C is a normalization factor dependent on the inverse of the
thermal de Broglie wavelengths for all degrees of freedom (the wavelength is a function of
the nuclear mass M;, and temperature T). C should be a constant during the biochemical or

physical event of our interest. The integrand in the final configurational integral of Eq. (10)
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is basically the probability density of the molecular system as a function of z. In practice, it is
rare to determine the value of C because what we often care about is the free-energy
difference at various values of z.

Notably, by taking the negative derivative of G,(z), i.e., —dG,(z)/dz , we obtain the average
force over all ensembles or over all degrees of freedom, which is called the mean force
(Kirkwood 1935), based on the ensemble average definition in Eq. (16):

j

T T‘W,zza(xz —z)exp{—ﬂ{(% 2;;\2 ]+V({x1})}}

J [t ()], p{,ﬂz ;MJ o {xj})}}

(11)

j i

—00

Thus G,(z), the free energy profile as a function of a predetermined coordinate, is also
called the potential of mean force (PMF) (Kirkwood 1935).

However, please note that if the predetermined coordinate of interest is not a linear
combination of rectilinear coordinates, or in other words, if it is a curvilinear coordinate,
then PMF is oftentimes not exactly equal to free-energy profile. Not only the Jacobian-
determinant contribution makes their difference (Ruiz-Montero, Frenkel et al. 1997; Henin,
Fiorin et al. 2010), but also in a forthcoming paper, we will show that actually change of
domains with respect to the coordinate of interest can also contribute to the free-energy
profile, i.e., the Leibnizian contribution (Flanders 1973).

In addition, we will also show that according to differential geometry and general relativity,
once we realize the equivalence between orthogonal covariant and contravariant vectors
(Arfken and Weber 2001), then the Jacobian scale factor for a predetermined curvilinear
coordinate of interest, g, can be proved to be (in contravariant space):

~ -1
h’hf - ‘vqf‘ (12)
and the unit vector for g, can be proved as (in contravariant space):

e = v%/‘v%‘ (13)

In Eq. (12) and (13), g, must belong to at least one complete set of curvilinear coordinates,
hypothetically. In general, unless we explicitly define the rest of the complete curvilinear
coordinates, the sole definition of g ¢ s not sufficient to make the PMF be unique. But, we
will show the free-energy profile does not suffer from this uniqueness problem. In fact, if we
restrict ourselves to a complete set of curvilinear coordinates in which g, is orthogonal to the
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rest of coordinates, then the PMF will be unique and its relation with the free-energy profile
can be proved as follows (den Otter 2000), after using Eq. (12) and Eq. (13):

4G (%) _ [ oy . Y‘h}
&y ‘ng‘

?qg
W%"z

—kgT( V- (14)

9:=% 9:=%

In Eq. (14), the Leibnizian contribution is nil, the first term on RHS is the mean force for g,
the second term is the Jacobian contribution, and <> is the ensemble average over all

q:=4
configurations with g, =¢&,. o

Finally, the Fixman potential (Fixman 1974), which corrects the velocity-bias in constrained
MD, will also be presented with correct dependence on mass in our forthcoming paper.

2.5 Simulating classical thermodynamics: Molecular dynamics simulations

By assuming the molecular system of our interest is ergodic, molecular dynamics (MD)
simulation techniques can be employed to compute the ensemble average of a physical
quantity. In essence, MD simulations is numerically solving, integrating or propagating the
Newtonian equations of motion, one-time-step by one-time-step. Given an internuclear
potential V (regardless of using QM, MM, or hybrid QM /MM to construct), the motion or
trajectory of a nucleus j as a function of time ¢ is governed by Newton’s second law:

B, d*%;
—V]»V({x]- (t)}) +(Extended Forces) = M, dt2] : (15)

Note the extended forces in Eq. (15) are essential for having canonical ensemble (constant
temperature) instead of microcanonical ensemble (constant energy) in MD simulations
(Hunenberger 2005). In the ergodic hypothesis (Lebowitz and Penrose 1973; Cogswell 1999)
[the dynamical version of ergodic theory was first proposed by Birkhoff (Birkhoff 1931), in
which Liouville’s theorem was applied to ensure the ensemble distribution in phase-space is
invariant with time], if the simulation time for propagating the trajectory x j-(t) of the
nucleus j is infinitely long, the ensemble average of a physical quantity f ({x},{p}) (which
can be either a scalar or a vector) over the entire phase space, i.e.,

3N, 42

:_I J-dx3Nndp3N“ £({x},{p})exp —ﬂ[(zzljw J+V({ })] , (16)

Cl —00 —00

is equal to the time average in MD simulations:

(£)=lim— Iff({x(f)}r{r’(f)})df- (17)

tp—o0 tf 0

In other words, longer MD simulation time allows us to sample more phase space for
computing the corresponding ensemble average, which in turn could be in higher accuracy.
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3. Zwanzig’s free-energy perturbation theory

Owing to the Boltzmann exponential energy distribution, one of the major difficulties in
computing a converged free-energy profile or potential of mean force [Eq. (10)] via MD and
MC sampling techniques is that it takes longer simulation time or runs more MC steps to
have enough higher-energy samples. Yet, many interesting biochemical or physical
molecular properties could be in higher-energy regions, e.g., the transition state during
protein folding or biochemical reaction.

In practice, in order for having effective samplings on both the lower-energy (e.g., reactant
state) and higher-energy regions (e.g., transition state), Zwanzig's free-energy perturbation
(Zwanzig 1954) [which is also referred to as statistical-mechanical perturbation theory
(McQuarrie 2000)] has been extensively applied. The feature of the perturbation is relating
the change of free energy between two systems (both have the same number of degrees of
freedom) by an ensemble average taken in only one of the two systems. This can be
illustrated by first writing the classical free energy G, corresponding to the partition
function in Eq. (8) as follows:

Jx3N 43N,
G, =-ksTInQ, = j j %exp(—ﬂE), (18)

—00 —00

where E is the energy at a point ({pj} ,{x ]}) in the phase space, i.e.,

cefl )| 3 vl e

Next, we rewrite Eq. (18) as:

[c el e}

J‘ I Wexp[—ﬂ(h‘— EO)]E—/JEO

13N 3N, 73N,

G, = —kyTIn| =2== T —kyTIn j | T df Pk
J- J' dx "dp —ﬂEo —0—0 (20)
Je h3N

= —kBT1n<exp[—,B(E -E )]>0 +Gy,

where G, is the free energy of the reference system, E; is the energy at a point in the phase
space of the reference system, and <--->0 is an ensemble average for the reference system.
From Eq. (20), we obtain Zwanzig's free-energy perturbation (Zwanzig 1954):

G-Gy= —kBTln<exp [—ﬂ(E - E, )]>0 : (21)

As a result, by taking the advantage of the perturbation [Eq. (21)], we can readily have
enough samples in higher-energy regions in a reference frame where their original high
potential energy values intentionally get lowered. Afterwards, the corrected free energy can
straightforwardly be recovered by taking the average of the exponential factor
exp [—ﬂ (E-E, )] over the ensembles sampled in the reference system. This is exactly the
idea behind many enhanced sampling methods, such as the umbrella sampling technique.
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4. Systematic ab initio molecular dynamics approach: Free-energy expansion
method as a series of covariance tensors

A fundamental key to have successful molecular simulations is the accuracy of internuclear
potential for describing atomic motions during biochemical or physical events. By exploiting
Zwanzig's free-energy perturbation (FEP) theory, we are developing a new rigorous method
to systematically obtain accurate free-energy profiles, in which the internuclear potential
energy is effectively computed at a high-level ab initio theory. Our new method is a
systematic free-energy expansion (FEE) in terms of a series of covariance tensors. The new
expansion will enable us to have a free-energy profile at a level as high as the coupled
cluster theory at an affordable computational cost, which is currently known as the gold
standard but unreachable level of theory for free-energy simulations. The focus of our FEE
method will be on the difference of free energy calculated by two different internuclear
potential. Furthermore, in contrast to Car-Parrinello MD (CPMD) which is limited to
potential energy derived from DFT (Car and Parrinello 1985), our method is independent of
how the potential energy functions being constructed. Therefore, by combining it with our
novel automated integration-free path-integral (AIF-PI) method together (See Section 5;
Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009; Wong, Gu et al. 2012),
we will also be able to compute free-energy barriers, changes of binding energy, pK, values,
and isotope effects at an ab initio path integral level (see Section 6).

Let’s begin with the FEP theory. From Eq. (21), the free energy difference between using
lower-level (LL) and higher-level (HL) ab initio methods can be expressed as:

Gip — G = AG = ~kgTIn{exp[ -A(Epy — Er) ) (22)

L’

Next we expand the ensemble average in Eq. (22) and sum up the prefactors into a series of
cumulants:

Gy -G =AG = —%ln<exp[—,8 AE]>LL = —%ln{exp[ﬁx(_ﬂ AE)H>LL,J}’ (23)

where

(- ->LL . is a cumulant, and 7 is the order of a cumulant. In his original 1954 paper (Zwanzig

1954), Zwanzig showed that the cumulant expansion is fast converging when the change of
energy AE in the ensemble is reasonably small relative to the inverse of 5. However, in terms
of computational cost, this cumulant expansion does not provide an advantage for
correcting lower-level free energy. This is because the time required for calculating the
cumulant average (- ~>LL,C with computer is basically as much as the time needed to directly
compute the higher-level free energy Gy; , regardless of whether the perturbation AE is big.

In order to ease up this situation, in a forthcoming paper we will prove that each cumulant
can be further expanded as a Taylor series expansion fluctuating about the ensemble
average position x;; in the form:
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(-6 28), ~{f, (), ~f (ELL)+%[D2 fu (%) Jeow (X1 x) - (25)
where T, is transpose, f,(x)=(-/ AE)", x is a position vector of 3N Cartesian coordinates
of the system, D" is the nth-order tensor operator for differentiation with respect to the 3N
coordinates (e.g., Df,(X;;) is the gradient and D?f,(X;;) is the Hessian matrix), and
cov|x ”,x| is the covariance matrix. The higher order terms in Eq. (25) involve higher order
covariance tensors. Note that the term associated with the gradient is not shown in Eq. (25)

because the first order central moment, i.e., (x —§LL> is always zero by definition.

LL’
By combining Eq. (25) with Eq. (23), we have enough equations to systematically approach
the exact value of high-level free energy at a reduced computational cost. The number of
calculations involving Epr is now considerably decreased to only a single-point energy
calculation at x;; for the zeroth order correction, and merely a normal-mode frequency
analysis at x;; for the second order correction.

To increase the converging property for the expansion in Eq. (25) as well as to overcome the
problem of multi-model probability distribution, we can further generalize the FEE method
by considering a decomposition of the ensemble average into subgroups by clustering
methods. The clustering scheme will be determined in a way such that the FEE expansion is
converged up to the second order correction in each group or each cluster. Please note that,
in the limit that the number of clusters becomes as many as the number of ensembles, the
formalism reduces back to the original ensemble average, and inclusion of only the zeroth
order term in Eq. (25) is able to return us back the exact result of Eq. (23).

Cumulant Tensor AG (kcal/mol) Error
Oth -170.601 0.316

1st -170.601 0.316

1st 2nd —170.680 0.237
3rd -170.680 0.237

0 -170.680 0.237

Oth -170.601 0.316

1st -170.601 0.316

2nd 2nd -170.875 0.042
3rd -170.877 0.040

© -170.883 0.034

6th 0 -170.917 0.000

Table 1. Free-Energy correction AG for H>O from HF/6-31G(d) to MP2/6-311G(d,p).

Since single-point energy calculations and a normal-mode frequency analysis at high-level
electronic structure calculations are actually very common in literature (which are often
used for minimized structures, though), we anticipate this new free-energy expansion
method would be particularly useful for coupling accurate results from high-level ab initio
theory with computational efficiency of lower-level samplings in free-energy calculations.
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The preliminary results using this new systematic FEE method, i.e.,, Eq. (23), are very
encouraging. Table 1 shows the free energy correction AG for a single water molecule from
HF/6-31G(d) to MP2/6-311G(d,p). Even just up to the first cumulant at the zeroth order
correction, the computed error is in the order of magnitude ~0.1 kcal/mol. The first
cumulant is basically converged as soon as the second order correction is included.

5. Simulating quantum thermodynamics: Feynman’s path integral

All the above discussions on simulating internuclear thermodynamics are limited to
classical mechanics (regardless of using QM, MM, hybrid QM/MM to construct potential
energy). However, the real world is described by quantum mechanics, including nuclei. In
some important applications of Life and Materials Sciences, such as hydrogen adsorption in
carbon nanotechnology, the transport mechanism of hydrated hydroxide ions in aqueous
solution, and kinetic isotope effects on a proton-transfer reaction, actually internuclear
quantum-statistical effects (e.g., quantization of vibration and quantum tunneling) are not
negligible. A popular choice for incorporating such internuclear quantum-statistical effects
in the conventional molecular dynamics (MD) or Monte Carlo (MC) simulations (Tanaka,
Kanoh et al. 2005; Warshel, Olsson et al. 2006; Kowalczyk, Gauden et al. 2007; Gao, Major et
al. 2008; Kowalczyk, Gauden et al. 2008; Major, Heroux et al. 2009; Wong, Gu et al. 2012) is
using Feynman's path integral (Feynman 1948; Feynman 1966; Kleinert 2004; Brown 2005;
Feynman, Hibbs et al. 2005).

The essence of Feynman’s path integral is to transform the Schrodinger differential equation
to become an integral equation. As a result, the many-body path integrations can be carried
out by the conventional MD or MC sampling techniques. In addition, the quantum
canonical partition function can be directly obtained with no need to compute individual
energy eigenvalues.

5.1 Kleinert’s variational perturbation theory for centroid density of path integrals

Kleinert’s variational perturbation (KP) theory (Kleinert 2004) for the centroid density
(Gillan 1987; Gillan 1987; Voth 1996; Ramirez, Loépez-Ciudad et al. 1998; Ramirez and Lopez-
Ciudad 1999; Feynman, Hibbs et al. 2005) of Feynman path integrals (Feynman 1948;
Feynman 1966; Kleinert 2004; Brown 2005; Feynman, Hibbs et al. 2005) provides a complete
theoretical foundation for developing non-stochastic methods to systematically incorporate
internuclear quantum-statistical effects in condensed phase systems. Similar to the
complementary interplay between the rapidly growing quantum Monte Carlo simulations
(Anderson 1975; Grossman and Mitas 2005; Lester and Salomon-Ferrer 2006, Wagner,
Bajdich et al. 2009) and the well-established ab initio or density-functional theories (DFT) for
electronic structure calculations (Hehre, Radom et al. 1986; Szabo and Ostlund 1996, Kohn
1999; Pople 1999; Helgaker, Jorgensen et al. 2000; Springborg 2000), non-stochastic path-
integral methods can complement the conventional Fourier or discretized path-integral
Monte-Carlo (PIMC) (MacKeown 1985; Coalson 1986; Ceperley 1995; Mielke and Truhlar
2001; Sauer 2001) and molecular dynamics (PIMD) (Cao and Voth 1994; Voth 1996)
simulations which have been widely used in condensed phases.

To simplify the illustration of the essence of Kleinert’s variational perturbation theory, we
now consider a one-particle one-dimensional system. For a one-particle one-dimensional
system, the classical canonical partition function in Eq. (8) reduces to become:
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Mk,T < -BV(x,
Q, = /ﬁjw e PV gy, (26)

The traditional way to obtain the quantum canonical partition function, i.e.,, Eq. (3), is to
solve the internuclear Schrodinger equation to get the individual energy eigenvalues. But in
the path-integral (PI) formulation, we do not know the individual energy eigenvalues for
obtaining the quantum partition function. This is because the PI representation of the
quantum partition function can be written in terms of the centroid effective potential IV as a
classical configuration integral (Gillan 1987; Gillan 1987; Voth 1996; Ramirez, Lépez-Ciudad
et al. 1998; Ramirez and Lopez-Ciudad 1999; Kleinert 2004; Feynman, Hibbs et al. 2005):

Mk, T ¢ _sw(x
Qun = Zexp(—ﬁEn): /ﬁ J. e P O)dxo. (27)

Given the centroid potential W(x,), thermodynamic and quantum dynamic quantities can
be accurately determined, including molecular spectroscopy of quantum fluids and the rate
constant of chemical and enzymatic reactions. The mass-dependent nature of W (x,) is also
of particular interest because isotope effects can be obtained, and it has been applied to
carbon nanotubes (Tanaka, Kanoh et al. 2005; Kowalczyk, Gauden et al. 2007; Kowalczyk,
Gauden et al. 2008), and biochemical reactions in protein (Warshel, Olsson et al. 2006; Gao,
Major et al. 2008; Major, Heroux et al. 2009) and RNA enzymes (Wong, Gu et al. 2012).

The centroid potential W(x,) in Eq. (27) is defined as follows (Gillan 1987; Gillan 1987;
Voth 1996; Ramirez, Lopez-Ciudad et al. 1998; Ramirez and Loépez-Ciudad 1999; Kleinert
2004; Feynman, Hibbs et al. 2005):

W(xo):—kBTln[ /fg{i;(j)D[x(r)J&(E—xo)exp{—A[x(r):I/h} , (28)

where 7 is a real number and represents the component for pure imaginary time in path
integral, x(z) describes a path in space-time, @Dx(r)&(f—xo) denotes a summation over
all possible closed paths in which x is equal to x, (i.e., a functional integration), and x is
the time-average position, called ‘centroid’

X

17
E I x(7)dr . (29)
0

In Eq. (28), A is the quantum-statistical action:

A[x(r)] =Zhdr{%5c(r)2 +V[x(r)]} , (30)

where V(x) is the original potential energy of the system. Generalization of Eq. (28) to a
multi-dimensional system is straightforward (Kleinert 2004; Feynman, Hibbs et al. 2005).
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A number of non-stochastic approaches have been developed to approximately estimate the
centroid potential. For example, Feynman and Hibbs described a first-order cumulant
expansion by introducing a Gaussian smearing function in a free-particle reference frame to
yield an upper bound on the centroid potential (Feynman, Hibbs et al. 2005). This was
subsequently modified by Doll and Myers (DM) by using a Gaussian width associated with
the angular frequency at the minimum of the original potential (Doll and Myers 1979).
Mielke and Truhlar employed a free-particle reference state and approximated the sum over
paths by a minimal set of paths constrained for a harmonic oscillator. The action integral is
obtained by using the three-point trapezoidal rule for the potential to yield the displaced-
point path integral (DPPI) centroid potential (Mielke and Truhlar 2001).

A closely related theoretical approach to the KP theory is the variational method
independently introduced by Giachetti and Tognetti (Giachetti and Tognetti 1985), and by
Feynman and Kleinert (hereafter labeled as GTFK) (Feynman and Kleinert 1986), which
formally corresponds to the first order approximation in the KP theory, i.e., KP1. The GTFK
approach is a variational method that adopts a harmonic reference state by variationally
optimizing the angular frequency. This variational method has been applied to a variety of
systems, including quantum dynamic processes in condensed phases (e.g., water and
helium). Although the original GTFK approach is among the most accurate approximate
methods for estimating the path-integral centroid potential in many applications (Mielke
and Truhlar 2001), significant errors can exist in situations in which quantum effects are
dominant, especially at low temperatures. Higher order perturbations of KP theory can
significantly and systematically improve computational accuracy over the KP1
results.(Kleinert 2004, Wong and Gao 2007; Wong and Gao 2008; Wong, Richard et al. 2009;
Wong, Gu et al. 2012)

In essence, what Kleinert’s variational perturbation (KP) theory does is to systematically
builds up anharmonic corrections to the harmonic centroid potential calculated in a
harmonic reference state characterized by a trial angular frequency Q (Kleinert 2004). Given
the reference, or trial harmonic action:

X “ . 2 1 2 2
AR = | dri—x(7) +=MQ"| x(7)—x . 31)
J e ey M) T (

the centroid potential W (x,) in Eq. (28) can be expressed as a path integral of the harmonic
action which is perturbed by the anharmonicity of the original potential:

5 0 (A ax0 Xo
B Q

where Qg is the local harmonic partition function given as follows:

BHQ /2
sinh(BhQ /2)’

o | 270

@ MkBquDx(TV(f—xo)e_Aé)/h=

(33)

and < : >g’ is the expectation value over all closed paths of the action in Eq. (31):

www.intechopen.com



120 Molecular Dynamics — Theoretical Developments and Applications in Nanotechnology and Energy

(T o fn(e) () T, &
Q B

In Eq. (34), F [x(r)} denotes an arbitrary functional. It is of interest to note that Eq. (32) is
similar to the starting point of Zwanzig's free-energy perturbation (Section 3), which has
been extensively used in free-energy calculations through Monte Carlo and molecular
dynamics simulations. Their difference is one is for ordinary ensemble average, while
another one is for closed-path average, i.e., functional average.

If we expand the exponential functional in Eq. (32) and sum up the prefactors into an
exponential series of cumulants, then the nth-order approximation, W;’(x, ), to the centroid
potential W (x,) can be written as follows (Kleinert 2004):

Q,c

e Gy |

=A-Ay is the so-called inter-action, representing the perturbation to the

. X . . . . .
harmonic reference state, (---) o, 1s a cumulant which can be written in terms of expectation

values ( . >g’ by the cumulant expansion (Zwanzig 1954; Kubo 1962; Kleinert 2004), e.g.,
(An[x()]), =(an[x()]), (36)
2
(An[x(r)]AR[x(=)]), = (An[x(n)]AR[x(=)]), —{< [x(r>]>;} , @7

(A [x(e)]AR[x(m)]AR[x(w)]), = (A [x(m)] AR [x(m) AR [x(=)]))
-3 L) A [x()]) (A [x)])s +2{ (AR [x()]), |

More importantly, Kleinert and co-workers derived a math equation for expressing the

n Bh n o

expectation value H J dT]. <H1fk [X(Tk)]> from the functional-integral form to be in
=10 k=1 Q

terms of Gaussian smearing convolution integrals (ordinary integrals) (Kleinert 2004):

e[ W K

x 1 ph ph EN
e ol Al gt o o s sl
. 0 0 !

(35)

where

(38)
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where Det[afkrk, (Q)J is the determinant of the nxn-matrix consisting of the Gaussian

width afkrk, (Q), a;szk, (Q) is an element of the inverse matrix of afkfk, (Q), and the Gaussian

width is a function of the trial frequency Q:

az,(Q)z

1 | g cosh[(|z' —7|-ph/ Z)Q] ) 1} “0)

SMQ* | 2 sinh(BhQ / 2)

After using these smearing potentials given in Eq. (39), the nth-order Kleinert variational
perturbation (KPn) approximation, WnQ(xO) , shown in Eq. (35) as functional integrals, can
now be written in terms of ordinary integrals as follows (Kleinert 2004):

W, (x0)
=—kzTInQgY +—J.dr<Vlfl9( [x (71) >x0 —2kBT jdrl I d12< fd [x (71) ] folt [x (7, ]>xoc (41)

S AT e

j=10 Q,c

—_

where V; [x :I— V[x ]—EMQZ |:x(z')—x0]2 (the kinetic energy terms in Eq. (30) and
Eq. (31) cancel each other out).
As n tends to infinity, W;*(x,) approaches the exact value of the centroid potential W(x,)
in Eq. (28), which is independent of the trial Q. But the truncated sum in Eq. (41) does
depend on €, and the optimal choice of this trial frequency at a given order of KP expansion
and at a particular centroid position x, is determined by the least-dependence of W, ()
on Q itself. This is the so-called frequency of least dependence, which provides a variational
approach to determine the optimal value of Q, O, (x9) (Kleinert 2004).

Of particular interest is the special case when n =1, which turns out to be identical to the
original GTFK variational approach. An important property of KP1 or the GTFK variational
approach is that there is a definite upper bound for the computed W;* (x9) by virtue of the

Jensen-Peierls inequality, i.e., from Eq. (32) and (35):

e—ﬁw(xo) _ Q?zo <exp[— A _hAQ J> > QQ exp< A _hAQ > _ e—ﬁwlﬂ(xo)_ (42)
Q Q

Note that by choosing Q=0 (i.e., the reference state is for a free particle), KP1 or GTFK
(Giachetti and Tognetti 1985; Feynman and Kleinert 1986) reduces to the Feynman-Hibbs
approach (Feynman, Hibbs et al. 2005). For higher orders of n, unfortunately, it is not
guaranteed that a minimum of W;°(Q) actually exists as a function of Q. In this case, the
least dependent Q is obtained from the condition that the next derivative of W, (Q) with
respect to Q is set to zero. Consequently, Q is considered as a variational parameter in the
Kleinert perturbation theory such that W,° |:()0pt,n (%o )] is least-dependent on Q.
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This variational criterion relies on the uniformly and exponentially convergent property
demonstrated from the KP theory. Kleinert and coworkers proved that his theory exhibits
this property in several strong anharmonic-coupling systems. More importantly, this
remarkably fast convergent property can also be observed even for computing the electronic
ground state energy of a hydrogen atom (3 degrees of freedom). The ground state energy
was determined by calculating the electronic centroid potential at the zero-temperature
limit. The accuracies of the first three orders of the KP theory for a hydrogen atom are 85%,
95%, and 98%, respectively (Kleinert 2004).

In practice, for odd #, there is typically a minimum point in €, but due to the alternating
sign of the cumulants in Eq. (41), there is usually 7o minimum in € for even n. Nevertheless,
the frequency of least-dependence for an even order perturbation in # can be determined by
locating the inflexion point, i.e., the zero-value of the second derivative of W, (Q) with
respect to Q. Since the KP expansion is uniformly and exponentially converged, Kleinert has
demonstrated that the least-dependent plateau in W, (Q), which is characterized by a
minimum point for odd # or by an inflexion point for even n, grows larger and larger with
increasing orders of n (Kleinert 2004).

5.2 Automated integration-free path-integral method

An especially attractive feature of Eq. (41) is that the if the real system potential is
expressed as a series of polynomials or Gaussians, then analytic expressions of Eq. (41)
can be obtained, making the computation extremely efficient because the time-demanding
Monte Carlo samplings for multi-dimensional numerical integrations could be avoided.
Hereafter, the level of calculations up to nth order KP expansion for an mth-order-
polynomial potential is denoted as KPn/Pm. For other potentials, KPn theory still
involves elaborate n-dimensional space-time (2n degrees of freedom) smearing integrals
in Eq. (39). The intricacy of the smearing integrals increases tremendously for
multidimensional potentials, where € becomes a 3N x3N matrix Q;; for N nuclei. This
complexity is a major factor limiting applications of the KP theory beyond KP1, the
original FK approach.

To render the KP theory feasible for many-body systems with N particles, we decouple the

3N
instantaneous normal mode (INM) coordinates {qu} for a given configuration {x0}3N

(Wong and Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009; Wong,
Gu et al. 2012). Hence the multidimensional V effectively reduces to 3N one-dimensional
potentials along each normal mode coordinate. Note that INM are naturally decoupled
through the second order Taylor expansion of V. The approximation of decoupling the INM
coordinates has also been used elsewhere (Stratt 1995; Deng, Ladanyi et al. 2002). This
approximation is particularly suited for the KP theory because of the exponential decaying
property of the Gaussian convolution integrals in Eq. (39). In the decoupling INM
approximation, the total effective centroid potential for N nuclei can be simplified as:

3N

W,fz({xo}gN)zV({x0}3N)+Zw§n (qf‘o ), (43)

i=1
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f}n (qfo) is the centroid potential for normal mode i. Although the INM

approximation sacrifices some accuracy, in exchange, it allows analyses of quantum

where w

mechanical vibration and tunneling, and their separate contributions to the V. Positive and
negative values of w; raise (vibration) and lower (tunneling) the original potential,
respectively. In practice, real frequencies from the INM analysis often yields positive w; s in
Eq. (43) with dominant contributions from zero-point-energy effects. For imaginary
frequencies in the INM, the values of w; are often negative, due to tunneling contributions.

To obtain analytical expressions for the expectation values in Eq. (41), we use an mth order
polynomial (Pm) to approximate or interpolate the potential along gi. Hereafter, an mth
order polynomial representation of the original potential energy function obtained with an
interpolating step size g A both in the forward and backward directions along the normal
mode coordinate at xo is denoted as Pm-gA. Note that analytical results for P4 have been
used by Kleinert for a quadratic-quartic anharmonic potential and a double-well potential
(Kleinert 2004); however, higher order polynomials are needed to achieve the desired
accuracy in real systems. We have thus derived the analytical closed forms of Eq. (41) up to
P20 (Wong and Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009;
Wong, Gu et al. 2012). Consequently, the W as a function of an arbitrary Q can be promptly
obtained. This provides a convenient way to determine the least dependent & value without
computing the complicated smearing integrals [Eq. (39)] iteratively for different trial values
of Q by Monte Carlo multi-dimensional numerical integrations. In fact, after the
interpolating potential along each instantaneous normal-mode coordinate is determined,
there is little computational cost for obtaining the W. Thereby, high level ab initio or density-
functional (DFT) methods can be used to evaluate the potential energy function for ab initio
path-integral calculations (Wong, Richard et al. 2009; Wong, Gu et al. 2012).

The computational procedure for obtaining the first and second order KP approximations to
the centroid potential using our automated integration-free path-integral (AIF-PI) method is
summarized below (Wong and Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard
et al. 2009; Wong, Gu et al. 2012):

1. For each {x0}3N , the mass-scaled Hessian matrix is diagonalized to obtain {qu }SN .

2. The original potential V is scanned from the configuration {x, }3N along each ¢:° for 10
points both in the forward and backward directions to interpolate V as P20-0.1A. A step
size of 0.1 A should be a reasonable choice to yield W in a few per cent of the exact.

3. After the P20-0.1A interpolations, each wf?n(qfo) as a function of Q is readily obtained
using the analytical expressions of KP1/P20 or KP2/P20. Note that the path integrals
for these polynomials have been analytically integrated.

4. The values of wf?n(qfo) are determined by numerically locating the least dependence of

wf?n(qfo) on Q, i.e., zeroing the lowest order derivative of wf?n(qfo) w.r.t. Q (first
derivative for KP1 and usually second derivative for KP2).

The procedure presented above is integration-free and essentially automated (Wong and
Gao 2007; Wong 2008; Wong and Gao 2008; Wong, Richard et al. 2009; Wong, Gu et al. 2012).
We hope it could be used by non-path-integral experts or experimentalists as a “black-box”
for any given system. We are currently developing a formalism to systematically couple
instantaneous normal-mode coordinates.
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Due to the integration-free feature, our AIF-PI method is computationally efficient such that
the potential energy can be evaluated using ab initio or density-functional theory (DFT) for
performing the so-called ab initio path-integral calculations. Consequently, we used DFT to
construct the internuclear potential energy function for computing kinetic isotope effects
(KIE) on several series of proton transfer reactions in water with the AIF-PI method. These
reactions are relevant to biosynthesis of cholesterol. The computed KIE results at the KP2
level are in good agreement with experiment (Wong, Richard et al. 2009). Recently, we also
employed the same computational technique to perform ab initio path-integral calculations
of KIE on some RNA model reactions. Again, as shown in Table 2, the calculated values are
in good agreement with experiments (Wong, Gu et al. 2012).

) KP2 Expt
Reaction
18k, 1834k 18k Ny 1834k
Native 0.968 1.059 0.981(3) 1.034(4)
S3' 1.043 1.008 1.119(6) 1.0118(3)
S5' 1.042 1.002 1.025(5) 1.0009(1)

Table 2. Calculated primary kinetic isotope effects (KIEs) on 2" nucleophile (18kny) and 5’
leaving (18ki4 or 34kg) oxygens for RNA-model reactions using our AIF-PI method based on
second order of Kleinert’s variational perturbation theory (KP2), along with the most
relevant available experimental (Expt) results for comparison. Experimental errors in the last
decimal place are given in parenthesis.

Another compelling feature of the AIF-PI method is that it does not suffer the convergence
difficulties of PIMC or PIMD simulations at the zero-temperature limit, i.e., absolute zero
temperature. At the zero-temperature limit (T = 0 K), in principle, minimizing the centroid
effective potential with respect to the nuclear positions can give us two important physical
quantities: the exact value of the eigenenergy for zero-point motion (i.e., the zero-point
energy ZPE or the ground state energy) and the exact expectation values of the nuclear
positions at the ground state (Ramirez, Lopez-Ciudad et al. 1998; Ramirez and Lopez-
Ciudad 1999), i.e.,

}Fi_% Winin (Ximin ) = Eo (44)

and
Xmin = <z//0|x|l//0>, (45)
where x is the position operator, and x.;, and W, (x,y,) are, respectively, the

coordinate and value at the (global) minimum of the centroid potential. In Eq. (44) and (45),
v, is the nuclear ground state wave function and E, is the lowest eigenvalue of the
Hamiltonian, i.e., the zero-point energy. In a forthcoming paper, we will have a rigorous
proof showing that in fact at absolute zero temperature, there is only one stationary and
minimum point in centroid potential, which is true even for any many-body systems.
Hence, our recently derived analytical zero-temperature-limit results provide a convenient
way to compute these two important physical quantities without solving the Schrodinger
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equation (Wong 2008; Wong and Gao 2008), e.g., see Table 3. Together with the accurate
low-lying excitation energies (Ramirez and Lopez-Ciudad 2001) which could be obtained by
the frequency analysis of the Hessian matrix at the sole minimum point at absolute zero
temperature (including tunneling splitting), potentially one day our AIF-PI method could
replace MC or MD simulations to have highly reproducible and precise free-energy calculations
for many-body systems.

Molecule | Quantum  Harmonic KP1 KP2
HCl 4.231 4.274 4253 4.234
HF 5.732 5.793 5.762 5.736
H> 6.193 6.284 6.238 6.202

Table 3. Ground state energy values (kcal/mol) for hydrogen chloride, hydrogen fluoride,
and hydrogen molecules from the Morse potential using the harmonic-oscillator
approximation, and our AIF-PI method based on first and second orders of the Kleinert’s
variational perturbation theory (KP1 and KP2).

Born-Oppenheimer Approximation

Electronic Schrodinger equation
Ab initio molecular orbital theory

Internuclear Schrodinger equation
Systematic internuclear thermodynamics
theory

Most molecular properties of interest are
at
low lying electronic energy states

Hartree-Fock (HF) theory

Independent electron (single-electron)
approximation

Roothaan and Hall expressed the Fock

operator in terms of basis functions for

solving HF equations in matrix algebra
self-consistently (SCF)

Explain chemical properties in terms of
frontier occupied and unoccupied
molecular orbitals

Post Hartree-Fock method to include
correlation energy by systematically
couple single-electron orbitals

All thermodynamic properties virtually
can be derived from quantum partition
functions

Kleinert’s variational perturbation
theory for centroid effective potential

Decoupled instantaneous normal
coordinate approximation (DINCA)

We propose interpolating potential energy
functions to mth order polynomials in
which analytic results of path-integration
can be derived

Quantum effects from vibration and
tunneling are separated and quantified in
one mathematical framework

Work out a formalism to systematically
couple instantaneous normal coordinates

Table 4. Comparison (1) between Kleinert’s variational perturbation (KP) theory and
Hartree-Fock (HF) theory, (2) between our decoupled instantaneous normal coordinate
approximation and independent electron approximation, and (3) between our integration-
free path-integral results for polynomials in the KP theory and Roothann-Hall basis function

approach for HF theory.
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Finally, we make a quite interesting table (Table 4) to compare the traditional ab initio
molecular orbital theory for electronic structure calculations with our systematic approach
for computing internuclear quantum effects. In short, the rigor and the spirit of both types of
methods is the same. We first breakdown or dissect a complicated many-body problem into
many one-body problems. Then we identify which one bodies are more important. Next we
couple back those important one bodies to systematically approach the exact.

6. Systematic ab initio path-integral free-energy expansion approach

In order to systematically refine a classical free-energy profile to become ultimate quantum
free-energy profile, in which both electrons and nuclei are treated quantum mechanically
and adiabatically, we are developing a systematic ab initio path-integral free-energy
expansion (SAI-PI-FEE; yr¢) approach. In this wz¢ approach, we combine our novel free-
energy expansion (FEE) method (Section 4) with our automated integration-free path-
integral (AIF-PI) method (Section 5.2) such that we can perform ab initio path-integral
simulations for realistic molecular systems. The key of this combination is that first we
realize the quantum partition function can be computed as a classical configuration shown
in Eq. (27), then now in Eq. (23), we treat the AE as:

AE=W -V, (46)

where V is the original internuclear potential and IV is the centroid potential. So once we get
the accurate value of W using our AIF-PI method, we can go ahead using our FEE method to
systematically upgrade the level of our classical free-energy profile to an ab initio path-
integral level, in which zero-point energy and tunnelling effects in nuclei, and isotope effects
could all be incorporated.

In order to rigorously validate our wz¢ method in a more effective way, the free-energy
perturbation (FEP) in the Hamiltonian space will be performed, using the recently derived
“universal” probability density function (UPDF), which is defined as follows:

P(AE) :Kexp{a[b(AE—s)—eb(AE_S)J}. (47)

2
)
[

&
........... HF/6-31G(d) &
MP2/6-311G(d,p) .

S
=
o

g
<
[y

Probability density function
s

S
)
S

-173 -172 -171 -170 -169
AE (kcal/mol)

Fig. 1. Free energy perturbation for a water molecule in the Hamiltonian space using the
universal probability density function (UPDF).
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This UPDF can be used to determine the change of free energy AG in Eq. (23), by simply
locating the intersection point of two probability density functions (Nanda, Lu et al. 2005;
Chipot and Pohorille 2007). In Eq. (47), AE is a variable for the difference of the Hamiltonian
or energy between two levels of theory, while K, 4, b, and s are the fitting parameters. In
Figure 1, we demonstrate the simultaneous fitting to the UPDF to determine the change of
free-energy for a water molecule from HF/6-31G(d) to MP2/6-311G(d,p). The intersection
point of the two probability functions at —170.917 kcal/mol is the best estimate value for the
AG in Table 1 above.

7. Conclusion and outlook

In this chapter, we (wongky@biomaps.rutgers.edu; kiniu@alumni.cuhk.net) discuss
developing the y7z¢ method to systematically generate quantum free-energy profiles at an
ab initio path-integral level in molecular simulations. Since quantum free energy or partition
function is a universal central quantity in thermodynamics of biology, chemistry, and
physics, we anticipate our yz¢ method would be very crucial in both Life and Materials
Sciences and wish that it could be used by non-specialists as a black box one day.
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