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1. Introduction

Image restoration or deconvolution of a blurred natural image is a mature research
activity with a rich set of available techniques and algorithms, well-summarised in review
articles, Banham & Katsaggelos (1997); Kundur & Hatzinakos (1996). Despite this history and
volume of work, there is current research activity motivated by the desire to find yet superior
methods to restore the ground truth image (GTI). Important performance metrics to assess the
efficacy of restoration methods include: restoration accuracy, computational complexity and
convergence speed. In this chapter we use these performance metrics in the development of
restoration methods of greatest utility for real-world applications where complexity/speed is
a major concern and the evaluation of image restoration needs to take into account the highly
structured features of natural images and, to a lesser extent, the human visual system.

The scope of this work focusses on non-blind image restoration where the point spread
function (PSF) of the blur convolutional kernel is known. Blind deconvolution is, by its
nature, a more challenging problem, Haykin (1994); Kundur & Hatzinakos (1996). However
with effective and efficient PSF estimation techniques, Fergus et al. (2006); Joshi et al. (2008);
Krahmer et al. (2006); Nayar & Ben-Ezra (2004); Oliveira et al. (2007), the research trend has
been to handling blind deconvolution in two steps, with PSF estimation as the first step and
image estimation as the second step, Levin et al. (2009). This motivates us to focus on efficient
algorithms for image restoration where the blur convolutional kernel is known.

In this chapter, we first analyze existing linear deterministic restoration models and develop a
class of novel models with better performance. Then using regularization as the basis, we link
linear deterministic and stochastic restoration models. By introducing a previously developed
novel visual metric to image regularization analysis, we study the purported superior
performance of stochastic prior models and demonstrate that those models are not superior
to simpler linear deterministic prior models. In addition, we show that the high complexity
“derivative likelihood” models under the maximum a posteriori (MAP) framework offer no
significant advantage to a properly configured, efficient “normal likelihood” model.

2. Quadratic regularization in image restoration

2.1 Regularization

Image acquisition being an inverse problem can be modeled by a continuous model in an
infinite dimensional space, which is categorized as a (linear) Fredholm integral equation of
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the first kind, Demoment (1989). In the sense of Hardamard, Hadamard (1952), a solution
to a well-posed problem satisfies the conditions of existence, uniqueness and stability. As
Fredholm integral equations of the first kind do not meet the criteria for a well-posed problem,
image restoration belongs into the general class of problems which are classified as ill-posed
problems, Tikhonov & Arsenin (1977). The ill-posed nature of image restoration problem
implies that, small bounded perturbations in the data may lead to unbounded deviations in
the solution, Phillips (1962).

For images defined on a discrete set, linear algebra can be used to find solutions for
ill-posed problems such as image restoration. One of the simplest methods to restore images
affected by a linear distortion is the use of the pseudo inverse, Albert (1972), for which the
solution fulfils the first two conditions (existence and uniqueness) of Hardamard’s well-posed
problem, Hadamard (1952), but fails in meeting the stability condition. This motivates or
leads to regularization as one of the most widely accepted and used techniques, in which
the solution fulfils all three conditions of a well-posed problem. The concept underlying
regularization is to find an acceptable solution from imperfect data, for which, the problem
should be stated more completely by including some extra or priori information, Miller (1970);
Tikhonov & Arsenin (1977).

Regularization approaches to image restoration are classified broadly in two ways: stochastic
regularization which uses the knowledge of covariance matrices of the GTI and noise; and
deterministic regularization which deems that most natural images are relatively featureless
with limited high-frequency activity, Banham & Katsaggelos (1997). While stochastic
regularization has been used extensively in the past, with important contributions to the field
such as Wiener filter, Wiener (1942), recently, much emphasis has been on the use of derivative
filters with deterministic regularization, Fergus et al. (2006); Levin et al. (2007). Thus, our
contribution in this chapter relates to deterministic regularization and the term regularization,
henceforth, refers to deterministic regularization techniques.

Among many regularization techniques, Tikhonov, Tikhonov & Arsenin (1977) regularization
is one of the first and best-known techniques for stabilization. It was proposed in Tikhonov &
Arsenin (1977), that the solution for

b = Kg + n, (1)

where b is the measured data, g is the original data (ground truth), K is the distortion
operator or the transformation and n represents additive random noise, can be achieved
by constrained minimization of a functional Φ(g), which is called the stabilizing functional.
Under the stabilizing functional approach, the image restoration problem is formulated as
determining an estimate ĝ of g, which minimizes the functional Φ(g) under the condition that
the estimate ĝ satisfies

‖b −Kg‖2 = δ, (2)

where δ is a positive constant and ‖ · ‖ denotes the Frobenius norm

‖A‖ =

√√√√
m1

∑
i=1

m2

∑
j=1

a2
ij (3)
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Regularized Image Restoration 3

for some matrix A and aij is the (i, j) entry. The constrained minimization problem in (2)
can be solved by the method of Lagrange multipliers, which is to determine ĝ, an estimate of
ground truth g, by minimizing the functional

‖b −Kg‖2 + λ Φ(g), (4)

where λ > 0 is the Lagrange multiplier and is often called as the regularization parameter.
As the regularization parameter, λ, controls the tradeoff between the solution accuracy ‖b −
Kg‖2 and its degree of regularity Φ(g), choosing a proper value for λ is important in image
restoration.

The first term in (4), named as data-fidelity term fits to the data, while stabilizing functional
incorporates “believed” properties of the GTI. Generally the data-fidelity term is a standard
fixed choice. In contrast, the richness and variety of image restoration techniques comes
down to different choices of the regularization term, reflecting different implicit models. As
the choice of the stabilizing functional can take a variety of forms, in this chapter, we selected
two widely used model classes for our analysis: the fast quadratic stabilizing functionals
introduced in section 2.2, and Sparse and Laplacian prior methods in section 3.2. The latter
model class can be developed from relating the stabilizing functional to the priori knowledge
using a probabilistic viewpoint and is claimed to have better performance, Levin et al. (2007).

When the stabilizing functional Φ(g) in (4) belongs to the class of nonnegative quadratic
functionals, the minimization problem can be expressed as

ĝ = arg min
g

‖b −Kg‖2 + λ ‖Dg‖2, (5)

where D is a bounded linear operator, Miller (1970) and is often called the regularization
operator or stabilizing operator. It is shown in Hunt (1973), that the minimization problem in (5)
can be formulated as a constrained least squares image restoration problem when the solution
g satisfies the necessary and sufficient condition of

(KTK+ λDTD)g = KTb. (6)

This leads to the closed form solution for (5) in the form

ĝ =
(
KTK+ λ(DTD)

)−1KTb. (7)

We extend, in a trivial way, the above formulation by considering D as the combination of R
component regularization operators, in the form of

Dg �
(
DT

1 ,DT
2 , . . . ,DT

R

)T
g. (8)

With the introduction of R Lagrange multipliers, the general form of (5) can be expressed as

ĝ = arg min
g

‖b −Kg‖2 +
R

∑
r=1

λr‖Drg‖2, (9)

for which, the closed form solution is given by

ĝ =
(
KKT +

R

∑
r=1

λr(DT
r Dr)

)−1KTb. (10)
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As the images are of limited support and when the corresponding hypothesis of uniformity
on image edges can be made, the matrices K and D in (10) have a special structure and are
called block circulant matrices, Hunt (1971). As circulant matrices can be diagonalized by the
discrete Fourier transform, the minimization in (9) can be solved extremely quickly using the
Fourier domain techniques, Hunt (1973).

2.2 Regularization operators as components in quadratic stabilizing functionals

The generality of the regularization operator allows the development of a class of linear
operators and the minimization in (9) will be the source of many regularizing solutions
for (1) depending on the choice of the regularization operator. This choice is usually based
on the known details of the image formation process and plays an important role in the
regularization.

The simplest regularization operator is when D is an identity matrix, where Dg = g, and
the regularized solution for this was referred as minimum norm restoration, Hunt & Andrews
(1977). In general, D often takes the form of a sparsifying operator such as a discrete
approximation of a derivative operator. Through the experiments in Zhu & Mumford (1997),
it was shown that even though the statistics of natural images vary from image to image, the
histograms for the response of derivative filters are relatively consistent and scale invariant
across the images. Taking these factors into consideration, in this section, we discuss a class
of regularization operators based on the partial derivative operators (PDO), which could be
used in the quadratic stabilizing functional.

2.2.1 First order partial derivative operator

When first order partial derivative operators (FOPDO) are considered as the regularization
operators, Dg in (8) can be expressed as

Dg =

(
∂x

∂y

)
g,

where ∂x and ∂y are any discrete space, spatially invariant linear operators that emulate
first order derivative in x and y directions, respectively, Levin et al. (2007). This type of
regularization uses two component regularization operators.

2.2.2 Second order partial derivative operator

Second order partial derivative operators (SOPDO), can be derived mainly in two forms.

1. Isotropic SOPDO – When the regularization operator takes the form

Dg =

(
∂xx

∂yy

)
g,

it is called the isotropic SOPDO. Though the SOPDO defined above cannot be considered
as a true isotropic differential operator, such as the continuous Laplacian operator, it gives
the simplest possible isotropic operator with even-order derivatives, Leung & Lu (1995).
Similar to FOPDO, ∂xx and ∂yy represent any discrete space, spatially invariant linear
operators that emulate second order derivatives.
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2. Non-isotropic SOPDO – The non-isotropic SOPDO is formed by

Dg =

⎛
⎝

∂xx

∂xy

∂yy

⎞
⎠ g.

As the edges and lines in images may occur in any direction, when the differential operator
is isotropic it would give better results than a non-isotropic differential operator, Leung & Lu
(1995).

2.2.3 Mixed partial derivative operator

In general, considering only even-order derivatives, the use of directional derivatives in more
than one dimensional can be expressed as

Dg =
(
∂

p

s
p
1

, ∂
p

s
p
2

, . . . , ∂
p

s
p
m

)
g. (11)

where p is the order of the derivatives, m is the number of dimensions and s1 to sm represent
the direction of the derivatives.

Using the above general model, we introduce a new regularization operator, with different
combinations of higher order derivative operators. In this discussion, we limit the use of
higher order derivative operators up to the second order, and the new PDO is called first and
second order derivative operator (FSOPDO). With FSOPDO, Dg in (11) takes the form

Dg =

⎛
⎜⎜⎝

∂x

∂y

∂xx

∂yy

⎞
⎟⎟⎠ g.

These quadratic regularization functionals are compared in a new perspective with the widely
used prior models which are believed to result in better performance in section 3.5.

2.3 Non-blind image restoration through SOPDO

2.3.1 Noisy image deconvolution

Although most previous image restoration algorithms have considered FOPDO as the
regularization model, Levin et al. (2007), we claim that SOPDO has better performance in
terms of the difference between the ground truth and the estimated data on images which
are susceptible to noise. Here, we deal only with additive Gaussian noise, as it effectively
models the noise in many different imaging scenarios. In this section, we study in detail a few
simulation results which are used to do comparison evaluations with other existing image
restoration techniques.

We take non-isotropic SOPDO as the regularization operator for image restoration through
least squares restoration as given in section 2.2. In order to compare the performance of
the non-isotropic SOPDO prior model, we take two regularization models, FOPDO and
a sparse stabilizing functional defined in Levin et al. (2007). Relating regularization to
probability, the stabilizing functional in image restoration is also referred as prior model and

123Regularized Image Restoration
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Smoo- Non-isotropic SOPDO FOPDO Sparse

thing MSE Time MSE Time Itera- MSE Time

weight ×10−4 in seconds ×10−4 in seconds tions ×10−4 in seconds

0.1 4.978 0.43 5.168 0.44 10 8.050 27

0.05

4.646 0.42 4.730 0.44 10 6.899 27

50 6.153 117

100 6.128 231

0.01 6.043 0.42 7.561 0.44 10 4.289 27

Table 1. Comparison of stabilizing functional model.

a detailed discussion of the Bayesian interpretation to regularization, including the Sparse
prior model, is covered in section 3.2. The deconvolution with non-isotropic SOPDO and
FOPDO regularization lead to closed form solutions with highly efficient computation, while
the Sparse prior cannot be minimized in closed form, Levin et al. (2007). In all the simulations
discussed in this section we use

λr = λ, ∀ r ∈ 1 . . . R, (12)

for the quadratic regularization functionals, where the value of R depends on the respective
model such as R = 2 for FOPDO and R = 3 for non-isotropic SOPDO model.

We claim, using non-isotropic SOPDO prior gives better results for images which
are susceptible to noise over the FOPDO. When comparing the non-isotropic SOPDO
regularization with the Sparse prior, we found that the non-isotropic SOPDO regularization
outperforms Sparse prior significantly in speed. These results are shown in Table 1.

For the experiment in Table 1, we added “Gaussian” noise to the original “Picasso”
image, Shan et al. (2008) with a standard deviation of 0.0001 (relative to the image value range
of 0 to 1). The original colored image was first converted to greyscale with the pixel values
resulting in the range from 0 to 1 and the original image was considered to be periodic. The
term MSE stands for mean square error and for a two dimensional image, MSE is defined as

MSE �
1

L1L2

L1

∑
ℓ1=1

L2

∑
ℓ2=1

(
g(ℓ1, ℓ2)− ĝ(ℓ1, ℓ2)

)2
(13)

where g and ĝ represent GTI and the estimated GTI, respectively while L1 and L2 represent
the size of the image in x and y directions, respectively. The MSE values in Table 1 are in
multiples of 10−4 while the time is given in seconds. The results show that the non-isotropic
SOPDO outperforms FOPDO on MSE and has a significant advantage over Sparse prior on
speed performance.

2.3.2 Efficiency in deconvolution

As SOPDO can use frequency domain deconvolution techniques, it can be implemented
highly efficiently than most of the recent non-blind deblurring techniques. The comparison
was done with the Sparse deconvolution algorithm in Levin et al. (2007) named as “Levin
Sparse deconvolution” and the non blind deconvolution of, Shan et al. (2008) (distributed
online) named as “Shan executable”. The results in Table 2 support the claim that
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Restoration Technique Efficiency in seconds

Levin Sparse deconvolution (50 iterations) 556

Levin Sparse deconvolution (10 iterations) 124

Shan executable 39

Non-isotropic SOPDO deconvolution 2

Table 2. Efficiency in non-blind image deconvolution

Restoration Image size Kernel size Efficiency

Technique in pixels in pixels in seconds

Levin Sparse deconv. 484 × 752
19 × 27 576

(50 iterations)
99 × 99 556

910 × 903 99 × 99 1240

1107 × 1694 99 × 99 2429

Shan executable

484 × 752
19 × 27 40

99 × 99 73

910 × 903 99 × 99 166

1107 × 1694 99 × 99 Error

Non-isotropic SOPDO 484 × 752
19 × 27 2.34

regularization
99 × 99 2.44

910 × 903 99 × 99 5.54

1107 × 1694 99 × 99 13.17

Table 3. Efficiency results on scaling

non-isotropic SOPDO regularization model results in the best speed performance when
compared with “Levin Sparse deconvolution” and “Shan executable” methods.

Further, we tested for the robustness of non-isotropic SOPDO regularization by using different
sized images with varying sized kernels. The detailed results are shown in Table 3. All the
images used for this experiment are color images, having separate rgb (red, green, blue)
channels. The image and kernel sizes are given in pixels and the efficiency was measured
in seconds. The results clearly show the robustness and the efficiency of the non-isotropic
SOPDO regularization model with respect to different scales of image and kernel.

2.3.3 Performance in deconvolution

Several computational experiments were carried out in order to compare non-isotropic
SOPDO regularization with “Levin Sparse deconvolution” and “Shan executable”. The
performance of these deconvolution techniques on a naturally blurred, highly textured image,
given in Shan et al. (2008), are shown in Fig. 1 and Fig. 2. The blur kernel used in this
experiment was retrieved through the blind deconvolution package of, Shan et al. (2008)
distributed online. Closer visual inspection of the image results show that non-isotropic
SOPDO technique best shows the tree branches and leaves while the other techniques have
a blurring effect still remaining on the estimated result. This fact is further discussed and
evidenced by evaluating the deconvolution in a new perspective in section 3.5.

125Regularized Image Restoration
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(a) 27 × 27 Blur Kernel scaled upwards (b) Blurred Image

Fig. 1. Image results for a highly textured image

3. Comparison of sparse prior models to quadratic regularization

3.1 Key issues

While the development of regularized solutions for ill-posed problems is widely discussed in
the signal processing literature, recently by looking at the ill-posed image restoration problem
from a probabilistic view point, some researchers claim that the Sparse prior model, Fergus
et al. (2006); Levin et al. (2007) (discussed in more detail below in section 3.2.1) outperforms
quadratic regularization models (discussed in section 2.2). The analytical study in this section
addresses the following problems:

1. Are sparse prior models superior to quadratic regularization models?

2. What is the source of better performance of sparse prior models?

3. Are fast quadratic regularization models good enough for image restoration?

3.2 Regularization – Bayesian interpretation

Inverse problems such as image restoration are seen as probabilistic inference problems,
where lack of information is compensated by assumptions. Therefore, it is not surprising,
when the nature of the regularization detailed above is taken into consideration, to see that
there is a close relationship between regularization and Bayesian estimation. Applying Bayes
theorem to the image restoration problem in (1), for a known blur kernel, the posterior
distribution can be written as

p(g|b) ∝ p(b|g) p(g), (14)

where p(b|g) represents the likelihood and p(g) represents the prior for the ground truth
image. The estimation of the GTI based on posterior distribution can be classified in several
ways. The minimum mean-square error estimate represents the mean of the posterior density,
the MAP estimate stands for the mode of the posterior density while the maximum likelihood

126 Image Restoration – Recent Advances and Applications
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(a) Shan executable (b) Levin Sparse deconvolution –
10 iterations

(c) Levin Sparse deconvolution –
50 iterations

(d) non-isotropic SOPDO
regularization

Fig. 2. Image results for a highly textured image

(ML) estimate may be viewed as a special case of MAP where no prior distribution is
used, Hunt (1977).

Under the MAP technique, estimation of the GTI simplifies to

ĝ = arg max
g

p(g|b). (15)

Considering the non-blind image deconvolution process, we convert (15) to an energy
minimization problem, where the energy is defined as

E(g) � − log
(

p(g|b)
)
. (16)

Different likelihood and prior models on the ground truth have been applied for image
restoration in literature. An analysis of existing prior models can be found in Mignotte (2006).

127Regularized Image Restoration
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Considering the fact that for a given g, the variation in b is due to the noise n, Hunt (1977),
together with the above definitions, non-blind image restoration problem can be recast as
seeking the unknown GTI, g(i, j), that minimizes the functional

∥∥b −Kg
∥∥2

+
R

∑
r=1

∑
ij

λr ρ
(
Drg(i, j)

)
, (17)

where Dr is the rth of R linear operators, i, j are pixel indices, λr > 0 are the regularization
parameters,

∥∥ ·
∥∥ stands for the Frobenius norm and ρ(·) is a scalar memoryless nonlinear

mapping, generally taking the form

ρ(z) � |z|α (18)

for judicious choice of real parameter α (not necessarily integer).

Many techniques belong to this class and differ only in: the set of linear operators Dr, r =
1, 2, . . . , R, and the nonlinear mapping ρ(z) (or choice of α). Numerous image restoration
techniques have been developed under this framework from the early work, Geman & Geman
(1984); Greig et al. (1989) to the most recent research, Fergus et al. (2006); Levin et al. (2007;
2009); Shan et al. (2008).

3.2.1 Sparse prior model

In recent literature, it is shown that, when derivative filters are applied to natural images,
the filter outputs tend to be sparse, Olshausen et al. (1996); Simoncelli (1997). That is, the
histogram of the derivative filtered image peaks at zero and falls off much faster than a
Gaussian distribution. These heavy tailed natural image priors are used in a number of
applications in image processing literature, such as denoising, Roth & Black (2005); Simoncelli
(1999), reflection separation, Levin & Weiss (2007); Weiss (2001) and deconvolution, Levin
(2007); Shan et al. (2008) in which, they are implemented in various ways such as student-t
distributions, Roth & Black (2005) and scale mixtures of Gaussian distributions, Fergus et al.
(2006); Portilla et al. (2003).

In Levin et al. (2007), sparsity is incorporated by having Dr as the derivative filters and α = 0.8
in (18) as the prior term, which results in

∥∥b −Kg
∥∥2

+
R

∑
r=1

∑
ij

λr
(
Drg(i, j)

)0.8
. (19)

This can be solved in the spatial domain using the Conjugate Gradient algorithm, Barrett et al.
(1994).

3.2.2 Laplacian prior model

Although not as close as the Sparse prior to the natural image priors, Laplacian prior with
α = 1 in (18) is expected to result in a less smooth solution than the Gaussian prior. With the
Laplacian prior, the optimization becomes

∥∥b −Kg
∥∥2

+
R

∑
r=1

λr‖Drg‖1. (20)
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Recently, much attention has been paid in solving L1 norm regularization problems through
compressed sensing. in Kim et al. (2007), an efficient method for optimizing a solution to a
problem similar to (20) was discussed when Dr are invertible.

3.2.3 Gaussian prior model

When α = 2, minimization in (17) is called the Gaussian prior deconvolution in Levin et al.
(2007) and is equivalent to the quadratic regularization problem in (9). Thus, in this chapter,
we use the terms Gaussian prior and quadratic (specifically isotropic SOPDO) regularization
interchangeably.

3.3 Image restoration evaluation

3.3.1 Visual metric for evaluation

For all the restoration performance analysis and comparisons in this paper, we use a recently
developed visual metric called SSIM (Structured SIMilarity) index, Wang et al. (2004), which
has not been used for the comparison of prior models in the image restoration literature to
date. The approach of SSIM is motivated by the highly structured characteristics of the natural
image, where the strong neighborhood dependencies carry important information about the
structures of the objects in the visual scene, Wang & Bovik (2009).

Assuming x and y are local image patches representing the same patch in the original and
estimated images, the local SSIM index measures the similarities of three elements of the
image patches: the similarity ℓ(x, y) of the local patch luminances (brightness values), the
similarity c(x, y) of the local patch contrasts, and the similarity s(x, y) of the local patch
structures. These local similarities are expressed using simple, easily computed statistics, and
combined together to form local SSIM, S(x, y), Wang & Bovik (2009).

S(x, y) = ℓ(x, y) · c(x, y) · s(x, y)

=
( 2µxµy + C1

µ2
x + µ2

y + C1

)
·
( 2σxσy + C2

σ2
x + σ2

y + C2

)
·
( σxy + C3

σxσy + C3

)
, (21)

where µx and µy are the local sample means of x and y, respectively, σx and σy are the local
sample standard deviations of x and y, respectively, and σxy is the sample cross correlation of
x and y after removing their means. The items C1, C2, and C3 are small positive constants that
stabilize each term, so that near zero sample means, variances or correlations do not lead to
numerical instability.

Due to the fact that the underlying principle of SSIM is to extract the structural information
which complies with the human visual system, SSIM maps are asserted to be a better signal
fidelity measurement over MSE, Wang & Bovik (2009). In evaluating images through MSE,
all image pixels are treated equally and content dependent variations in image fidelity are
not accounted for. The two main indicators in SSIM evaluations, mean SSIM (MSSIM) and
SSIM maps have values in the range from 0 to 1, where 1 indicates the best restoration.
Although MSSIM and SSIM maps are generally used as visual fidelity metrics, we evaluate
image restoration with the histogram of the SSIM map, as it provides an accurate view of the
local restoration.
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g K b L ĝ

Fig. 3. Image restoration model, where g is the ground truth image, b is the distorted image,
K is the blur operator, L is the deblur process and ĝ is the estimated image.

Model artifacts Process artifacts

g K + b L + ĝ

Fig. 4. Simulated image restoration model.

3.3.2 Image restoration models

Ignoring the presence of noise in image acquisition represented by (1), general image
restoration could be represented by the model shown in Fig. 3, where L represents the deblur
process. The notation in (1) and the representation in Fig. 3 may be an over-simplification.
From physical intuition, we could see that even though g is continuous by nature, image
recording imposes limitations on the spatial extent of g and b, leading to artifacts which impact
on the final estimate of image restoration.

As illustrated in Fig. 4, we categorize these spatial artifacts in two ways. The “Model
artifacts” are those, which are not present on naturally blurred images, but introduced in
blur simulations as a result of sharp intensity transitions at the boundary of a finite image.
Generating a blur image from a finite GTI causes unnatural blur distortions in the vicinity of
the boundary of the image. Suppression of these “Model artifacts” could be accomplished by
preprocessing the observed degraded image with techniques such as truncation and reducing
the size of the blurred image. On the other hand, “Process artifacts” come along with
the deblur process L due to finite b, which affect the performance of most deconvolution
algorithms.

In order to show the effect of “Process artifacts”, we restore an image, originally, of size
255 × 255 pixels, but truncated in order to remove the “Model artifacts” introduced by
a 13 × 13 pixels blur kernel, making the final image of size 242 × 242. The results of
restoration with Sparse, Laplacian and Gaussian priors are shown in Fig. 5. In this experiment,
deconvolution with Sparse and Laplacian priors were carried out using iterative re-weighted
least squares (IRLS) method, Meer (2004), through the code available online, Levin et al.
(2007), while the Gaussian prior is processed with both IRLS and fast Fourier techniques (FFT)
separately. In our simulations, we processed IRLS for 150 iterations beyond which there were
no further improvements. Analyzing the results of the performance of the Gaussian prior
model with the FFT and IRLS techniques, we see that process artifacts are better handled by
the IRLS technique than the FFT and this result is justified by the IRLS processing of Sparse
and Laplacian prior models.

Both the “Model” and “Process” artifacts discussed above are not part of natural images, but
are imposed artificially by the image modeling and processing techniques. Thus we claim that
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Fig. 5. Image restoration results with prior models.

Regularization operator r λr

FOPDO 1, 2 β1

SOPDO 3, 4 β2

FSOPDO
1, 2 β1

3, 4 β2

Table 4. Choice of regularization parameter (λ) values for different quadratic regularization
operators used in the simulations of Table 5

the evaluation of image restoration should be carried out excluding these artifacts to properly
assess the performance of any image restoration method.

3.4 Performance of quadratic regularization operators

In order to achieve the objective of studying the performance of different operators in the
quadratic regularization as detailed in section 2.2, we carried out some simulations, where
we avoided the effect of “Model artifacts” by taking a boundary strip off from the blurred
image. In our evaluations, we used FOPDO, SOPDO and FSOPDO models to compare the
performance. From this point onwards the term SOPDO refers to isotropic-SOPDO unless
stated otherwise.

The simulations, for which the results are demonstrated in Fig. 6, are executed in the
same environment as the simulation for Fig. 5, but with quadratic regularization models.
We evaluated the performance of the regularization models under varying regularization
parameter (λ) values as discussed in section 2.2. While the choice of parameters representing
λ for FOPDO, SOPDO and FSOPDO are given in Table 4, the actual values for the respective
parameters are given in Table 5.

While the overall SSIM values for few of the simulation results under varying λ values are
shown in Table 5, the histogram distribution representing the first line of Table 5 is shown
in Fig. 7. Overall, by analyzing these results, we claim that, in the presence of “Process
artifacts”, a better performance could be achieved with FSOPDO over FOPDO and SOPDO
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Fig. 6. Image restoration results with quadratic regularization models.

MSSIM values for

Regularization parameter FOPDO SOPDO FSOPDO

β1 = β2 = 0.001 0.9412 0.9597 0.9626

β1 = 0.001, β2 = 0.003 0.9596 0.9597 0.9657

β1 = 0.003, β2 = 0.001 0.9412 0.9674 0.968

Table 5. Performance of quadratic regularization operators under varying regularization
parameter values
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Fig. 7. Image restoration results for simulations in Table 5

models. In the next section we compare the performance of these quadratic regularization
models by removing the “Process” and “Model” artifacts.

3.5 Regularization model performance comparison

As shown earlier in section 2.2, we modeled the regularization of image restoration based
on the quadratic regularization terms (sometimes called as the least squares regularization)
and in section 3.2, we discussed the existing probabilistic models under a MAP framework.

132 Image Restoration – Recent Advances and Applications

www.intechopen.com



Regularized Image Restoration 15

g K b L z PM (z) ĝ

Fig. 8. Image restoration model for a naturally blurred image, where K is the blur process, L
is the deblur process, g, b, z, ĝ stand for GTI, blur image, deblurred image with artifacts, and
the final estimated GTI respectively. The process PM(z) decouples “Model” and “Process”
artifacts from the deblurred image .

These models form a method of regularization in image restoration. This section is devoted
for the comparison of these models. The comparison in this section will guide us for making
recommendations for the appropriate regularization technique and is discussed at the end of
this section.

3.5.1 SSIM performance comparison

As the objective of our simulations is to evaluate the contribution of the regularization models
towards image restoration, we use the restoration model shown in Fig. 8, where we decouple
artifact effects from restoration by projecting the estimated image with

PM(z)(i, j) =

{
z(i, j), if i, j ∈ M

0, otherwise
(22)

where M is a region without “Model” and “Process” artifacts.

To be consistent with the SSIM map region in Fig. 5, we take a large image of support
1024 × 1024 and project the final image to a 242 × 242 region within the inner region of the
estimated image, which is least affected by the artifacts. The restoration was carried out with
FFT processing of the Gaussian prior and IRLS processing of Sparse and Laplacian priors. The
comparison of the performance of the priors is shown in Fig. 9. In it we note that Gaussian
prior with FFT processing has performed as well as or better to the Sparse and Laplacian prior
models.

As the literature claims that iterative algorithms such as conjugate gradient algorithms
suppress noise and perform better in noisy blur image restoration, we simulated a
noisy blurred restoration under the same conditions given for Fig. 9, but with different
regularization parameter values, as more weight should now be given to the prior over data.
The noise added was Gaussian with zero mean and 0.01 variance. The optimal results we
obtained for varying λ are shown in Fig. 10. With these results, we claim that Gaussian prior
handles noisy images as better as the Sparse and Laplacian prior models.

Thus, these results pave a new path of thinking and we claim that quadratic regularization
with SOPDO model, when appropriately configured and used in a realistic context, free
from unnatural artifacts, is comparable to Sparse prior model in terms of image restoration
performance under the SSIM criterion.

3.5.2 Efficiency comparison

As the optimization problem in least-squares regularization is convex and as the fast Fourier
techniques could be applied for the computation, for an image of size L × L pixels, the
restoration through least-squares regulation has a complexity of O(L log L) operations. In
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Fig. 9. Image restoration results for the system in Fig. 8 with FFT processing of Gaussian
Prior and IRLS processing of Sparse and Laplacian prior models.
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Fig. 10. Image restoration results for a noisy image under the same environment in Fig. 9.

contrast, when a Sparse prior is used, the optimization problem is no longer convex and
cannot be minimized in closed form. Using the conjugate gradient method, Barrett et al.
(1994), or IRLS method, the optimization can be solved in O(L imax) where imax represent
the maximum number of iterations.

A few simulation results on efficiency are shown in Table 6, where all the values are in seconds
and represent the time taken for the restoration using each of the respective model. While the
quadratic regularization deconvolution was carried out using Fourier domain techniques, the
Sparse deconvolution was carried out using the IRLS method. Under the IRLS algorithm, it is
experienced that in order to achieve an acceptable result, the number of iterations should be
at least 50 and better results could be achieved when the number of iterations are above 100.
From the results shown, it is evident that when the size of the image increases, the relative
efficiency of the restoration through Sparse prior model becomes extremely low.
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Image size Time for Quadratic Time for Sparse prior

in pixels regularization with FFT 50 iterations 100 iterations

grey-scale 255 × 255 0.08 30 60

grey-scale 1024 × 1024 1.1 303 596

colored 484 × 752 1.7 371 730

colored 1107 × 1694 9.0 2180 4292

Table 6. Efficiency of regularization operators. The times taken for restoration of grey-scale
and colored images are given in seconds for each of the regularization operators.

3.5.3 Regularization recommendations

In addition to lower efficiency and not-superior performance, Sparse prior models lack in
proper theoretical guidelines for selecting the best regularization parameter. In contrast,
the quadratic regularization models can use well-established methods such as L-curve
criterion, Hansen (1998) and the Generalized Cross Validation criterion, Hansen (1998) for
choosing the value of λ. Difficulties in selecting the optimal converging point in non-convex
minimization techniques such as IRLS also is an issue.

According to the theoretical and experimental details provided above, we propose that
if we could decouple image restoration and “Process artifact” handling, then the use of
quadratic regularization models will result in more efficient and effective image restoration
in comparison to Sparse and Laplacian prior models. The decoupling of image restoration
and “Process” artifact handling could be achieved through techniques such as tiling, Liu & Jia
(2008), which enables the uses of the efficient least squares regularization.

Thus, coming back to our problem formulation in section 3.1, we claim that:

1. Sparse prior models are not superior to quadratic regularization models in terms of
performance in image restoration.

2. In terms of efficiency, Sparse prior models are significantly inferior to quadratic
regularization models.

3. The performance through Sparse prior model increases over quadratic regularization
models when boundary effects are not addressed and processing artifacts are not
compensated for.

4. Quadratic regularization models provide the best image restoration for large images in
terms of efficiency and effectiveness while they provide a good enough solution for other
images when the boundary artifacts are taken care of.

Analyzing the above items further, if the improvements of the Sparse prior model are in
artifact handling, not in image restoration, we can pose the following questions.

“Do more complicated prior models such as Sparse, which are asserted be better matched
to natural images, actually help image restoration in terms of restoring natural image
features?”

“If those complicated prior models hold no significant advantage, is it worth the effort spend
on them compared to simple and efficient prior models which restore closer or better than
those prior models?”
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4. Likelihood model analysis

Different likelihood models in the prior model in (14) have been studied in various ways. The
fact that most of these models are not justified with proper theoretical foundations encouraged
us to analyze and understand the variations and the validity and accuracy of the (implicit)
underlying assumptions, which could explain the different performances.

This investigation guides our development of a new scheme for the multiple image likelihood
model described in section 4.1.2. The likelihood model analysis is carried out using this new
model and the theoretical analysis is corroborated by the computational experiments detailed
in section 4.3.

4.1 Likelihood models in image restoration

4.1.1 Likelihood model for a single image

In image restoration literature, the likelihood for a single image is defined by modeling the
image noise (n) as a set of independently and identically distributed (i.i.d.) random variables
following a Gaussian distribution for all pixels, which is given by

p(b|g) =
L1

∏
ℓ1=1

L2

∏
ℓ2=1

N
(
n(ℓ1, ℓ2)|0, σ

)
, (23)

where N(·|µ, σ) denotes a Gaussian distribution with mean µ and variance σ2, while L1 and
L2 represent the image support.

4.1.2 Likelihood model for multiple images

Based on the above likelihood model for a single image, we develop a new model for the
likelihood of multiple images as detailed below.

Given a set of R degraded images of a common GTI g, the posterior distribution for the GTI
can be derived by extending (14), resulting in

p(g|b1, b2, . . . , bR) ∝ p(b1, b2, . . . , bR|g) p(g), (24)

where, generalizing (1),

br = Krg + nr, r = 1, 2, 3, . . . , R (25)

and Kr are operators representing possibly different but known blurs, and nr are noise images.
Under the assumption that np is independent of nq for all p �= q, the likelihood in (24) is

p(b1, b2, . . . , bR|g) =
R

∏
r=1

N(nr). (26)

Thus, for a group of R images satisfying the noise independency condition in (26), the
likelihood can be modeled as

p(b1, b2, . . . , bR|g) =
R

∏
r=1

L1

∏
ℓ1=1

L2

∏
ℓ2=1

N
(
nr(ℓ1, ℓ2)|0, σr

)
, (27)

where σr represent the standard deviation of the Gaussian distribution for nr. This new model
for the likelihood of multiple images will be used for the analysis of likelihood models in the
next section.
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r ∂r ∂rn ω(∂r)

1 ∂1 ∂xn 1

2 ∂2 ∂yn 1

3 ∂3 ∂xxn 2

4 ∂4 ∂xyn 2

5 ∂5 ∂yyn 2

Table 7. An example of set Θ in (30) with R = 5

4.1.3 Likelihood models for analysis

Out of the various likelihood models introduced in the literature of image restoration, we
consider two recent approaches in Levin et al. (2007) and, Shan et al. (2008) for our analysis.

In Levin et al. (2007), the single image likelihood conforms to (23) and is explicitly given by

p(b|g) ∝ e
− 1

2σ2 ‖Kg−b‖2

, (28)

where ‖ · ‖ stands for the Frobenius norm.

In Shan et al. (2008), the likelihood is defined with different orders of partial derivatives,
denoted by operator ∂r, of a single degraded image. For ease of understanding, we represent
their model in the form

p(b|g) = ∏
∂r∈Θ

L1

∏
ℓ1=1

L2

∏
ℓ2=1

N
(
n(ℓ1, ℓ2)|0, σ

)
N
(
∂rn(ℓ1, ℓ2)|0, σω(∂r)

)
, r = 1, 2, 3, . . . , R (29)

where Θ is a set of partial derivative operators given by

Θ � {∂1, ∂2, ∂3, . . . , ∂R}. (30)

For example, in Shan et al. (2008), the set Θ has the elements {∂x, ∂y, ∂xx, ∂xy, ∂yy}, in which,
∂x is the first order derivative in x direction and ∂y is the first order derivative in y direction
and similar interpretations hold for higher order derivatives.

Further, Shan et al. (2008) shows that the partial derivatives of n also follow Normal
distributions with standard deviation values based on the order of the partial derivative
operator. The standard deviations of the partial derivatives are specified in the form

σω(∂r) = (
√

2)ω(∂r)σ, (31)

where ω(∂r) represents the order of the partial derivative operator ∂r. Few example elements
of the set Θ in (30) with the respective standard deviation values are given in Table 7.

As there was no analysis presented behind using the higher order partial derivatives of noise
in Shan et al. (2008) leading to (29), we provide an interpretation of formula, based on our new
general likelihood model for a group of degraded images of a common ground truth g in (27).

Guided by the likelihood expression (27), we can define a virtual group of images for the
likelihood model in (29) as

br = ∂rb, r = 1, 2, 3, . . . , R (32)

137Regularized Image Restoration

www.intechopen.com



20 Will-be-set-by-IN-TECH

and in order to align with model (25), define

Krg � ∂r(g ∗ k), r = 1, 2, 3, . . . , R (33)

nr � ∂rn, r = 1, 2, 3, . . . , R (34)

where ∗ stands for the convolution operator and k is the blur kernel.

From this, we infer that the likelihood (29) implicitly assumes ∂pn is independent of ∂qn for
all p �= q. Since all virtual images are derived from a single degraded image, we can infer this
is a strong assumption made to simplify the likelihood expression. In principle, it should be
possible to formulate a model without recourse to the derivative images which add limited
new information. We corroborate this claim in section 4.3 with experiments.

4.2 Frequency domain deconvolution

In this section we approach image deconvolution with FOPDO regularization and with
different likelihood models discussed above. For our analysis, we consider the likelihood
models of (23) and (29) using terminology “normal likelihood” and “derivative likelihood”
with the notation using subscripts “n” and “d”, respectively. With our experiments, we limit
the set Θ in (30), going up to second order partial derivative operators in (29) and we take
elements of Θ from the following values

Θ = {∂x, ∂y, ∂xx, ∂xy, ∂yy}. (35)

4.2.1 Normal likelihood deconvolution

Under FOPDO regularization as detailed in section 2.2, the stabilizing functional Φ(g) takes
the form

Φ(g) � ‖∂xg‖2 + ‖∂yg‖2. (36)

Applying this stabilizing functional to the MAP framework detailed in section 4, the energy
functional under “normal likelihood”, can be derived as

En(g) = ‖g ∗ k − b‖2 + λ Φ(g). (37)

According to the convolution theorem, the convolution operation in the spatial domain
becomes an element-wise product in the frequency domain making F (g ∗ k) = G ⋆ K
where F (·) stands for discrete Fourier transform, G for F (g), K for F (k) and “⋆” denotes
element-wise product. Based on the above property, transforming (37) into frequency domain
and applying Plancherels theorem, Bracewell & Kahn (1966), we derive the energy in the
frequency domain for (37) as follows.

F (En(g)) = ‖G ⋆ K − B‖2 + λF (Φ(g)), (38)

where
F (Φ(g)) = ‖F (∂x) ⋆ G‖2 + ‖F (∂y) ⋆ G‖2,

B stands for F (b) and given ∂x takes the form of a (convolution) matrix, then F (∂x) denotes
its Fourier transform.
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Minimizing the energy in (38) and solving for estimated G denoted as Ĝ results in

Ĝn =
B ⋆ K

K ⋆ K + λ Ψ
, (39)

where

Ψ = F (∂x) ⋆F (∂x) +F (∂y) ⋆F (∂y),

Ĝn is the Fourier transform of the estimated GTI under “normal likelihood”, (·) stands for the
complex conjugate and the division is performed element-wise. The estimated ground truth

image ĝn can be derived by taking the inverse Fourier transform of Ĝn.

With the above derivations, it is evident that Fourier domain expression used to estimate the
GTI is:

1. simple and leads to a closed form solution and

2. amenable to Fast Fourier Techniques leading to a highly efficient solution.

4.2.2 Derivative likelihood deconvolution

We now give an analogous derivation for the “derivative likelihood”.

The energy functional in this case is derived similar to (37),

Ed(g) = ∑
∂r∈Θ

1

2ω(∂r)
‖∂r(g ∗ k)− ∂rb‖2 + λ Φ(g). (40)

Transforming (40) into the frequency domain results in

F (Ed(g)) = ∑
∂r∈Θ

1

2ω(∂r)

(
‖F (∂r) ⋆ G ⋆ K −F (∂r) ⋆ B‖2

)
+ λF

(
Φ(g)

)
, (41)

where, ∂r is a matrix convolution operator representing a partial order derivative operator
and F (∂r) denotes its Fourier transformation.

By minimizing the energy (41), we compute the estimated G,

Ĝd =
B ⋆ K ⋆ Ω

K ⋆ K ⋆ Ω + λ Ψ
, (42)

where

Ω � ∑
∂r∈Θ

1

2ω(∂r)
F (∂r) ⋆F (∂r).

By taking the inverse Fourier transforms of (42), we could get the estimated GTI, ĝd, under
“derivative likelihood” model similar to “normal likelihood” model.
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λ
MSE MSE

Normal likelihood Derivative likelihood

×10−5 ×10−4 ×10−4

100 2.8448 4.4371

5 2.4148 4.0862

0.25 2.2292 4.1852

Table 8. Comparison of likelihood models

4.3 Likelihood model analysis

In order to come up with the most effective and efficient restoration algorithm, we investigate
the contribution of each of the likelihood models for estimating the GTI: (39) corresponding
to “normal likelihood” and (42) corresponding to “derivative likelihood”, respectively.

We used the same “Picasso” image which was used in Shan et al. (2008) for experiments using
the likelihood model in (29). The ground truth images are estimated using the Fourier domain
techniques, specifically applying (39) and (42) for the “Normal” and “Derivative” likelihood
models respectively. The experiment results are given in Table 8. In order to eliminate
the “Model” and “Process” artifacts as discussed in section 3.3.2, in all our simulations, the
blurring was carried out under the assumption that the images are periodic.

The MSE values in the table are given as multiples of 10−4, while the value of λ is given
in multiples of 10−5. The values in bold in Table 8 refer to the optimal MSE values the
respective likelihood model could reach for varying λ. As the results show clearly, the “normal
likelihood” model has a better estimate for the GTI than the “derivative likelihood” model, we
claim that applying “normal likelihood” in the image restoration algorithm results in a better
restoration.

Our investigation was further extended to analyze whether higher order derivatives of noise
contribute to the spatial randomness of noise as claimed in Shan et al. (2008). The noise maps
given in Fig. 11 are computed for different values of λ in (39) and (42).

As per the results Fig. 11(c) and Fig. 11(d), when the effect of the prior becomes smaller (i.e.,
the weight on the data fitting term or the likelihood becomes larger), the noise estimate is
more spatially random, but with the increase in the weight of the prior, the noise estimate
becomes structured (signal dependant), see Fig. 11(e) and Fig. 11(f). We experienced these
results regardless of the likelihood model we used. Based on the above results, we claim that
using higher order partial derivatives in the likelihood model for non-blind deconvolution
does not result in a better noise map estimation while the same noise map estimation can be
achieved through the normal likelihood model with the appropriate Lagrange multiplier.

Hence, through the likelihood model analysis based on benchmark image, we conclude that
higher order derivatives in the likelihood model are not required for better performance
whereas applying single image likelihood model with appropriate regularization results in
a more effective non-blind image restoration.
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(a) Ground Truth Image (b) 19 × 27 Blur kernel scaled upwards

(c) Normal likelihood (λ = 0.001) (d) Derivative likelihood (λ = 0.001)

(e) Normal likelihood (λ = 0.8) (f) Derivative likelihood (λ = 0.8)

Fig. 11. Noise maps for Likelihood models

5. Contributions

In this chapter, we have contributed to regularization based image restoration techniques in
the following:

1. We have developed a general class of quadratic regularization models based on partial
derivative operators (PDO), section 2.2. Out of those models, we have shown that the
Second Order Partial Derivative Operator (SOPDO) model performs better than First
Order Partial Derivative Operator (FOPDO) model for images susceptible to noise, while
the novel First and Second Order Partial Derivative Operator (FSOPDO) model performs
better than both FOPDO and SOPDO models.
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2. We have used the Structured Similarity index (SSIM) map, Mean SSIM (MSSIM) value
and histograms of SSIM maps as novel visual metrics for comparison and evaluation of
regularization models in image restoration, section 3.3.2.

3. We have critically evaluated Sparse and Laplacian prior models against Quadratic
regularization models using the novel visual metrics discussed in section 3.5. By
eliminating the effects of processing and modeling artifacts, not present when capturing
actual blurred natural images, we have shown that Sparse and Laplacian derivative prior
models, which are claimed to be consistent with natural images, do not significantly
contribute in restoring natural image features and have significantly slower relative
restoration performance.

4. Finally, we have analyzed and evaluated multiple derivative operator based restoration
methods under MAP/ML framework with a novel model to represent the likelihood based
on multiple images, section 4.1.2. By using this novel model, we demonstrate that complex
higher order derivative likelihood models are not required for better performance in image
restoration.
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