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1. Introduction 

The desire forever-greater efficiency and increased performance has driven the development 
in modern gas turbine engines. These engines require high performance materials to exhibit 
maximum efficiency by increasing their operating temperatures. The blades in modern aero, 
marine and industrial gas turbines are manufactured exclusively from nickel based 
superalloys and the compressor section components from titanium based alloys (Fig.1). 
Achieving enhanced efficiency for marine gas turbines is a major challenge as the 
surrounding environment is highly aggressive. This aspect depends not only on the design 
but also on the selection of appropriate materials for their construction. Between the two, 
selection of materials plays a vital role as the materials have to perform well for the 
designed period under severe marine environmental conditions. The marine environment 
makes the superalloys and / or titanium based alloys to undergo a process namely hot 
corrosion. Hot corrosion can be divided into two types i.e. type I which takes place between  

 

Fig. 1. Significance of superalloys and titanium alloys in gas turbine engines 
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800 and 9500 C and type II that takes place from 600 to 7500 C. At higher temperatures, there 
is no hot corrosion problem as the salt evaporates. Unlike oxidation, hot corrosion is highly 
detrimental. In fact, hot corrosion is a limiting factor for the life of components for marine 
gas turbines. Vanadium that is present in the fuel makes the marine environment further 
corrosive by forming low melting point chemical compounds. Therefore, selection of 
appropriate materials is paramount importance. An ideal construction material should be 
able to survive this harsh corrosive environment. Thus, in order to improve the efficiency of 
marine gas turbine engines significantly, either the existing materials / coatings which can 
exhibit very good hot corrosion resistance or the advanced materials with considerably 
improved properties are necessary. Efforts made in this direction made it possible to 
develop a new superalloy which exhibits excellent high temperature strength properties [1].  

 

Fig. 2. Failed gas turbine blade due to type I and II hot corrosion 

The majority of nickel based superalloy developmental efforts have been directed towards 

improving the alloy high temperature strength properties with relatively minor concern 
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being shown to its hot corrosion resistance. Further, it is not always possible to achieve both 

high temperature strength and hot corrosion resistance simultaneously because some 

alloying elements help to improve hot corrosion resistance while some may help to improve 

high temperature strength. It is rare that an alloying element leads to enhancement both in 

high temperature strength and the hot corrosion resistance simultaneously. This is further 

complicated for marine applications by the aggressivity of the environment, which includes 

sulphur and sodium from the fuel and various halides contained in seawater. These features 

are known to drastically reduce the superalloy component life and reliability by consuming 

the material at an unpredictably rapid rate, thereby reducing the load-carrying capacity and 

potentially leading to catastrophic failure of components (Fig.2) [2-4]. Thus, the hot 

corrosion resistance of superalloys is as important as its high temperature strength in 

marine gas turbine engine applications [5-8]. Recent studies have shown that the high 

temperature strength materials are most susceptible to hot corrosion and the surface 

engineering plays a key role in effectively combating the hot corrosion problem [9-13].  

2. Superalloys 

The selected superalloys for the investigation are presented in Table 1. It is to be noted that 

SU 263, SU 718, IN 738 LC and IN 792 superalloys contain no rhenium but sufficient amount 

of chromium. However, SU 263 contains 6% molybdenum and 20% cobalt, iron content is 

very high in SU 718 with 6% tungsten, 6.5% tantalum and reduced molybdenum 3%. Good 

amount of tantalum and cobalt 8.5% each and further reduction in molybdenum 1.75% 

make IN 738 LC. IN 792 contains very low content of tungsten, molybdenum, more amount 

of aluminium 7.6% and tantalum 5% while CMSX-4 superalloy has 3% rhenium and 

reduced chromium. The newly developed alloy contains 6.5% rhenium and a very small 

amount of chromium. The modified chemistry with 6.5% rhenium, 8.5% tantalum and 5.8% 

tungsten makes the new superalloy to exhibit very good high temperature strength 

properties [1].  

 

Superalloy Ni Cr Co W Al Ta Ti Mo Re Hf Fe Mn Si Nb 

SU-263 Bal 20 20 - 0.6 1.3 2.4 6.0 - - 0.7 0.6 0.4 - 

SU-718 52.5 18.5 9.0 6.0 0.5 6.5 0.9 3.0 - - 19.0 0.2 0.2 5.1 

IN 738 LC Bal 16 8.5 2.6 3.4 8.5 3.4 1.75 - - - 0.2 0.3 0.9 

IN 792 Bal 13.5 9.0 1.2 7.6 1.3 5.0 1.2 - 0.2 0.5 - - - 

CMSX-4 Bal 6.5 9.0 6.0 5.6 6.5 1.0 0.6 3.0 0.1 - - - - 

CM 247 LC Bal 8.1 9.2 8.5 5.6 3.2 0.7 0.5 - 1.4 - - - - 

New alloy Bal 2.9 7.9 5.8 5.6 8.5 - - 6.5 0.1 - - - - 

Table 1. The chemical composition of selected superalloys (wt%) 
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As hot corroded superalloys like SU 263, SU 718, IN 738 LC in marine and vanadium 

containing environments under both type II and type I conditions are presented in figures 3-

5, while figures 6 and 7 show the hot corroded IN 792, CMSX-4, new superalloy under type 

II and type I conditions. As can be seen, all the selected superalloys were severely corroded 

under both the conditions. However, the corrosion is more severe under type I when 

compared to type II conditions. It indicates that all the superalloys are highly susceptible to 

hot corrosion. Among them, the new superalloy is more vulnerable to hot corrosion. The 

new alloy degrades at a very faster rate making it difficult to recognize over a period of time 

as evidenced from the experiments (Fig.8). It is clearly indicating that the modified 

chemistry of the new superalloy could not improve its hot corrosion resistance. However, it 

exhibits very good high temperature strength characteristics as mentioned earlier.  

 

 

Fig. 3. As hot corroded superalloy SU-263 in marine and vanadium containing 
environments under type I and type II conditions 
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Fig. 4. As hot corroded superalloy SU-718 in marine and vanadium containing 
environments under type I and type II conditions 

 

Fig. 5. As hot corroded superalloy IN 738 LC in marine and vanadium containing 
environments under type I and type II conditions 
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Fig. 6. As hot corroded superalloys in marine environment under type II conditions 

 

Fig. 7. As hot corroded superalloys under type I conditions in marine environment 
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Fig. 8. Before and after hot corrosion in marine environment under type I conditions 

 

Fig. 9. The effect of marine environment on superalloys under type I conditions 
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Figure.9 shows the hot corrosion behavior of few more superalloys like Nimonic-75, 

Nimonic-105, CM 247 LC etc. corroded in the presence and absence of marine environments 

under type I conditions. In the absence of marine environment, the corrosion was less for all 

the superalloys [9]. Appreciable corrosion was observed for all the superalloys in the 

presence of marine environment. It indicates that marine environment plays a significant 

role in causing severe corrosion, thereby reducing the superalloy life considerably. Among 

the superalloys, CM 247 LC was corroded severely indicating that this superalloy is highly 

susceptible to hot corrosion. In fact many cracks were developed on the scale and 

subsequently spallation took place. However, there were no cracks and no spallation of 

oxide scales was reported for other superalloys. In case of CM 247LC alloy, no material was 

left after exposure of 70 hours to the marine environment and only corrosion products with 

high volume of corrosion products was observed [9].  

 

Fig. 10. A typical hot corroded superalloy under type I conditions in marine environment 

The surface morphologies of various hot corroded superalloys are revealed that the surface 

morphology is different for various superalloys under the selected environmental 

conditions. Electron Dispersive Spectroscopy (EDS) measurements revealed that the 

corrosion products contain mainly sulphides and oxides of nickel and alloying elements of 
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superalloys like Co, Cr, W, Ti, Ta, Re etc. Typical surface morphology of SU 718 (Fig.10) 

demonstrates the impact of marine environment by forming big cracks. The cross sections of 

hot corroded superalloys revealed that the corrosion-affected zone is large for all the 

superalloys (Fig.11). Among them, the affected zone is more for the new superalloy 

indicating that severe corrosion took place during the hot corrosion process under marine 

environmental conditions. 

 

Fig. 11. Cross sections of typical hot corroded superalloys in marine environment 

The elemental distributions of hot corroded IN 792 and CMSX-4 superalloys under type I 

conditions showed that IN 792 superalloy, which contains good amount of chromium 

(13.5%) could form continuous chromia scale on its surface. It also promoted alumina as 

well as titania scales. However, extensive diffusion of sulphur and oxygen into the 

superalloy was clearly observed. While CMSX-4 that contains about 6.5% chromium and 3% 

rhenium could not form continuous chromia scale. Thin alumina scale was observed on the 

superalloy surface. Good amount of rhenium was present in the corrosion products. Small 
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amounts of sodium and chlorine were also present in the corrosion products but not 

diffused into the superalloy. However, significant diffusion of sulphur and oxygen into the 

superalloy was noticed (Fig.12). Extensive diffusion of sulphur was observed in case of hot 

corroded CM 247 LC alloy (Fig.13). It is to be noted that neither chlorine nor sodium was 

diffused into the superalloy. 

 

Fig. 12. Elemental distribution of CMSX-4 superalloy after hot corrosion under type I 
conditions in marine environment 

www.intechopen.com



 
The Selection of Materials for Marine Gas Turbine Engines 

 

61 

The elemental distribution of hot corroded new superalloy under type I and type II 

conditions are presented in figures.14 and 15 respectively. The results showed extensive 

presence of oxygen, sulphur and sodium in the corrosion products. Considerable diffusion 

of sulphur into the superalloy was clearly observed under type I conditions while oxygen 

under type II conditions. Rhenium and tungsten were present in the corrosion products 

under type I and they were present in the corrosion affected zone of new superalloy under 

type II. Ta and Hf were seen in the corrosion affected region. It is important to mention here 

that neither alumina nor chromia formation was observed on the superalloy. It is due to the 

fact that chromium content in the new superalloy is considerably low. At the same time, 

other alloying elements could not form any protective oxide scales.  

 

Fig. 13. Elemental distribution of CM 247 LC superalloy after hot corrosion under type I 
conditions in marine environment 
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Fig. 14. Elemental distribution of new superalloy after hot corrosion under type I conditions 
in marine environment 

BSE Cr 
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Fig. 15. Elemental distribution of new superalloy after hot corrosion under type II conditions 
in marine environment 
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Sulphur diffusion and formation of metal sulphides preferentially chromium and nickel 

sulphides was reported to be the influential factor. When sulphide phases are formed in 

superalloys, Ni- based alloys are inferior to cobalt and iron based alloys, which are 

especially effective in destroying the corrosion resistance of alloys [12]. In essence, the 

alloying elements play a significant role and decide the life of superalloys under hot 

corrosion conditions [12].  

2.1 Effect of alloying elements 

From the metallurgical point of view, it is known that high temperature strength is obtained 

by maintaining certain phases that are responsible for high temperature strength. Since a 

main motive for the Metallurgists is to improve the mechanical strength of an alloy at high 

temperatures, the addition of certain alloying elements is essential with a view to form 

gamma prime (γ’) and solid solution strengthners. Among the alloying elements, the 

significant reduction of chromium content and the addition of other elements, in particular 

tungsten, vanadium, molybdenum etc. makes the superalloys more vulnerable to hot 

corrosion [12]. It is reported that addition of tantalum and titanium produces beneficial 

effects for hot corrosion [12], while small additions of manganese, silicon, boron and 

zirconium do not significantly influence the hot corrosion of superalloys. Carbon addition is 

detrimental to hot corrosion, as the carbide phases provide sites for initiation of hot 

corrosion [12]. As observed for IN 738 LC with a large amount of chromium and a small 

amount of titanium, hot corrosion resistance is very good under type I conditions: however 

the alloy is vulnerable to type II hot corrosion conditions.The addition of molybdenum and 

large content of iron made the SU 718 less hot corrosion resistant. The addition of large 

amount of tungsten, tantalum, rhenium and minor other alloying elements and considerably 

reduced chromium rendered the new superalloy highly susceptible to hot corrosion. It is 

important to mention that chromium is the most effective alloying element for imporving 

the hot corrosion resistance of superalloys. In order to obtain good resistance to hot 

corrosion, a minimum of 15wt% chromium is often needed in nickel based superalloys and a 

minimum of 25wt% chromium in cobalt based superalloys [4]. However, it is pertinent to 

note that other alloying elements play a significant role as evidenced from the reported 

results. Therefore, it is mandatory to test the alloy under simulated environmental 

conditions in order to select the more corrosion resistant alloy. 

2.2 Degradation mechanism 

The results clearly revealed that all the studied superalloys are highly vulnerable to  

hot corrosion. The results further revealed that the new superalloy corrodes much faster 

when compared to other studied superalloys. It is attributed to the fact that the tungsten 

which is the alloying element added along with other alloying elements in order to obtain 

high temperature strength characteristics of the superalloys, forms acidic tungsten oxide 

(WO3) due to which fluxing of protective oxide scales such as alumina and chromia takes 

place very easily. This type of acidic fluxing is self-sustaining because WO3 forms 

continuously that cause faster degradation of superalloys under marine environmental 

conditions at elevated temperatures. The degradation mechanism is explained in two 

steps as follows: 
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a) The tungsten present in the new superalloys reacts with the oxide ions present in the 

environment and forms tungsten ion 

WO3 + O 2- = WO4 2- 

b) As a result, the oxide ion activity of the environment decreases to a level where acidic 

fluxing reaction with the protective alumina and chromia can occur 

Al2O3 = Al 3+ + O 2- 

Cr2O3 = Cr 3+ + O 2- 

A similar reaction mechanism occurs if the superalloys contain other refractory elements 
like vanadium and molybdenum [9].   

2.2.1 Electrochemical mechanism 

The following section describes an electrochemical phenomenon that explains the new 

superalloy degradation process in detail under hot corrosion conditions:   

Hot corrosion of new superalloy takes place by oxidation of base as well as alloying 
elements like nickel, cobalt, chromium, aluminium, tantalum, rhenium etc. at the anodic site 
and forms Ni2+, Co3+, Cr3+, Al3+, Re4+, Ta5+ions etc. while at the cathodic site, SO42- reduces to 
SO32- or S or S2- and oxygen to O2-. Since the metal ions i.e. Ni2+, Co3+, Cr3+, Al3+, Re4+, Ta5+ 

ions etc. are unstable at the elevated temperature and therefore reacts with the sulphur ions 
to form metal sulphides. The metal sulphides can easily undergo oxidation at elevated 
temperatures and form metal oxides by releasing free sulphur (MS + 1/2 O2 = MO + S).  
As a result, sulphur concentration increases at the surface of superalloy and enhances 
sulphur diffusion into it and forms sulphides inside the superalloy. The practical 
observation of sulphides in hot corroded superalloy specimens clearly indicates that the 
electrochemical reactions took place during the hot corrosion process. Simultaneously, the 
metal ions react with oxide ions that are evolved at the cathodic site leading to the 
formation of metal oxides. The metal oxides dissociate at elevated temperatures to form 
metal ions and oxide ions. As a result, oxygen concentration increases at the surface and 
thereby diffuses into the superalloy. Practical observation of oxides in hot corroded 
superalloys is a clear indication that the electrochemical reactions took place during the 
hot corrosion process. 

Therefore, the hot corrosion of new superalloy is electrochemical in nature and the relevant 
electrochemical reactions are shown below:  

Fig.16 illustrates an electrochemical model showing the new superalloy degradation is 
electrochemical in nature. Similar mechanism is applicable to other superalloys and their 
families. The motivation behind suggesting an electrochemical model is to show that the 
degradation of superalloys in marine environments at elevated temperatures is 
electrochemical in nature and hence, the electrochemical techniques are quite helpful not 
only in evaluating them for their hot corrosion resistance but also for understanding their 
hot corrosion mechanisms. In fact, the electrochemical evaluation of superalloys with and 
without coatings is more reliable and fast.   
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At the anode At the cathode  

Ni =  Ni2+ + 2e- 1/2 O2 + 2e- = O2-  

Cr =  Cr3+ + 3 e- SO42- + 2e-  = SO32- + O2-  

Co =   Co3+  + 3e- SO42- +6e-  = S + 4O2-  

Al =  Al3+  + 3e- SO42- +8e-  = S2- + 4O2-  

Re =  Re4+  + 4e-  

Ta =  Ta5+  + 5e-  

etc.  

Fig. 16. An electrochemical model showing that hot corrosion of new superalloy is an 
electrochemical phenomenon 

2.3 Development of smart coatings 

From the present results, it is concluded that the new superalloy is highly susceptible to hot 

corrosion, though it exhibits excellent high temperature strength properties. It is clear that 

other superalloys are also vulnerable to both types of hot corrosion. It stresses the need to 

apply high performance protective coatings for their protection against hot corrosion both at 

low and high temperatures i.e. type II and type I as the marine gas turbine engines 

encounter both the problems during service. The protective coatings allow the marine gas 

turbine engines to operate at varied temperatures and enhance their efficiency by 

eliminating failures during service. Research in this direction has resulted in design and 

development of smart coatings which provide effective protection to the superalloy 

components for the designed period against type I, type II hot corrosion and high 

temperature oxidation that are normally encountered in gas turbine engines which in turn 

enhances the efficiency of gas turbine engines considerably [14-15]. This is a major 

developmental work in the area of gas turbine engines used in aero, marine and industrial 

applications.  Unlike the conventional / existing coatings, the smart coatings provide total 

protection to the superalloy components used in aero, marine and industrial applications by 
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forming appropriate protective scales like alumina or chromia depending on the 

surrounding environmental conditions [14-15].   

3. Titanium alloys 

The titanium alloy components experience hot corrosion problem when they are used for 

marine gas turbines [16]. It severely limits the high temperature capability of alloys in terms 

of mechanical properties. It is therefore, desirable to understand the characteristics of 

titanium alloys under simulated marine gas turbine engine conditions and then apply 

appropriate coatings, which can prevent hot corrosion and thereby helps in enhancing the 

life of gas turbine engines significantly. 

The hot corrosion characteristics of the titanium alloy, IMI 834 in marine environments at 

6000 C revealed that the rate constant increases by about six times in marine environment 

and about seven times in vanadium-containing marine environment. It indicates that the 

rate of reaction is very high in marine environments, still higher in vanadium containing 

marine environments and low in other environments [16]. The Scanning Electron 

Micrograph (SEM) of the alloys corroded in marine environment at 6000 C clearly shows 

that the oxide scale that formed on the surface of the titanium alloys was cracked due to the 

presence of NaCl in the environment (Fig.17). The cracks were not observed for the alloys 

corroded in other environments. It indicates that the chloride ions present in the marine 

environment causes the oxide scale to crack and facilitates the corrosive species present in 

the environment to react with the alloy, which is the reason for observing significant 

increase in corrosion rate [16]. It is known that chloride ions lead to pitting type of attack, 

which generally initiates at imperfections in the oxide scale. The micro hardness 

measurements as a function of depth for the alloys corroded at 6000 C, revealed the presence 

of about 500 μm hardened zone due to dissolution of oxygen, which is sufficient for 

affecting the mechanical properties of the titanium alloys by forming a highly brittle zone 

from which crack initiates during service conditions [16]. The depth of oxygen dissolved  

 

Fig. 17. Effect of marine environment on the stability of titanium alloy IMI 834 
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region varies with the temperature at which the titanium alloys were corroded. It is 

important to mention that the depth of the titanium alloys affected in marine environment is 

about 100 times more than that of the alloys corroded in other environments at the same 

temperature [16]. It clearly indicates the greater aggressiveness of marine environments to 

titanium alloys compared to other environments.  

3.1 Degradation mechanism  

Given below are the proposed mechanistic steps that degrade titanium alloy, IMI 834 under 

hot corrosion conditions in marine environment: 

1. The oxide scale that forms on the surface of IMI 834 is predominantly TiO2 in 

association with Al2O3. The TiO2 reacts with chloride ions present in the marine 

environments at elelvated temperatures to form volatile TiCl2 

 TiO2 +  2 Cl- = TiCl2  + 2 O2- (1) 

The TiCl2 dissociates at elevated temperatures to form Ti2+ and Cl -  ions 

 TiCl2 = Ti2+  +  2 Cl- (2) 

The titanium ions then react with oxygen ions present in the environment to form a 

non-adherent and non-protective TiO2 scale which spalls very easily. Chloride ions 

penetrate into the alloy to form volatile chlorides. This process continues until titanium 

in the alloy is consumed. In other words, the reaction is autocatalytic. The oxygen ions 

that form in reaction (1) diffuse into the alloy and form an oxygen-dissolution region 

due to high oxygen solubility in titanium alloys. 

2. Al2O3 reacts with Cl- ions to form aluminum chloride 

 Al2O3 + 6Cl-  = 2 AlCl3  +  3 O2- (3) 

The AlCl3 that formed in the above reaction dissociates to form Al3+ and Cl− ions 

 AlCl3 = Al3+ +  3 Cl- (4) 

The Al3+ ions react with oxygen ions to form a loose and non-protective alumina scale, 
which spalls very easily, as in the case of titania 

 Al3+  + 3 O2- = Al2O3 (5) 

As mentioned above, the chloride ions penetrate into the titanium alloy to form volatile 
chlorides and the reaction is autocatalytic. The oxygen ions that formed in reaction (3) 
diffuse into the alloy and react with titanium. The reactions (1) and (3) contribute to the 
formation of oxygen dissolved region in the titanium alloy subsurface. 

As a result of the above reactions, the degradation of titanium alloys takes place at a faster 
rate [16] and situation can easily make the components fabricated from titanium alloys, 
susceptible to failure under normal service conditions of gas turbines. Even in actual jet 
engines, cracking was reported on salted Ti–6Al–4V alloy discs . Logan et al [17] were 
proposed that oxygen ions from the scale and chloride ions from marine environment, 
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diffuse into the titanium alloys, react with alloys constituents to destroy atomic-binding 
forces and cause cracking. These detrimental observations clearly stress the need to protect 
titanium alloy components from hot corrosion and thereby enhance their life by avoiding 
failures during service. These studies also focus on the development of coatings, which can 
protect titanium alloys both from oxidation as well as hot corrosion, since both the processes 
are experienced by gas turbine engine components. 

3.2 Smart coatings development 

Different smart coatings based on a variety of elements and their combination were 
designed and developed on titanium alloy, IMI 834. The extensive investigations revealed 
that the smart coatings based on aluminium that were developed by innovating a new pack 
composition showed an excellent resistance both under hot corrosion as well as oxidation 
conditions [15]. The elemental distribution showed a protective, continuous and adherent 
alumina scale over the coating. It indicates that an excellent protection was provided by the 
developed smart coating to the titanium alloys from hot corrosion. Further, the developed 
coatings can be prepared by a simple technique, easy to coat large components and 
moreover highly economical.  Hence, it is recommended to use the developed smart 
coatings for the modern marine gas turbine engine titanium alloy components.  

4. Summary 

The chapter presented hot corrosion results of selected nickel based superalloys for marine 
gas turbine engines both at high and low temperatures that represent type I and type II hot 
corrosion. The results have been compared with a new alloy under similar conditions in 
order to understand the characteristics of the selected superalloys. It is observed that the 
nature and concentration of alloying elements mainly decide the resistance to type I and 
type II hot corrosion. CM 247LC and the new superalloy are extremely vulnerable to both 
types of hot corrosion. Relevant reaction mechanisms that are responsible for degradation of 
various superalloys under marine environmental conditions were discussed.  The necessity 
to apply smart coatings for their protection under high temperature conditions was stressed 
for the enhanced efficiency as the marine gas turbine engines experience type I and type II 
hot corrosion during service. Further, the hot corrosion problems experienced by titanium 
alloy components under marine environmental conditions were explained along with 
relevant degradation mechanisms and recommended a developed smart coating for their 
effective protection. 
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