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1. Introduction

Digital image restoration has been a field of very active research for many years, and digital
image restoration techniques has been put to use in a lot of different contexts including
astronomy, medicine, intelligence work and many others (Banham & Katsaggelos (1997)).
Common to these fields of application is that the restoration techniques are applied to image
data of some kind true to the original intentions of the algorithms. In this text we present an
application of principles from digital image restoration to the field of coding theory, and the
objects of application are not images but rather general information data.

Information can be represented in many different ways. A typical approach in information
theory is to represent information as binary vectors, but there are many situations where
information can rather be represented as a matrix or grid containing the information symbols
giving rise to the concept of two-dimensional channels. Good examples of this can be found
in the fields of magnetic and optical storage, bar codes and others.

When transmitting information of any kind, a central problem is how to deal with errors that
result from the transmission process, and a solution to this problem is to add redundancy
to the information in such a way that it is possible to detect and eventually also correct the
errors that occur. Adding this redundancy is called error control coding, and the techniques
for doing so is called error correcting or detecting codes. There exists a huge variety of
error control coding techniques for channels with different characteristics and for fulfilling
different sets of requirements. However, most of the channel coding techniques assumes the
information that is to be encoded, are one-dimensional vectors or a stream of information
symbols. Channel coding for two-dimensional channels on the other hand, is a part of coding
theory that has only recently attracted attention from the coding theory community.

There are different models for describing how errors occur in a two-dimensional
communication channel.

• The errors can be modeled as independent and identically distributed over the information
symbols. In this case the problem of error control coding is reduced to the case of error
control coding for a one-dimensional channel with an equal information rate.

• The errors can be modeled by considering two-dimensional intersymbol interference,
which is the effect of the information symbols interfering with their neighboring
information symbols. This error model applies to many practical communication
channels, most notably magnetic and optical storage media (which can be seen as
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2 Image Restoration

communication channels). This error model has been studied extensively, see for example
Singla & O’Sullivan (2005) and Kurkoski (2008).

• The errors can be modeled as spatially contagious areas bounding a cluster of errors. The
underlying channel model assumes that the information symbols are affected by some
physical process that affects a limited part of the information. Error that result from such
processes would form error bursts that may take the form of clusters or be concentrated to a
limited area. Such error clusters are defined differently in the literature, but a very common
approach is to define an error cluster as a rectangular area of a given size n1 × n2. Code
constructions for this type of cluster errors can be found in Farrell (1982) Schwartz & Etzion
(2005) and Breitbach et al. (1998). More recently, error clusters of arbitrary form has
been considered in several works, and most of these use interleaving strategies to correct
cluster errors. This approach is used in Blaum et al. (1998), Schwartz & Etzion (2003) and
Xu & Golomb (2007).

In the following we take the latter perspective on the nature of errors on a two-dimensional
channel, and we apply techniques from digital image restoration to support the decoding
process since these methods can exploit the information inherent in the two-dimensional
cluster error model. The core element in this application of digital image restoration is looking
at the encoded information as "noise" and the areas affected by burst errors as the "original
image" that we want to restore. The strategy is to first encode the information at the source
using ordinary error control coding. At the receiver, ordinary decoding and detection of the
error clusters are combined in an iterative system where the decoding process produces an
estimate of the probability of error in each information symbol, and this estimate is then used
as input to a component that produces an estimate of the size and shape of the error burst
based on image restoration techniques. The information that is extracted from this process is
then used to support the decoding process as a priori information about the error clusters.

Decoder Detector

Error probability estimate

Error cluster estimate

Fig. 1. Basic principle of iterative process

2. General overview over relevant image restoration techniques

In our application we are concerned with describing the statistical properties of context
dependent entities such as neighboring bits in a two-dimensional representation of digital
information. One technique for describing such properties is the use of Markov random
field theory which uses conditional probabilities to describe spatial dependencies in an
n-dimensional system. This approach is based on the results of Shridhar, Ahmadi and
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An Application of Digital Image Restoration Techniques to Error Control Coding 3

El-Gabali who developed the applied techniques in Shridhar et al. (1989), El-Gabali et al.
(1987), El-Gabali et al. (1988) and El-Gabali et al. (1990) but similar techniques are also
presented in Geman & Geman (1993), Zhang (1993), Jeng & Woods (1991) and Chalmond
(1988). The basis for all of these image restoration techniques is that simulated annealing
is used to produce an estimate of the maximum a posteriori probability of the original
image and the techniques has been extensively used for different purposes within the field
of image processing, including image restoration, image segmentation, object identification
and texture analysis. Using a system model based on Markov random field theory, one
wants to find the joint distribution of the variables representing the image (e.g. pixels) and
then use this distribution as basis for detecting the original scene and eliminate or reduce
noise in the image. However, finding the joint distribution directly from a Markov random
field model is mathematically intractable, so one needs to compute the distribution by aid of
the so-called Hammersley-Clifford theorem which states the equivalence between the joint
distribution of the variables in a Markov random field and Gibbs distribution which can
be treated mathematically in an efficient way. Given this distribution one common method
for performing the actual detection of the original image is to find the maximum a priori
probability for the image given the observed output.

3. General overview of the iterative decoding and detection process

two-dimensional channels are subjected to different kinds of errors, but in this setting we
are interested in sources of errors that will affect spatially limited parts of a two-dimensional
codeword. This is called an error cluster or equivalently a burst error. Burst error correction
is a well known and much studied problem, but none of the classical techniques in this field
are able to take into account the fact that such spatially correlated error clusters gives rise
to a statistical correlation on the error probability for neighboring positions in the codeword.
Using the above mentioned techniques from digital image restoration is one way one can
exploit this extra information given in the error model.

Several different approaches are possible when trying to use the information gleaned from the
image restoration to enhance the decoding process. However, our approach is based on the
use of so-called soft input - soft output (SISO) decoding. The principle behind this decoding
strategy is that the decoder should accept input values in the form of conditional probabilities
as a measure of the reliability of the corresponding channel value, and as output produce
a new measure of reliability for the corresponding channel value. Such a decoder can take
advantage of the information produced by the restoration process in a very natural way by
supplying conditional probabilities resulting from the estimation process described below.

Based on results from our papers Ellingsen et al. (2004) Ellingsen & Kvamme (2010) we show
how this principle can be used to implement an actual decoding system based on the
techniques described above. We study two different channel models, the two-dimensional
binary asymmetric channel and the two-dimensional binary symmetric channel, and use
LDPC-codes for error correction. Then we show how the redundant information of the code
can be used to provide prior information to an image restoration process, while the results
from the image restoration process is used to assist the decoding process by providing a priori
information to the decoder. Thus we construct an iterative decoding process where estimates
in the form of conditional probabilities for each bit in the codeword is exchanged back and
forth between the LDPC-decoder and the image restoration module. The results from this
process are compared to the results when using the LDPC decoder alone and we see that
there is a significant gain in performance.
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4 Image Restoration

4. Details of restoration technique

4.1 Modelling a two-dimensional channel using Markov Random Fields

A channel with memory is characterized by the existence of dependencies in the noise
generating process. Such dependencies can e.g. be described by a Markov chain in the case
of one-dimensional channels as is the case for the Gilbert-Elliott channel Gilbert et al. (1960).
This implies that the channel will have characteristics that are varying with time. We want
to extend this line of thinking to the case of two-dimensional channels and look at spatial
dependencies in the noise generating process rather than temporal dependencies as in the
one-dimensional case. Such spatial dependencies can be modeled using a Markov Random
Field (MRF).

An MRF can be seen as a generalization of Markov chains, but while a Markov chain is often
defined over a domain of time as a sequence of random variables, an MRF can be defined in
space to describe dependencies between variables on a grid of dimension 2 or higher.

4.2 Markov Random Fields

Consider a set of random variables A = {Ai|i ∈ I} for some index set I, where the variables
are organized in a two dimensional grid. Let the variables correspond to the vertices and the
statistical dependencies between the variables correspond to edges in an undirected graph G.
We shall use this setup to model both codewords and errors in our system. Two connected
vertices in G are said to be neighbors, and a neighborhood Ni of a vertex ai can be defined as the
set of vertices that are connected to ai in G. Different sizes of neighborhoods can be defined
for an MRF. By convention, a node is not a neighbor of itself. On a regular lattice we define
the first order neighborhood to be the four closest neighbors of a node as seen below, the
second order neighborhood as the eight closest neighbors and so on. The collection of all
neighborhoods N = {Ni | ∀i ∈ I} in a graph, is called a neighborhood system.
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Within the neighborhood of a vertex ai, we define a clique to be any collection of vertices that
contains ai and forms a fully connected subgraph of G, i. e. that the vertices are mutual
neighbors relative to the neighborhood system N . In the case of a first order neighborhood,
all nodes within distance 1 of the center are said to be neighbors, and the cliques become
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An Application of Digital Image Restoration Techniques to Error Control Coding 5

the center node ai and all pairs of (ai, aj) where aj is a neighbor of ai. In a second order

neighborhood, all nodes within distance
√

2 are defined as neighbors:
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and in this case the cliques becomes any configuration of
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The collection of all cliques of size i in a neighborhood system N is called Ci. The set C of all
cliques in a graph can then be partitioned into the subsets Ci for 1 ≤ i ≤ n

Now, based on the concept of neighborhoods we can then proceed to define a Markov Random
Field. Just as a Markov chain {. . . , ak, ak−1, ak−2, . . .} satisfies

P(ai|ai−1, ai−2, . . .) = P(ai|ai−1, ai−2, . . . , ai−n)

for some n, a Markov Random Field should satisfy

P(ai|aI−{i}) = P(ai | Ni)

where I is the set of indices of a and Ni is the neighborhood of ai as defined above.

4.3 Probability distribution

The fact that the errors of our channel can be represented by an MRF does not immediately
enable us to analyze the error patterns statistically. By assuming that the dependencies in
a collection of random variables can be represented by an MRF, the joint probability of the
variables is given by the so called Gibbs distribution.
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6 Image Restoration

Definition 1 (Gibbs distribution). A set of random variables is said to be a Gibbs random field
(GRF) if the joint distribution of the variables takes the following form:

P(X = x) =
1

Z
exp

[
− 1

T
U(X)

]
(1)

This distribution is called a Gibbs distribution.

• Z is a constant called the partition function and can be expressed as Z = ∑x∈X e−
1
T U(x), so

that Z−1 becomes a normalizing constant in the expression.

• U(x) is called the energy function and is a function of the values of the variables forming
cliques in the field. It can be written as

U(x) = ∑
c∈C

Vc(x) (2)

We can expand (2) further by summing over the cliques of the same degree separately

∑
c∈C

Vc(x) = ∑
a∈C1

V1(a) + ∑
a,b∈C2

V2(a, b) + ∑
a,b,c∈C3

V3(a, b, c) + . . . (3)

where Ci is the collection of all cliques of degree i, so that Vi is a function of i variables
forming a clique, and ∑Ci

Vi mean that we sum over all possible cliques in the field of
degree i.

• T is called the temperature (this is a legacy from the distribution’s origin in statistical
physics). The parameter T influences the degree of cohesion between the variables on
a grid, so that a higher temperature corresponds to a lower degree of cohesion in the
sense that the values of the variables becomes more and more independent, while a lower
temperature gives a higher probability of the formation of large clusters of variables with
the same value. We shall assume that the temperature is 1 in our simulations, even if the
parameter will be used in the theoretical treatment of the decoding algorithm.

The Clifford-Hammersley theorem states that for a set of variables F with a neighborhood
system N , F is an MRF with respect to N if and only if F is a GRF with respect to N . See
Kindermann & Snell (1980).

Unfortunately, Z is very hard to compute. Since we have to consider all possible of values of x
in order to find Z, the computational complexity of the task is a formidable O(2n), effectively
preventing us from computing the absolute probabilities for the configurations of X. It is
nevertheless possible to use the Gibbs distribution to find an estimate of the error patterns
generated by the channel.

4.4 MAP estimation

We want to find an estimate of the error pattern that was added to the codeword, based on the
assumptions about the dependence between errors given in the previous sections. In order to
avoid computing the constant Z in the Gibbs distribution, we will do a MAP estimation of the
errors. That is, given a received word Y, we want to find an estimate of the most likely error
pattern X that was added to C. Some terminology is needed in order to develop this.

Let A be a set of random variables defined on the set L, and let the elements of A be indexed
by 1 ≤ i ≤ n. If Ai = ai for each variable Ai, where ai ∈ L, we call {a1, . . . , an} = a a
configuration of A
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An Application of Digital Image Restoration Techniques to Error Control Coding 7

MAP estimation of the error pattern X based on the received word Y can be formulated as the
optimization of the a posteriori probability P(X = x|Y = y) with respect to x. That is, we want
to find a configuration x that makes the probability P(X = x|Y = y) as high as possible.

Bayes rule gives us

P(X = x|Y = y) =
P(X = x)P(Y = y|X = x)

P(Y = y)

Since P(Y = y) does not depend on P(X = x), we can maximize over

P(X = x)P(Y = y|X = x) (4)

To find the probabilities P(Y = y|X = x), we must take care to remember that the error pattern
X is now considered as the original information that we want to estimate, and the codeword C
is to be considered as errors obscuring the information. In the following, we shall make some
assumptions about X and C.

• The variables are bipolar, with 1 corresponding to 0 and −1 corresponding to 1 in the
channel model.

• The codeword C, when treated as errors, can be seen as random bipolar variables so that

P(C = c) = ∏
i

P(ci) = (
1

2
)n

The conditional probabilities must then be expressed by by using the characteristics of the
channel and this expression must then be optimized with respect to the input configuration.
In chapter 5.3 and 6.3 we show two examples of how this optimization can be done for a given
channel. In both of our cases, finding a global maximum of the conditional probabilities with
respect to x would become computationally infeasible as the size of x increases. Instead, we
use the local dependencies between bits to do a local optimization along the lines of the PDFE
in Neifeld & King (1998); Neifield et al. (1996) or the partial binary segmentation algorithm of
Shridhar et al. (1989).

4.5 Error generation

Generation of two dimensional burst errors for simulation purposes is done by the use of a
Monte Carlo Markov chain technique called the Metropolis algorithm. We do not have very
strict requirements for the generated sample configurations, other than that they should be
"somewhat likely" to occur given the condition that the variables’ distribution is given by the
Gibbs distribution.

The Metropolis algorithm is a general method for generating samples from a joint distribution
of two or more variables, and can be applied to distributions that are either continuous
or discrete as long as it is possible to compute the difference of the likelihoods for two
configurations of the variables.

We would like to sample the joint distribution A = {A1, . . . , An}. This is achieved by
generating random changes to the components Ai of A, and accepting or rejecting these
changes based on how they affect the likelihood of the configuration. In our case, the natural
change to a component of a configuration would be to flip the bit value.

359An Application of Digital Image Restoration Techniques to Error Control Coding
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8 Image Restoration

Given an initial configuration A, a new configuration A∗ is obtained as explained above by
flipping a bit. Then, the difference of the likelihood of the new configuration and the old
configuration is calculated by

∆U = U(A∗)− U(A) = ∑
a∗∈C1

V1(a
∗) + ∑

a∗,b∗∈C2

V2(a
∗, b∗) + ∑

a∗,b∗,c∗∈C3

V3(a
∗, b∗, c∗) + . . .

− ∑
a∈C1

V1(a) + ∑
a,b∈C2

V2(a, b) + ∑
a,b,c∈C3

V3(a, b, c) + . . .

and the new configuration is accepted with probability 1 if the new likelihood is higher than

the old one. Otherwise, the new configuration is accepted with probability e−∆U/T, so the
probability of accepting the new configuration becomes:

P(A → A∗) =
{

1 ∆U ≥ 0

e−∆U/T ∆U < 0

A pass through all the components in A in this way is called a sweep over the variables in A.
In our case, we generate a sample from the distribution by doing 4 sweeps over A, resulting
in the evaluation of a total of 4n new configurations. This should result in a sample that has
high enough probability to be detected by the estimation algorithm described above.

5. Application to the two-dimensional binary asymmetric channel

5.1 Channel model

In this section, we will apply this general method for cluster error detection and correction to
the binary asymmetric channel As the name of the channel implies, we will assume that errors
are asymmetric so that only the transition −1 → 1 occurs in a received codeword.

Definition 2 (Matrix OR). Assume A and B are matrices with dimensions d1 × d2 where d1 · d2 = n,
and with coordinates ai and bi respectively. Then the OR of these matrices is defined as

A ∨ B � ai ∨ bi, 1 ≤ i ≤ n

The received word Y can then be defined as the combination of

Y = C ∨ X

Y - received word

C - original codeword

X - error pattern

∨ - OR operator on matrices as defined above

5.2 System model

Information I is encoded, producing a codeword C. For each generated codeword C, the
channel induces two-dimensionally correlated noise X and the resulting word Y is passed to
the decoder. Information is converted to likelihood ratios and sent to the SISO. The output

360 Image Restoration – Recent Advances and Applications
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An Application of Digital Image Restoration Techniques to Error Control Coding 9

likelihood values L from the SISO are then sent to the detector. Based on these values, the
detector produces an estimate of the error pattern that was multiplied with the codeword.
This information is subsequently fed back into the SISO in the next iteration. The decoding
process continues until either the SISO finds a valid codeword, or a set of stopping criteria is
reached. The final estimate of the codeword is produced by the SISO. See figure 2.

SISO

Ĉ

X̂

IEncoder
C

X

Y

Noise gen.

Decoder

Detector
L

Fig. 2. System model

5.3 MAP estimation

To optimize the maximum a priori probability, we need to find some expression for the
conditional probability P(Y = y|X = x) as noted in chapter 4.4. Based on the assumptions in
chapter 4.4, the conditional probabilities P(Yi = yi|Xi = xi) for each information symbol is
given in Table 1.

Table 1. Transition probabilities

The conditional probabilities in the table can be expressed as an exponential function by

P(Yi = yi|Xi = xi) = lim
ǫ→0

1

2
exp

[−yi(1 − xi) ln 2

1 − yi + ǫ

]

We can then express the probability of a given y conditioned on a configuration x by

P(Y = y|X = x) = ∏
i

lim
ǫ→0

1

2
exp

[−yi(1 − xi) ln 2

1 − yi + ǫ

]
(5)
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10 Image Restoration

Substituting (1) and (5) into (4), we can find the joint probability by

P(X = x, Y = y) =
[

Z−1e−
1
T U(x)

]
∏

i

lim
ǫ→0

1

2
exp

[−yi(1 − xi) ln 2

1 − yi + ǫ

]
(6)

Since the natural logarithm is strictly increasing, the following equality holds:

arg max
X

(P(X, Y)) = arg max
X

(ln(P(X, Y))) (7)

In order to avoid computing Z in (6), we take the logarithm of both sides and eliminate
constants to get

V(x) = U(x) + ∑
i

lim
ǫ→0

[−yi(1 − xi) ln 2

1 − yi + ǫ

]

where V(x) = ln [P(X = x, Y = y)].

We define the partial functions Vi of U(x) according to Li (2000); Shridhar et al. (1989)

V1(xi) = αxi

V2(xi, xi′ ) = βi,i′ xixi′

V3(xi , xi′ , xi′′ ) = · · · = 0

Note that the expression for V2 implies that V2(xi, xi′ ) = βi,i′ for xi = xi′and V2(xi, xi′ ) =
−βi,i′ for xi �= xi′ .

From this we get a new expression for V(x):

V(x) = ∑
i

[
αxi + βi,i′ ∑

i′∈Ni

xixi′ + lim
ǫ→0

[−yi(1 − xi) ln 2

1 − yi + ǫ

]]
,

and splitting the last term into a constant and a non-constant term yields

V(x) = ∑
i

[
αxi + βi,i′ ∑

i′∈Ni

xixi′ + lim
ǫ→0

[
xiyi ln 2

1 − yi + ǫ

]
+ lim

ǫ→0

[ −yi ln 2

1 − yi + ǫ

]]
.

Since the last term only depends on y, we can find the MAP configuration by simplifying the
expression to:

V(x) = ∑
i

[
αxi + β ∑

i′∈Ni

xixi′ + lim
ǫ→0

[
xiyi ln 2

1 − yi + ǫ

]]

= ∑
i

[
α + β ∑

i′∈Ni

xi′ + lim
ǫ→0

[
yi ln 2

1 − yi + ǫ

]]
xi (8)

Having obtained an estimate
X̂ = {X̂1, . . . , X̂i, . . . , X̂n}
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An Application of Digital Image Restoration Techniques to Error Control Coding 11

of the error pattern, it can be used to find likelihood ratios for input to the decoder. For each
bit, we set the likelihood ratio to

Li =
P(Ci = −1|Yi, X̂i)

P(Ci = 1|Yi, X̂i)

The resulting probabilities can be seen in Table 2. In the table, ρ is the probability that a bit

Table 2. Input probabilities to the decoder

belonging to the error pattern is incorrectly estimated as a 1-bit. The parameter ρ must be
estimated by simulation, but should in general be small, indicating a relatively certain −1-bit.

5.4 Performance of estimation algorithm

The performance of the estimation algorithm depends heavily on the value of β, which
determines the degree of clustering in the error pattern. A critical performance parameter is
the probability ε that not all bits in the error pattern are detected by the estimation algorithm.
A bit that belongs to the error pattern, but is not detected as such, is given a high probability
of being correct, and can hence be the source of errors that are hard to correct. Therefore, ε is
an important measure of the reliability of the algorithm. As can be seen in Fig. 3, P(ε) is high
for β < 0.5, reflecting the fact that small and very irregular error clusters appear in this range.
P(ε) drops sharply initially, but levels out when β > 1 as a result of the clusters becoming
bigger and more coherent. As we shall see later, this is also reflected in the performance of the
algorithm.

10
-3

10
-2

10
-1

10
0

 0  0.5  1  1.5  2

P
(ε

)

β

Fig. 3. P(ε) for fixed β = 0.2 in the estimation algorithm.
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12 Image Restoration

5.5 Results

A regular LDPC code was used as the error correcting code component , with different values
of β in the simulations, and α = γ = · · · = 0 in the estimation algorithm. We assumed that the
receiver does not know the value of β used by the noise generating process. The components
of the simulator was then connected as shown in Fig. 6 The simulations show that there is
a large performance gain for some choices of parameter using the LDPC-MRF combination
described above. The value of β has great influence over the relative performance of the
two decoding methods. Looking in Fig. 5 at the performance of a code in combination with
the MAP error estimate and alone, under varying β, we can observe that the performance
difference between the two decoders increases as β increases. This is due to the effect
described in Section 5.4: as β increases, the reliability of the error estimate also increases.
We also notice that the drop in BER levels off at about β = 1 corresponding to the reliability of
the estimate leveling off from the same point. The performance of the decoder could also be
measured under varying bit error probabilities, but because the bit error probability depends

10
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Fig. 4. Performance under varying rate with β = 0.2 and β = 1.0
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on the parameter β in the Gibbs distribution in a way that makes it hard to predict the average
error probability over codewords, we fix the value of β to β = 0.2 and β = 1.0 which gives
an average error rate of about 0.12 and 0.02 respectively, and study the performance of joint
LDPC - MRF decoding for different code rates using these parameters. We see in Fig. 4 that
the effect of the MRF estimator gives very good results in combination with the LDPC code
when the code rate is sufficiently low, while the performance gap between the two decoders
gets smaller as the code rate grows. This occurs because the MRF-LDPC decoder needs a
certain amount of information from the code itself to determine the value of the bits in the
error pattern, even if the MRF estimator provides a perfect estimate of the errors.

6. Application to the two-dimensional binary symmetric channel

6.1 Channel model

In this section we will see how the outlined cluster detection technique can be applied to the
two-dimensional binary symmetric channel. On this channel, both the transition 1 → −1 and
−1 → 1 may take place.

Definition 3 (Componentwise product). Assume A and B are matrices with the same dimensions
d1 × d2 where d1 · d2 = n, and with coordinates ai and bi respectively. Then the componentwise
product of these matrices is defined as

A ∗ B = ai · bi, 1 ≤ i ≤ n

Now assuming X, Y and C are d1 × d2 matrices with bipolar coordinates, the effect of the
channel can be described as:

Y = C ∗ X

where
Y - received word

C - original codeword

X - error pattern

∗ - multiplicative operator on matrices defined as above

6.2 System model

Like in chapter 5.2, information I is encoded, producing a codeword C. Two-dimensionally
correlated noise X is applied to the codeword and the result Y is passed to the decoder. The
decoding process is different in this case, however. The likelihood values L from the SISO
are used to find some values δ that measures the distance between the received input and the
output of the SISO, multiplied by the channel value. The δ value can be seen as an estimate of
the value of the corresponding bit in X. These values are sent to the cluster detector to be used
as basis for producing an estimate of the error cluster which is in turn fed back to the SISO.
As in 5.2, the iterative process continues until a valid codeword is found or a set of stopping
criteria is met.

6.3 MAP estimation

6.3.1 distribution of ∆i

The values Y received from the channel is used to compute likelihood ratios LI =
{LI

1, LI
2, . . . , LI

n} for the bits. Since we assume that the variables are bipolar, the likelihood
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14 Image Restoration

Fig. 6. System model

ratios can be expressed as

LI
i =

P(Ci = −1|Yi)

P(Ci = +1|Yi)
.

These values are the channel values used in the SISO. The soft output from the

SISO-component in the decoder is LO = {LO
1 , LO

2 , . . . , LO
n }. The output LO of the SISO also has

the form of likelihood ratios. We now take the logarithm of LI and LO giving us the values

L̃I and L̃O. These variables are now real valued in the range 〈−∞, ∞〉, with a negative value
indicating a possible −1 bit and a positive value indicating a possible +1 bit. The difference

L̃I
i − L̃O

i measures the distance between the input- and output values, and multiplication by
Yi gives the relative direction ∆i of the change.

Fig. 7. Negative ∆i

As an example, in figure 7 the distance between the input and the output d is positive, but
Yi = −1, so the relative direction ∆i = −1 · d = −d is negative. This corresponds to a higher
probability that the bit was flipped by the channel.

Fig. 8. Positive ∆i

In figure 8 on the other hand, the distance d is negative and Yi = −1 so the relative distance
∆i = −d is positive, indicating a higher probability that the bit is correct.
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The values ∆i = Yi(L̃I
i − L̃O

i ) are sent to the detector, which computes the MAP estimate of the
configuration of X, i.e. the most likely X to produce the observed values. As is shown below,
knowing the distribution of P(∆i = δi | Xi = xi) is essential to the MAP estimate calculation,
so we shall make the assumption that the information from the SISO, ∆i, conditioned on Xi has
a normal distribution with variance σ and mean Xiμ. The conditional probabilities can then
be expressed as an exponential function by approximating them with the normal distribution
with mean xiμ so that

P(∆i = δi | Xi = xi) =
1

σ
√

2π
e
− (δi−xiμ)2

2σ2 . (9)

As an example of this, we can see in Fig. 9(a) and Fig. 9(b) the distribution of the ∆i’s for
Xi = −1 and Xi = +1 respectively, compared with the normal distribution with μ = ±0.55
and σ = 1.4. We can see that this approximation is reasonably good. MAP estimation of the
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Fig. 9. Distribution of the ∆i’s

error pattern X based on the values ∆ from the SISO, can be formulated as the maximization
of the a posteriori probability P(X = x|∆ = δ) with respect to x. That is, we want to find a
configuration x that makes the probability P(X = x|∆ = δ) as high as possible for a given δ.
Bayes rule gives us

P(X = x|∆ = δ) =
P(X = x)P(∆ = δ|X = x)

P(∆ = δ)
(10)

Since we are optimizing the expression for a given value of δ, we can maximize over

P(X = x)P(∆ = δ|X = x) (11)

instead of (10).

Based on the assumption that the distribution of P(∆i = δi | Xi = xi) is given by (9), we can
express the probability of a given δ conditioned on a configuration x by

P(∆ = δ | X = x) = ∏
i

P(δi | xi) = ∏
i

1

σ
√

2π
e
− (δi−xiμ)2

2σ2 (12)

Substituting (1) and (12) into (11), and taking T = 1, we can express the product of the
probabilities as:

P(X = x)P(∆ = δ | X = x) =
[

Z−1e−U(x)
]
∏

i

1

σ
√

2π
e−

(δi−xiμ)2

2σ2
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16 Image Restoration

In order to avoid computing Z in the above expression, we take the logarithm of both sides
and eliminate the constants to get

V(x) = U(x)− ∑
i

(δi − xiμ)
2

2σ2
. (13)

Since the natural logarithm is strictly increasing, optimizing (13) with respect to x also
optimizes (5).

We define the partial functions Vt of U(x) in (3) according to Li (2000) and Shridhar et al.
(1989):

∑
c∈C1

V1(c) = ∑
i

αxi

∑
c∈C2

V2(c) = ∑
i

∑
xi′∈Ni

βxixi′ i �= i′

Vt(·) = 0 ∀t > 2

This implies that we let the total probability depend on the value of each bit represented by
αxi and the value of each neighboring bit represented by βxixi′ , while we do not consider
more complex dependencies like three-ways dependencies and up. Note that the expression
for V2 implies that V2(xi, xi′ ) = β for xi = xi′and V2(xi, xi′ ) = −β for xi �= xi′ .

From this we get a new expression for V(x):

V(x) = ∑
i

⎡

⎣αxi + β ∑
xi′∈Ni

xixi′ −
(δi − xiμ)

2

2σ2

⎤

 ,

and expanding the last term of the sum yields

V(x) = ∑
i

⎡

⎣αxi + β ∑
xi′∈Ni

xixi′ −
(δ2

i − 2xiδiμ + x2
i μ2)

2σ2

]
.

The variables xi are bipolar so x2
i = 1 and we can simplify the expression to:

V(x) = ∑
i

⎡
⎣αxi + β ∑

xi′∈Ni

xixi′ −
(δ2

i − 2xiδiμ + μ2)

2σ2

⎤


= ∑
i

⎡
⎣αxi + β ∑

xi′∈Ni

xixi′ −
δ2

i

2σ2
+

2xiδiμ

2σ2
− μ2

2σ2

⎤


As we are doing a maximization with respect to xi, any term in the sum that does not contain

or otherwise depend on xi will not affect the result, and hence we cancel the terms − δ2
i

2σ2 and
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− μ2

2σ2 , and the expression to maximize over becomes:

V(x) = ∑
i

⎡

⎣αxi + β ∑
xi′∈Ni

xixi′ +
2xiδiμ

2σ2

⎤



= ∑
i

⎡

⎣α + β ∑
xi′∈Ni

xi′ +
μ

σ2
δi

⎤

 xi (14)

6.3.2 Optimization of V(x)
To do a global optimization of the expression above with respect to x would become
computationally infeasible as the size of x increases. Instead we can use the local dependencies
between bits to do a local optimization along the lines of the PDFE in Neifeld & King (1998);
Neifield et al. (1996) or the partial binary segmentation algorithm of Shridhar et al. (1989). It is
apparent that when V(x) is expressed as in (14), we can always choose the value of xi so that
each term in the sum becomes positive, and thus the sum is non-decreasing. For each node
we compute the value of

αxi + β ∑
xi′∈Ni

xi′ +
δiμ

σ2

and set the value of xi so that the product is positive. This procedure is iterated until we
converge on a solution where all terms in the sum are positive, or a maximum number of
iterations is reached. Normally the process arrives at a solution after less than 10 iterations.

Having obtained an estimate
X̂ = {X̂1, . . . , X̂i, . . . , X̂n}

of the error pattern, it can be used to find likelihood ratios for input to the SISO. For each bit,
we set the likelihood ratio to

Li =
P(Ci = −1|Yi, X̂i)

P(Ci = 1|Yi, X̂i)

The resulting probabilities can be seen in Fig. 10. In the table, ρ is the probability that a bit

Fig. 10. Input probabilities to the decoder

detected as belonging to the error pattern is actually a −1-bit, i.e. ρ = P(Xi = −1 | X̂i = −1).
For a given channel, the parameter ρ must be found experimentally by sending some known
codewords over the channel. When the receiver knows the value of X, the value of ρ can be
computed based on the value of the estimates X̂. ρ should in general be large indicating a
relatively certain −1-bit.
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18 Image Restoration

6.4 Results

We have implemented the system with an LDPC decoder as the SISO component, and we
assume a priori knowledge of the values α, β and ρ. The error-simulation process allows
upper bounding of the overall error rate of the channel, and the performance of the decoder
is measured for two different upper bounds on the error rate, denoted Eh, to investigate the
effect of varying error rates on the performance of the joint decoding and estimation. The
parameter β in the Gibbs distribution should ideally depend on the the bit error probability
of the channel, but in the simulations we have chosen to fix the value of β to β = 0.2 which
corresponds to an average error rate of about 0.12, and study the performance of joint LDPC
- MRF decoding for different code rates under this assumption. This is a rather "harsh"
assumption in the sense that in practice it should be possible to find an estimate of the value
of β before transmission takes place. The performance of the joint decoding and estimation
algorithm is compared to decoding of the same received information using the same LDPC
decoder component but under a random error assumption, i.e., the decoder assumes that there
are no dependencies in the error generating process. The LDPC codes used in the simulations
are generic regular LDPC codes that were not optimized for use on this particluar type of
channel. We see in Fig. 11 that the effect of the MRF estimator gives very good results in
combination with the LDPC code when the code rate is sufficiently low, while the performance
gap between the two decoders gets smaller as the code rate grows. This indicates that even
if the MRF estimator provides a perfect estimate of the errors, the MRF-LDPC decoder still
needs a certain amount of information from the code itself to determine the value of the bits
in the error pattern, and therefore the mutual gain when exchanging information between the
LDPC component and the channel detector component decreases as the code rate increases.

Fig. 12 shows that the performance of an LDPC-decoder in combination with the MAP error
estimate, relative to an LDPC code alone. We see that the gain is even greater for a higher
upper bound on the error rate, mainly because the MRF-estimate makes the most difference
in face of a high number of errors.
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7. Conclusion

By applying principles known form digital image restoration, we have introduced a
channel model for two-dimensional channels with memory based on Markov random
fields which allows us to describe spatially dependent errors. We have showed that a
significant performance gain over an ordinary error correcting code can be achieved , for
both the symmetric and the asymmetric binary two-dimensional channel by combining an
error-correcting component with an MRF-based burst detection algorithm. We have also
demonstrated that this decoding technique gives the most gain for larger clusters and for
lower information rates.
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