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Surface Topography and Texture Restoration
from Sectional Optical Imaging by Focus Analysis

Mathieu Fernandes, Yann Gavet and Jean-Charles Pinoli
École Nationale Supérieure des Mines de Saint-Étienne, CIS/LPMG-CNRS

France

1. Introduction

Observing through any optical imaging device with traditional lens system is often “stained”
by restricted depth-of-field. Such a simplified optical imaging system consisting of a convex
lens (objective), a spherical diaphragm and a sensor plane (image plane) is depicted in Fig.
1. Let (O,�x, �y,�z) denote a Cartesian coordinate system: O is the optical center and the z-axis
is along the optical axis. Imaging with this optical system effectively presents a common
characteristic: the limited depth-of-field δz around its so-called object focal plane1:

δz =
niλ

NA2 , (1)

moreover when the numerical aperture NA becomes larger:

NA = ni sin(α) , (2)

where λ is the wavelength of illumination, ni is the refractive index of the medium in
front of the objective and α is the angular semi-aperture of the diaphragm (Born & Wolf,
1991; Horn, 2001). Consider a scene surface, either opaque and observed in reflected light
or sufficiently transparent and observed in transmitted light, whose profile covers more
than this attainable depth-of-field (then described as “thick”). Thus, only portions of the
observed surface that lie within the depth-of-field appear in-focus and sharp on the acquired
image, whereas the remaining out-of-focus parts are blurred2 by the point spread function
(PSF) of the system (Born & Wolf, 1991; Horn, 2001). The PSF results from the contribution
of many blur factors, such as the defocusing, the optical diffraction and aberrations and
the sampling, principally. Many theoretical models of PSF have been proposed, with

1 A Gaussian convex lens of focal length f theoretically focuses on a fixed image plane at zi only the light
rays arising from a single object plane at zo, the so-called object focal plane, obeying the Snell’s formula:
1/zi − 1/zo = 1/ f for the same medium refractive indexes in both front and back of the lens.

2 By regarding the illumination as incoherent, blurring can be modelled by a 2-D shift-variant linear
convolution of the “ideal” sharp image of the object with the point spread function (i.e. with the
response of the system to a purely impulsive point object that notably varies with the distance of
defocus for x, y-shifting).
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Fig. 1. Illustration of the basic image formation geometry. The green light rays radiated by an
in-focus point of the observed surface are well refracted by the convex lens onto the sensor
plane contrary to red light rays arising from an out-of-focus point, which converge forward
and whose energies are distributed over the “blur circle” patch.

accuracies that depend on considered factors and used approximations3 (Mahajan, 1998;
2001). Introduced by Pentland, a 2-D Gaussian function is often suggested as a PSF model
with a widening standard deviation as the distance of defocus increases (Pentland, 1987).
Ultimately, the PSF always behaves as a low-pass filter, whose cut-off spatial frequency falls
when the degree of defocus raises. In order to fully observe such a “thick” scene surface, a
common way then consists in scanning it with the object focal plane of the optical system,
more formally by acquiring a large sequence of 2-D images by optical sectioning (Agard,
1984). The final sequence of 2-D images is thus collected by gradually moving the object
focal plane along the z-direction throughout the surface. Each 2-D optical section joins
out-of-focus blurred and in-focus sharp portions, respectively related to parts of the object
surface outside and inside the depth-of-field. Less damaged by the low-pass PSF, the latter
exhibit much more of high-spatial frequency components corresponding to surface textural
details. From such an image sequence, this chapter then focuses on image restoration of both
topographical and textural information of the observed surface through the common concepts
of Shape-From-Focus (or Depth-From-focus) and Extended Depth-of-Field. Importantly, both

3 According to geometrical optics, a first-order approximation of the defocusing PSF consists in a
homogeneous patch, the so-called blur circle in the case of a spherical diaphragm whose radius
increases with the distance of defocus.

74 Image Restoration – Recent Advances and Applications

www.intechopen.com



Surface Topography and Texture Restoration from Sectional Optical Imaging by Focus Analysis 3

concepts require an original sequence with image sections spatially registered, principally by
considering magnification variations due to changes in focus setting through the perspective
projection of most optical imaging system4 (as in Fig. 1) (Willson & Shafer, 1991). These
magnification changes can be corrected using optical approaches, such as zoom adjustments
based on system calibration (Willson, 1994), or computational techniques, commonly referred
to as image warping (Darrell & Wohn, 1988). Notice that acquiring the image sequence by
displacing either the scene or the imaging system along the z-direction with respect to a fixed
focus setting ensures at least a constant magnification γ for all successive object focal planes,
but not for the out-of-focus object planes that always suffer different magnifications than the
focal ones (Nayar & Nakagawa, 1994). Otherwise, an all-over constant magnification can be
reached through orthographic projection of telecentric optics (Watanabe & Nayar, 1997).

After briefly describing both Shape-From-Focus (SFF) and Extended Depth-of-Field (EDF)
concepts in section 2, their linchpin step consisting in a focus measurement will be
particularly studied, reviewed and finally “morphed” in section 3. Indeed, this work
especially strives to make changes to classical state-of-the-art focus measurements through
different strategies into new evolved approaches that are custom-made to cope with
frequently encountered issues, such as ill-illuminated/poor textured or noisy/disturbed
acquisitions. An ill-illuminated/poor textured observed surface effectively exhibits few focus
cues (high-spatial frequency components) on which the restoration process is based. On
the contrary, noisy/disturbed data introducing during the acquisitions produce “false focus
cues” that misleads the restoration process. Such issues thus require rather opposite focus
measurement behaviours: a high sensitivity to focus cues and a strong robustness to noise,
respectively. Thereafter, several tests will be conducted, illustrated and discussed in section 4
on both simulated data and real acquisitions from different application fields (metallography,
granulometry, ophthalmology) in conventional optical microscopy. Through such optical
imaging system, the inherent use of large magnifications γ ∼ NA significantly limits the
offered depth-of-field and the performed projection tends towards an orthographic behaviour
(and therefore an all-over constant magnification) since the working distance WD = |zo| is
much larger than the profile thickness of the observed surface (Horn, 2001). Finally, the
new introduced approaches (2-D LIP-based focus measurements and 3-D statistical focus
measurements) will be compared to classical state-of-the-art ones and will clearly show their
efficiency in presence of aforementioned acquisition issues.

2. Surface topography and texture restoration

The Shape-From-Focus (SFF) concept exploits the limited depth-of-field to infer the
topography of the observed surface by maximizing a focus measurement throughout the
z-direction of the image sequence. Likewise, the Extended depth-of-field (EDF) concept
conversely tries to overcome the depth-of-field limitation by joining through a focus
measurement the most in-focus information from the image sequence into a single image:
the so-called “texture image”. Both complementary approaches work similarly and foremost
rely upon an essential preliminary focus measurement that mainly interests this work and will
be more closely studied in the next section 3. They are graphically summarized in Fig. 2 and

4 Since the intersections of the so-called principal rays (the ones passing undeflected through the center of
the lens O) with the sensor plane vary with the position of this latter, the image magnification changes
with defocus.
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will be further described below. Notice that a 3-D reconstruction of the surface can finally be
obtained by mapping the texture image onto the topography, as illustrated in Fig. 3. Before
going on, let us introduce some notations. Let I(x, y, z) denotes the sequence of images
acquired by optical sectioning, defined on the spatial support D = Dx × Dy × Dz ⊂ R

3 and
valued into a positive real range [0, M) of intensity values. Applying a focus measurement
function (FM) on I(x, y, z) yields a 3-D focus degree measure F (x, y, z) as follows:

F : D → R
+

(x, y, z) �→ FM(I(x, y, z)) , (3)

wherein the profile at location (x, y) along the z-direction is designated as F |x,y : Dz → R
+.

2.1 Topographical information: Shape-From-Focus (SFF)

The z-coordinates (referred to as depths) of the voxels that exhibit the largest degrees of focus
infer the topography (or the so-called depth map) D of the observed surface from its image
sequence I(x, y, z) as follows:

D : Dx × Dy → Dz

(x, y) �→ argmax
z∈Dz

F |x,y(z) . (4)

Because of the significant thickness δz of the depth-of-field, the recovered topography D

shows inherent “staircase” effects and an interpolation approach must then be embedded in
this basic process of reconstruction. Introduced by Nayar and Nakagawa, the traditional one
consists in fitting a Gaussian distribution, whose mean finally constitutes the interpolated
depth value, to the three degrees of focus lying on the largest mode (Nayar & Nakagawa,
1994). Similarly, a quadratic (or even more) polynomial model can be fitted, sometimes
regarding more than three degrees of focus (Niederöst et al., 2003; Subbarao & Choi, 1995).
A subsequent approach (referred to as Focused Image Surface) locally tries to refine the initial
recovered topography D by optimizing both position and orientation of 2-D planar (then
curved) windows throughout the 3-D measure F so as to maximize the covered degrees of
focus (Ahmad & Choi, 2005; Asif & Choi, 2001; Subbarao & Choi, 1995; Yun & Choi, 1999).
Finally, the topography is often smoothed through average, median or recently bilateral
filters (Helmli & Scherer, 2001; Khan et al., 2010; Mahmood et al., 2008; Niederöst et al., 2003).
Interpolation techniques lying beyond the scope of this paper, only the traditional one will be
used herein, sometimes finalised by a median filter.

2.2 Textural information: Extended Depth-of-Field (EDF)

Throughout the image sequence I(x, y, z), the texture image T of the observed surface is
restored by joining the intensity voxels with the largest degrees of focus:

T : Dx × Dy → [0, M)

(x, y) �→ I(x, y, argmax
z∈Dz

F |x,y(z)) . (5)

76 Image Restoration – Recent Advances and Applications
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Sequence of 2-D images

3-D focus degree measure

Depth map Texture

Interpolation Deconvolution

Largest degrees of focus
along the z-direction

3-D surface reconstruction

Mapping of the texture
image onto the depth map

I

F

D T

z-coordinates Intensities in I

�z

Fig. 2. Basic illustrated diagram representing both complementary Shape-From-Focus (left)
and Extended Depth-of-Field (right) concepts.

When the optical sectioning step is larger than the depth-of-field δz, some regions of the
observed surface may never appear in-focus throughout the image sequence and therefore on
the restored texture image. Pradeed and Ragajolan then proposed to perform a non-stationary
Wiener filter to locally deconvolve the texture image T (Pradeep & Rajagopalan, 2007). Note
that no deconvolution process will be used herein.

3. Focus measurements

Let us now focus on the essential step of focus measurement, firstly through a literature review
that will yield the retention of some classical and recent methods making a representative

77Surface Topography and Texture Restoration from Sectional Optical Imaging by Focus Analysis
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Fig. 3. 3-D reconstruction of a human corneal graft by the 2-D SML△ LIP-based focus
measurement from a sequence of 32 image sections acquired in conventional optical
microscopy by steps of 9.33 µm through a × 4 / 0.1 NA objective in air immersion. Each
image section composed of 1932 × 2029 pixels representing 10.62 × 11.11 mm is an
undersampled version of a registered mosaic of 5 × 7 image acquisitions.

sample group from a strategic as well as chronological point of view. Some of them
will then be developed into novel evolved approaches designated as 2-D LIP-based focus
measurements and 3-D statistical focus measurements.

3.1 State-of-the-art focus measurements

In view of the fact that the PSF of defocus acts as a low-pass filter, focus measurements thus
try to locally emphasize and quantify high-spatial frequency components of the original image
sequence I . They can be classified according to the dimensionality of the adopted strategy to
do that.

3.1.1 One-dimensional (point-based) approaches

From the early 1980s, some methods using maximum or minimum selection rules throughout
single-voxel stacks along the z-direction of the image sequence are first proposed I

(Pieper & Korpel, 1983; Sugimoto & Ichioka, 1985), therefore not offering a large robustness.

3.1.2 Two-dimensional approaches

For the last 40 years, a lot of more reliable focus measurements independently acting (in
2-D) on each image section of the sequence I then arose, categorized below as either
neighborhood-based or multiresolution-based methods.

3.1.2.1 Neighborhood-based methods

Neighborhood-based focus measurements work over local sectional fixed-size windows,
described herein by the size value r corresponding to an operating window of (2r + 1) ×

78 Image Restoration – Recent Advances and Applications
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(2r + 1) pixels. Given this local behaviour, a certain depth regularity of the observed surface
is implicitly assumed. On the one hand, the considered neighborhood has to be as small as
possible to guarantee an approximately constant depth within itself and therefore to avoid
too much “smoothing” the restoration process around sharp depth slopes and even depth
discontinuities (Malik & Choi, 2007). On the other hand, it has to be as large as possible both to
always capture focus cues (i.e. high-spatial frequency components) within wide homogeneous
textural contents of the surface and to average out noise. Consequently, the selection of
the optimal window size r appears as a trade-off. These approaches classically include two
successive steps aiming to emphasize and quantify focus cues, respectively. The second one is
simply an energy measurement that is commonly the sum over the considered neighborhoods
of the absolute values resulting from the first one, therefore improving the robustness to noise
and/or to wide textural contents of the measurement. The first step differs in the specialized
literature. Most are based on high-pass filtering (norms of derivatives), such as Laplacian
energy (Subbarao et al., 1993), sum-modified-Laplacian (Nayar & Nakagawa, 1994), Brenner
(Brenner et al., 1976) or Tenenbaum (Krotkov, 1987) gradients, among others... Others,
usually more robust to noise, use statistical tools in the considered neighborhoods, such as
(normalized) variance (Groen et al., 1985; Sugimoto & Ichioka, 1985), autocorrelation (Vollath,
1987), sum of eigenvalues (Wee & Paramesran, 2007) or various moments (Yap & Raveendran,
2004; Zhang et al., 2000). Remark that some of them directly combine the two aforementioned
steps, e.g. the variance in the neighborhoods. The last ones work in different frequency
domains through discrete cosine (Kristan et al., 2006) or Fourier (Boddeke et al., 1994;
Malik & Choi, 2008) transforms. The latter exploit more robust band-pass filters but lack
sensitivity in return. At first, note that neighborhood-based focus measurements was often
employed to computationally autofocus imaging system.

Throughout these state-of-the-art section, some fundamental and recent methods will be
retained; their designations, details and references will be summarized as follows:

2-D VAR VARiance in a 2-D window (Groen et al., 1985; Sugimoto & Ichioka, 1985).
2-D TEN Sum over a 2-D window of the squared L2-norms of the first derivatives

approximated by the horizontal and vertical Sobel operators (TENengrad) (Krotkov, 1987).
2-D SML Sum over a 2-D window of the L1-norms of the second derivatives approximated

by the Laplacian operator (Sum-Modified-Laplacian) (Nayar & Nakagawa, 1994).
2-D OPT Sum over a 2-D window of the absolute values of the real part responses in the

spatial domain to an “OPTical” band-pass filter applied in the Fourier domain and based
on bipolar incoherent image processing (Malik & Choi, 2008).

3.1.2.2 Multiresolution-based methods

Other 2-D approaches rely on some form of multiresolution analysis: e.g. Laplacian
(Burt & Adelson, 1983), ratio-of-low-pass (Toet, 1989), gradient (Burt & Kolczynski, 1993) and
steerable pyramids (Liu et al., 2001), and wavelet (Forster et al., 2004; Pajares & de la Cruz,
2004; Valdecasas et al., 2001), shapelet (Meneses et al., 2008) and curvelet (Minhas et al., 2011)
transforms, in order to perform high-pass filtering at different resolution level. Contrary
to afore-described neighborhood-based methods, these ones thus avoid the choice of a
fixed-size filter. They are regularly introduced in the practical context of image fusion that
consists in combining information from some (generally between 2 and 5) multi-focus or

79Surface Topography and Texture Restoration from Sectional Optical Imaging by Focus Analysis
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multimodal images of the same scene into a single composite representation. An overview of
multiresolution-based schemes for image fusion can be found in (Zhang & Blum, 1999). First,
each image section of the original sequence is decomposed into a collection of sub-images at
different scales, called a pyramid structure, through alternate combination of convolution and
sub-sampling. Different types of details (focus cues) are thus put forward at different levels in
the associated pyramid structure. Note that the original image section can be reconstructed by
the reverse procedure. A (pixel-based, window-based or region-based (Piella, 2003)) salience
measurement (absolute value, sum or variance of absolute values) then tries to quantify focus
cues throughout every pyramid structures. The depth map is thus inferred from the largest
salience measures. Besides, a composite pyramid structure is constructed by combining
coefficients of the original pyramid structures in function of their exhibited salience measures
(choose-max or weighted average). Next, a (window-based or region-based) consistency
verification is performed on the composite pyramid structure (and on the recovered depth
map) so as to check that best salience measures come from the same original image sections,
which is equivalent to a smoothing post-processing step. Once the composite pyramid
structure is fused, the final texture image is lastly restored by reverse decomposition.

2-D DWT Use of the Discrete Wavelet Transform (DWT) based on complex Daubechies
wavelets as multiresolution analysis, of the largest absolute value of the wavelet
coefficients in the subbands (up to 10 levels) as (pixel-based) salience measurement and
of both spatial (window of size r = 1) and typical subband consistency checks on the
wavelet coefficients. (Forster et al., 2004).

By independently working on each individual image section of the sequence I , these 2-D
methods are inevitably misled by a rather isolated sectional noisy/disturbance data that
appears sharpest, in theory contrary to the following 3-D approaches.

3.1.3 Three-dimensional approaches

Recently, a 3-D focus measurement has been introduced by Mahmood & Choi (2008) takes
fully advantage of the three spatial dimensions of the original image sequence I . It
is locally based on a Principal Component Analysis (PCA) within a stack of collected
sectional neighborhoods along the z-direction. Consequently, it simultaneously exploits
all focus cues along the axial (or cross-sectional) z-direction in order to estimate sectional
degrees of focus. Contrary to 1-D/2-D ones, this novel 3-D strategy would allow to
improve the robustness. However, it actually appears ineffective due to a severe loss of
sensitivity. Indeed, it finally uses the largest principal component to discriminate in-focus
information, which represents the global content of the data. Hence, the authors combine
it with various previous transforms, such as discrete wavelet (Mahmood, Shim & Choi,
2009) or cosine (Mahmood et al., 2008) transforms, and lately kernel function (Khan et al.,
2010). Alternatively, they perform pre- or post-processings through bilateral filtering
(Mahmood, Khan & Choi, 2009) or kernel regression (Mahmood & Choi, 2010), respectively.

3-D DCT-PCA Discrete cosine transformation (DCT) over sectional 2-D/3-D windows and
discrimination of all axially-collected sectional AC5 data by the first feature of a Principal
Component Analysis (PCA) (Mahmood et al., 2008).

5 By analogy with an electrical signal, the alternating components of the discrete cosine transform.
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3.2 Two-dimensional LIP-based focus measurements

This first work aims at improving sensitivity to focus cues of usual measurements in order
to well operate in difficult regions of the observed surface, such as its ill-illuminated/poor
textured parts. Let us start with a brief introduction of the Logarithmic Image Processing
(LIP) framework.

3.2.1 Logarithmic image processing (LIP) framework

An original mathematical framework, the LIP model, has been introduced in the middle of
the 1980s for the processing of intensity images valued in a bounded range (Jourlin & Pinoli,
1987; 1988; 2001). This model is mathematically well defined as well as physically consistent.
The reader can refer to Pinoli (1997a;b) for a complete mathematical theory and many physical
and/or psychophysical connections and justifications about the LIP framework.

3.2.1.1 Mathematical fundamentals

In the LIP model, the intensity of an image is completely represented by its associated
gray tone function f . Such a function is defined on the spatial suppport D and valued in
the real number range interval [0, M), called the gray tone range. Thereafter, this class of
gray tone functions, extended to the real number interval (−∞, M) and structured with the
after-specified vector addition +△, scalar multiplication ×△ and scalar subtraction −△ defines a
real vector space denoted S:

∀ f , g ∈ S f +△g = f + g − f g
M ,

∀ f ∈ S, ∀a ∈ R a ×△ f = M − M
(

1 − f
M

)a
,

∀ f , g ∈ S f −△g = M f−g
M−g .

(6)

This gray tone vector space S is algebraically and topologically isomorphic to the classical
vector space defined on the spatial support D with values in the real number set R through
the mapping ϕ (called the isomorphic transformation) defined as:

∀ f ∈ S ϕ( f ) = −M ln
(

1 −
f

M

)

, (7)

which is the isomorphic transform of the gray tone f . The inverse isomorphic transformation
ϕ−1 is then defined as:

f = ϕ−1(ϕ( f )) = M
(

1 − exp
(

−
ϕ( f )

M

))

. (8)

In addition to abstract linear algebra, this class of (extended) gray tone functions is an ordered
real vector space with the classical order relation ≥ (Pinoli, 1997a).

3.2.1.2 Physical connections

The LIP framework has been proved to be consistent with the transmittance image
formation model (Jourlin & Pinoli, 1988), the multiplicative reflectance and transmittance

81Surface Topography and Texture Restoration from Sectional Optical Imaging by Focus Analysis
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LIP framework
( +△, ×△, −△)

Grayscales Gray tones Degree of focus

Usual operations
(+,×,−)

Isomorphic
transformation

ϕ

Inverse isomorphic
transformation

ϕ−1

Fig. 4. Basic diagram representing both theoritical and practical (in red) computation of the
LIP-based focus measurements.

image formation models (Pinoli, 1997a) and with several laws and characteristics of human
brightness perception (Pinoli, 1997b). In the LIP approach, the gray tone range is inverted
contrary to the classical grayscale convention. The relationship between a gray tone function
f (x, y) and its corresponding classical grayscale function, denoted f̄ (x, y), is given by:

f (x, y) = M − f̄ (x, y) . (9)

Indeed, the limits of the gray tone range [0, M) are anticlassically defined: 0 designates
the total whiteness, while the real number M represents the absolute blackness. This
scale inversion has been justified on mathematical reasons (Pinoli, 1997a), and physical
(in the setting of transmitted light imaging processes) (Jourlin & Pinoli, 1988; 2001) and
psychophysical grounds (Pinoli, 1997b).

3.2.2 Two-dimensional LIP-based focus measurements

LIP-based focus measurements simply consist in reinterpretations of classical ones using
the LIP fremawork (i.e. by popularizing, from usual operations +,×,− to respective LIP
ones +△, ×△, −△ (Eq. 6)). For the sake of convenience, we only consider the three more
widely used 2-D focus measurements: 2-D VAR, 2-D TEN and 2-D SML. Among all
retained methods, other 2-D ones work through various frequency transforms that make their
reinterpretations less obvious and the selected 3-D strategy strongly damages the sensitivity.
These reinterpretations, denoted 2-D VAR△, 2-D TEN△ and 2-D SML△, can be clearly
simplified through the use of the LIP fundamental isomorphic ϕ (see Fig. 4). Nevertheless,
they involve a practical subtlety to succeed from a computional point of view. Indeed,
LIP-based focus measurements imply some costly operations (typically such as raising to the
square) that are not enough distinguishable in the digitized case. The machine precision does
not enable to well discriminate such arithmetics, notably in terms of the classical order relation
≥ for maximizing the resulted degrees of focus. In view of the strictly increasing behaviour
of the inverse isomorphic transformation ϕ−1 (Eq. 8), the LIP-based focus measurements can
thus be computationally reduced to the computation of the respective classical ones (with
usual operations +,×,−) on isomorphic transform ϕ of the gray tone function (see Fig. 4).

In the context of human brightness perception, a gray tone function f (x, y) corresponds to an
incident light intensity function F(x, y) by the following relationship:

f (x, y) = M
(

1 −
F(x, y)
Fmax

)

, (10)
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Fig. 5. Illustrations for the 3-D EIG and 3-D N-EIG statistical focus measurements: (a)
creation of the multivariate data matrix X, (b) canonical basis vs. eigenbasis.

where Fmax is the saturating light intensity level (“glare limit”) (Pinoli, 1997b). First, Weber
described the human visual detection between two light intensity values F and G with a
“just noticeable difference”. The LIP subtraction f −△g is consistent with Weber’s law (Pinoli,
1997b). In fact, the LIP model defines specific operations acting directly on the physical
light intensity function (stimulus) through the gray tone function notion. A few years after
Weber, Fechner established logarithmic relationship between the light intensity F (stimulus)
and the subjectively perceived brightness B (light intensity sensation). It has been shown
in Pinoli (1997b) that B is an affine map of the isomorphic transform ϕ( f ) of the gray tone
f . Consequently, the fundamental isomorphism ϕ (Eq. 7) of the LIP model should enable
to deal with brightness (via the usual operations). About human brightness perception,
the aforegiven practical limitation accordingly results in revisited measurements attempting
to estimate degree of focus in terms of brightness (intensity sensation from physical light
stimuli). Further details about these 2-D LIP-based focus measurements can be found in
Fernandes et al. (2011a).

3.3 Three-dimensional statistical focus measurements

This second work conversely aims at creating novel 3-D focus measurements offering a large
robustness to noise, while preserving a sufficient sensitivity to focus cues (contrary to the 3-D

DCT-PCA method), in order to well operate through noisy/disturbed acquisitions. In spite
of a similar basic tool, the after-described multivariate statistical analyses are totally different
than the state-of-the-art 3-D DCT-PCA method. Moreover, they do not require any previous
transformations or processings.

From a stack of single-voxels along the z-direction of the original sequence I(x, y, z) of n
image sections, 2-D sectional windows of m pixels are considered and a multivariate m-by-n
data matrix X is formed as shown in Fig. 5(a). The rows of this data matrix X referred to as the
cross-sectional responses are constituted by the same components of all considered sectional
windows. Let (ei)i∈[1,n] denotes the canonical basis of these cross-sectional responses, whose
each canonical vector ei thus abstracts a different depth zi throughout the image sequence.
Alternatively, each of the columns referred to as the sectional observations fully corresponds
to a different original window at depth z. Note that the variability in variance of these
sectional observations along the z-direction matches with the degree of focus, which is
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the concept of the traditional 2-D VAR focus measurement. Each sectional observation is
centered, and normalized or not by their means (that will finally yield a couple of different
focus measurements denoted 3-D EIG and 3-D NEIG, respectively). The normalization
enables to locally compensate for differences in intensity means between the image sections of
the sequence. The covariance matrix CX of the sectional observations of X is then calculated
as follows:

CX =
1

m − 1
tXX , (11)

where t denotes the transpose operation. Afterwards, CX is diagonalized such as:

CXG = ΛG , (12)

in order to obtain both its eigenvalues (λi)i∈[1,n] in increasing order and its eigenvectors
(gi)i∈[1,n], diagonal components and columns of the matrixes Λ and G respectively. The
eigenvectors form a novel orthornormal basis (EIGenbasis) for the cross-sectional responses
of X. Each of them is associated with a particular eigenvalue that reveals its captured
amount of variance among the total one ∑i∈[1,n] λi exhibited by the sectional observations
of X. During the decomposition process of the covariance matrix CX, the first eigenvector g1
accounts for as much of this total variance as possible and the next ones then maximize the
remaining total variance, in order and subject to the orthogonality condition. Furthermore,
less influential noisy information is, to the greatest extent possible, pushed into least dominant
(last) eigenvectors, whereas one of interest remains within the first eigenvectors. Finally, the
degree of focus at the depth zi (with i ∈ [1, n]) is the norm of the orthogonal projection of
the first eigenvector g1 onto the corresponding canonical vector ei, that is simply equal to
the absolute value of the ith component of g1. In the simple schematic example of Fig. 5(b),
the largest degree of focus is clearly assigned to the depth z of index 3 that maximizes the
orthogonal projection norm of the first eigenvector g1. Obviously, several first eigenvectors
can be considered, e.g. the first K eigenvectors, hence the sum of their orthogonal projection
norms respectively weighted by their eigenvalues is regarded. The 3-D EIG and 3-D NEIG

focus analyses then become less robust to noise but relatively gain sensitivity to focus cues.
Further details about these 3-D statistical focus measurements can be found in Fernandes et al.
(2011b; n.d.).

4. Results

Both retained state-of-the-art and novel developed focus measurements will now be
illustrated, tested and compared through various simulation and real experiments.

4.1 Performance comparison in simulation

A first serie of experiments using simulated data is conducted in order to dispose of ground
truths for carrying out quantitative assessments of the results produced by all aforementioned
methods.

4.1.1 Simulation process & performance assessment

By first mapping an arbitrary texture onto a simulated depth map (that constitutes the ground
truth), an artificial 3-D surface is constructed. This virtual surface is then discretized along the
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Fig. 6. (a) Generation of a simulated sequence of images: Brodatz texture D111 (Brodatz,
1966) and artificial depth map (upper left), 3-D synthetic surface (upper right) and four
individual image sections (sections 1, 11, 20 and 30 respectively) of the simulated sequence
(lower). (b) Performances (RMSE) of the studied 2-D focus measurements for the simulated
data in (a) as a function of the size r of the used neighborhood. Graph key: � 2-D VAR �

2-D VAR△ � 2-D TEN � 2-D TEN△ � 2-D SML � 2-D SML△ � 2-D OPT � 2-D DWT.
Note that the multiresolution-based 2-D DWT method is put into the r = 1 bin, as the size of
the window used for the spatial consistency check. The 2-D psychophysical LIP-based focus
measurements undoubtedly make fewer errors of restoration than their respective traditional
ones as well as the other state-of-the-art 2-D approaches.

z-direction by constant steps as successive locations of the object focal plane. Afterwards,
a sequence is collected by making an image for each of these locations through the 2-D
shift-variant linear convolution of the “ideal” image of the surface (i.e. the texture image)
with a modelled PSF function of the distance of defocus (i.e. the distance between the
considered location and the depth map). The 2-D PSF is approximated by a 2-D Gaussian
function (Pentland, 1987) normalized to account for an uniform illumination (e.g. a Köhler
illumination) (Forster et al., 2004), whose standard deviation is proportional to the distance
of defocus. Two different simulated image sequences are generated with various textural
and topographical properties: a first exhibiting some discontinuities to assess accuracy and
sensitivity of the studied focus measurements (Fig. 6(a)), and a second one imaging a smoother
surface but with additive Gaussian or impulse noises to theoretically test their robustness
(Fig. 7(a)). Finally, performances are measured in terms of the root-mean-square-error (RMSE)
metric with respect to the ground truth (Gonzalez & Woods, 2008).

4.1.2 Results & discussion

The first simulated experiment in Fig. 6 puts most sensitive studied 2-D focus measurements
to the test, as a function of the used neighborhood size r. It notably aims at evaluating the
2-D psychophysical LIP-based focus measurements (2-D VAR△, 2-D TEN△ and 2-D SML△)
versus their respective traditional ones (2-D VAR, 2-D TEN and 2-D SML). The LIP-based
reinterpretations clearly outperform their traditional ones (for any of the intances of r). They
are more sensivite, that is to say they offer a better capacity to distinguish focus cues of
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Fig. 7. (a) Generation of a simulated sequence of images: Brodatz texture D5 (Brodatz, 1966)
and artificial depth map (upper left), 3-D synthetic surface (upper right) and four individual
image sections (sections 1, 11, 20 and 30 respectively) of the simulated sequence (lower). (b-c)
Performances (RMSE) of the most robust studied focus measurements for the simulated data
in (a) under various noisy conditions (r = 8 pixels). The proposed 3-D statistical analyses
3-D EIG and 3-D NEIG with K set to 1 make fewer errors of restoration in presence of
artificial impulsive or Gaussian noises.

poor contrasted/textured or ill-illuminated regions, but at the expense of a sligh loss of
robustess. Notice that the improvements are even more obvious for smaller neighborhood
sizes. This enables to employ smaller operating windows that smooth less the restoration
process, most notably around sharp depth slopes or even discontinuities of the observed
surface. Incidentally, LIP-based focus measurements also make fewer restoration errors than
the other 2-D retained methods. On account of its multiresolution analysis, the 2-D DWT

approach avoids operating over fixed-size windows, but does not guarantee stability in
return. As for the 2-D OPT focus measurement, its band-pass filter designed for offering
robustess inevitably damages the sensitivity, a bit like 3-D approaches that favour robustness
to sensitivity.

In Fig. 7, the second simulated test studies most robust aforementioned focus measurements
under various artificial noisy conditions. In view of the fact that the synthetic depth map
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(a) Section 1 (b) Section 14 (c) Section 28 (d) Section 42

Fig. 8. Some individual 2-D image sections among the 42 constituting the image sequence of
the grain of sand. This sequence was imaged in steps of 3.2 µm through a reflected
white-light microscope equipped with a × 20 / 0.46 NA objective in air immersion. Each
image section is 766 × 573 pixels, representating 635 × 475 µm.

(a) Section 1

A

B

(b) Section 17
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B

(c) Section 34
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(d) Section 50
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B

Fig. 9. Some individual 2-D image sections among the 50 constituting the image sequence of
the Vickers hardness test. This sequence was imaged in steps of 9 µm through a reflected
white-light microscope equipped with a × 10 / 0.3 NA objective in air immersion. Each
image section is 766 × 573 pixels, representating 1262 × 944 µm. The marked regions A and B
will be used as sites for comparing the different restored textures.
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(b) Section 10

A

B

C

(c) Section 20
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(d) Section 30
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Fig. 10. Some individual 2-D image sections among the 40 constituting the image sequence of
the human ex-vivo corneal endothelium. This sequence was imaged in steps of 4.5 µm
through a transmitted white-light microscope equipped with a × 10 / 0.25 NA objective in
air immersion. Each image section is 1040 × 772 pixels, representating 718 × 533 µm. Note
that both bottom left corner and right edge regions never appear in-focus throughout the
sequence. The marked regions A, B and C will be used as sites for comparing the different
restored textures. Some cell fragments present in the immersion biochemical solution are
clearly visible on (a) and (b) as small dark spots, e.g. throughout the region B. Futhermore,
some contrast reversals emerge: the endothelial cell borders, which are normally darker than
the cell bodies, look brighter for a specific range of distances of defocus.
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(a) 2-D VAR (b) 2-D VAR△ (c) 2-D OPT

(d) 2-D SML (e) 2-D SML△ (f) 2-D DWT

(g) 3-D EIG K=1 (h) 3-D NEIG K=1 (i) 3-D DCT-PCA

Fig. 11. Reconstructed depth maps for the image sequence of the Vickers hardness test
presented in Fig. 8 (r = 3 pixels) after a median filtering (r = 2 pixels). The color z-scale is: 0

• • 30 • • 60 • • 90 • • 120 µm •. The depth maps recovered by our proposed methods (b),(e),
(g) and (h) more reveal the pyramid-shaped structure of the sample.

exhibits neither sharp depth slopes nor discontinuities, we opt for a rather large neighborhood
size r (r = 8 pixels), moreover necessary to average out noise. In presence of noise,
the proposed 3-D EIG and 3-D NEIG methods with K set to 1 clearly outperform the
state-of-the-art other ones. The adopted 3-D statistical strategies make possible a better
discrimination of focus cues “drowned” in noise. Notice that the 3-D EIG version offers
a more robust behaviour than the normalized 3-D NEIG one. As for the other 3-D focus
measurement (3-D DCT-PCA), it shows the weakest performances by lack of sensitivity, the
previous transformation being not sufficient to improve it.

4.2 Results on experimental data

We now illustrate the potential of the suggested focus measurements on real image sequence
acquisitions.

4.2.1 Experimental setup

The real test dataset is made up of three image sequences exclusively acquired in conventional
optical microscopy by gradually shifting the samples along the optical axis direction with a
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A

B

(a) 2-D TEN (b) 2-D TEN△ (c) 2-D OPT (d) 2-D DWT (e) 3-D

DCT-PCA

(f) 3-D NEIG

K=1

Fig. 12. Details of the restored textures in the regions A and B for the image sequence of the
grain of sand presented in Fig. 9 (r = 4 pixels). In the details (b) and (f) resulting from our
suggested methods, there are less bright artefacts and the grain borders appear darker and
sharper.

motorized stage, but through different configurations (using reflected or transmitted light)
and magnifications. Related to various application fields, three samples with varying textural
and topographical properties are regarded so as to rigorously test both selected and proposed
methods. The first two ones are a Vickers hardness test6 performed on a polished aluminium
plate surface and a grain of sand; their reflected white-light acquisitions are illustrated and
described in Fig. 8 and Fig. 9, respectively. These real image sequences exhibit some difficult
regions: e.g. around the sharp borders of the sand grain and at the bottom of the Vickers
pyramid-shaped indentation, thus requiring a good sensitivity from the focus measurements.
Moreover, they are necessarly degraded by some noisy data introduced by the imaging
system during the acquisition, but in much lesser extent than the third one. This latter,
illustrated and described in Fig. 10, images using transmitted white-light an human ex-vivo
corneal endothelium7 folded after storage of the graft in a specific preservation medium
(Pels & Schuchard, 1983). Effectively, it appears very disturbed by intense contrast reversals
and some cell fragments present in the graft immersion solution. For these real image
sequences, the assessment will be only qualitative, i.e. by visually examining and comparing
the restored depth maps and/or textures; these latter will be highlighted in some crucial
regions for a better visibility.

4.2.2 Results & discussion

The topography of the Vickers hardness test reconstructed by the major part of the
aforementioned focus measurements are shown in Fig. 11. Those related to proposed methods
clearly exhibit less artefacts (e.g. wrong sharp peaks), notably at the bottom and the edges of

6 The test of Vickers consists in examining the deformation of a material from a standard pyramid-shaped
diamond indenter to deduce a measure of hardness (Tabor, 2000).

7 The endothelium is the innermost layer of the cornea and is constituted of a monolayer and hexagonal
mosaic of cells. Given that those non-regenerative cells make keeping the cornea clear, the estimation
of its cell density is essential in the corneal transplant process (Thuret et al., 2004; 2003).
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(a) (b)

Fig. 13. 3-D surface reconstructions (a) of the grain of sand using the 3-D NEIG method and
(b) of the Vickers hardness test using the 2-D VAR△ method.

the pyramid-shaped indentation. Compared to classical 2-D VAR and 2-D SML methods,
the respective psyschophysical LIP-based reinterpretations (2-D VAR△ and 2-D SML△) are
able to deal with more difficult regions, such as poorly textured and/or ill-illuminated ones.
Moreover, they offer a relative robustness to noise sufficient for most real usual cases. In same
cases, the more sensitive normalized 3-D NEIG method with K set to 1 will be preferred to 3-D

EIG K=1 one, except for much noisier acquisitions as encountered in the last example below.
The normalization effectively provides some accuracy and stability to the analysis, up to a
certain degree of noise in the image sequence. A 3-D reconstruction of the Vickers hardness
test is shown in Fig. 13(a).

Concerning the grain of sand, the textures resulting from a more restricted set of
aforementioned focus measurements are highlighted and compared in Fig. 12. First, the
light-gray stains around the grain corner of the region A that designate false textural
restorations are much less frequent with our suggested 2-D TEN△ and, even more so, 3-D

NEIG K=1 methods. Second, the inspection of the grain borders within B clearly reveals
marked improvements with the same 2-D TEN△ and 3-D NEIG K=1 methods. As previously,
there are less bright artefacts in and around the borders, which moreover appear much darker
and sharper. As previously, a 3-D reconstruction of the grain of sand is shown in Fig. 13(b), in
which a binary mask is used so as to exclude the background from the reconstruction process
(Niederöst et al., 2003).

In Fig. 14, we compare both depth map and texture obtained with the most robust
studied focus measurements from the noisy and disturbed image sequence of the corneal
endothelium. Contrary to above real examples, a larger neighborhood size (r = 10 pixels)
is used, because of both wider textural content and noisier aspect of the image sequence.
Moreover, this is here non-prejudicial in view of the complete absence of discontinuities
and sharp slopes. First, the depth map recovered by the proposed 3-D EIG K=1 method
clearly exhibits less artefacts, anatomically impossible as the endothelial surface is necessarily
continuous. Indeed, it distinctly contains less underestimated (over-red) and overestimated
(blue) regions caused by cell fragments and contrast reversals, respectively. As for the restored
textures, their inspection corroborates the above appreciation (moreover knowing that each of
them is intimately related to its respective depth map). The texture tagged with 3-D EIG K=1
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A B C

(a) 2-D VAR

(b) 2-D OPT

(c) 3-D DCT-PCA

(d) 3-D EIG K=1

Fig. 14. Reconstructed depth maps (left) and details of the restored textures in the regions A,
B and C (right) for the image sequence of the human ex-vivo corneal endothelium presented
in Fig. 10 (r = 10 pixels). The color z-scale is: 0 • • 29.25 • • 58.5 • • 87.75 • • 117 • • 146.25 •
• 175.5 µm. The 3-D EIG K=1 depth map in (d) distincly contains fewer blue spots and
over-red regions respectively caused by moving cell fragments and cell border contrast
reversals, moreover attested by the details of its respective texture in (d) that noticeably
exhibit less artefacts attributed to both disturbances.

is not too much damaged by disturbances, like dark steaks and bright cell borders due to
moving cell fragments and contrast reversals, respectively.
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5. Conclusions

This chapter has focused on image restoration of both topographical and textural information
of an observed surface from a registered image sequence acquired by optical sectioning
through the common concepts of Shape-From-Focus (SFF) and Extended Depth-of-Field
(EDF). More particularly, the essential step of these complementary processes of restoration:
the focus measurement, has been examined. After a brief specialized review, we have
introduced novel evolved focus measurements that push the limits of state-of-the-art ones
in terms of sensitivity and robustness, in order to cope with various frequently encountered
acquisition issues.

On the one hand, reinterpretations with the LIP framework (2-D VAR△, 2-D TEN△ and
2-D SML△) of three traditional 2-D focus measurements (2-D VAR, 2-D TEN and 2-D SML)
have been suggested. From a computational point of view, they involve some subtleties
to succeed that, about human brightness perception, accordingly result in revisited focus
measurements attempting to work in terms of brightness (intensity sensation from physical
light stimuli). Firstly designed to deal with difficult ill-illuminated and poor textured parts of
the obserbed surface, the strategy of using the LIP model effectively confers higher sensitivity
to focus cues, at the expense of a slight loss of noise robustness that nevertheless remains
sufficient in most usual cases. On the other hand, novel 3-D statistical focus measurements
(3-D EIG and 3-D NEIG) have been developed in order to conversely handle noisy and
disturbed acquisitions. Contrary to 2-D sectional way adopted by the major part of the
current methods, a 3-D strategy is originally achieved throughout the image sequence via
multivariate statistical analyses within local stacks of collected 2-D sectional windows along
the axial direction, thereby offering a strong robustness to noise while preserving a sufficient
sensitivity (contrary to the state-of-the-art 3-D DCT-PCA one). The efficiency of all proposed
focus measurements have been clearly demonstrated on simulated data and real experimental
acquisitions.

The concept of reinterpreting traditional focus measurements through the LIP framework
is obviously restricted to neither image processing frameworks nor to specific focus
measurements. While the studied focus measurements are illustrated in the context
of conventional optical microscopy, they are also applicable to the wider range of
imaging systems offering a limited depth-of-field, provided the acquired image sequence
is previously registered. Morever, they can be used for all application issues requiring
focus degree information (obviously after considering the focus measurement strategy and
dimensionality), such as autofocusing. Finally, we believe that the use of adaptive windows
instead of fixed-size ones for measuring degrees of focus could improve the restoration
process, with a view to always capturing focus cues (whatever the textural content of the
observed surface) while reducing the inherent smoothing effect (around sharp depth slopes
and discontinuities of the observed surface).
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