
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322413061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


11 

The Comparison of the Photoinitiating  
Ability of the Dyeing Photoinitiating  
Systems Acting via Photoreducible  

or Parallel Series Mechanism 

Janina Kabatc* and Katarzyna Jurek  
University of Technology and Life Sciences, 

 Faculty of Chemical Technology and Engineering,  
Poland 

1. Introduction 

Light-induced polymerization reaction is largely encountered in many industrial 
applications. For example, laser direct imaging, graphics arts, holography, and dental 
materials require irradiation in the visible light region to benefit from laser technologies or 
simply to avoid UV damaging effects on skin [1]. The basic idea is to readily transform a 
liquid resin or a soft film into a solid film upon light exposure to form either a coating as 
developed in the UV curing area or an image as used in the (laser) imaging area. The 
starting resin is in fact a formulation that consist in an oligomer, a monomer, a 
photoinitiating system, and various additives depending on the applications (formulation 
agents, stabilizers, pigments, fillers, etc.). 

The imaging technology industries where lasers are very often used currently, appear in 
high-tech sectors combining photochemistry, organic and polymer chemistry, physics, 
optics, electronics such as (i) microelectronics – photoresists for the printed circuits, 
integrated circuits, very large and ultralarge scale integration circuits and laser direct 
imaging (LDI) technology that allows to write complex relief structures for the manufacture 
of microcircuits or to pattern selective areas in microelectronic packaging, and so on, (ii) 
graphic arts – manufacture of conventional printing plates, computer-to-plate technology 
that directly helps to reproduce a document on a printing plate, and so on (iii) 3D machining 
(or three-dimensional photopolymerization or stereolithography) which is giving the 
possibility to make objects for prototyping applications, (iv) optics – holographic recording 
and information storage, computer generated and embossed holograms, manufacture of 
optical elements (diffraction grating, mirrors, lenses, waveguide, array illuminators, and 
display applications), design of structured materials on the nanoscale size. 

Great effort is taken at present in the design the new photosensitive systems being able to 
work in well-defined conditions. As far as the polymerization reactions are concerned in UV 
curing and imaging areas, they are mostly based on a radical process. 
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In this chapter, we will focus on photosensitive systems that are used in free radical 
photopolymerization reactions. We will give the most exhaustive presentation of potentially 
interesting systems developed on a laboratory scale together with the characteristic of their 
excited-state properties. We will also show how modern time resolved laser spectroscopy 
techniques allows to probe the photophysical/photochemical properties as well as the 
chemical reactivity of a given photoinitiating system [2]. 

2. Properties of photoinitiating system 

A photoinitiating system (PIS) consist at least in a photoinitiator (I). Very often, a co-initiator 
(coI), a radical scavenger (RS) or a photosensitizer S can be added. Basically, a 
photoinitiating system leads to radicals that can initiate the polymerization (1). 

 
I

h
R

M

RM Polymer
 

(1)
 

The photoinitiator (I) is usually an organic molecule. Upon excitation by light, (I) is 
promoted from its ground singlet state S0 to its first excited singlet state S1 and then 
converted into its triplet state T1 via a fast intersystem crossing. In many cases, this transient 

T1 state yields the reactive radicals R that can attack a monomer molecule and initiate the 
polymerization [1, 2]. 

Radicals of photoinitiators are produced through several following typical processes: 

 A photoscission of a C-C, C-S, C-B and C-P bonds (most cleavable compounds are 
based on the benzoyl chromophore), 

 An hydrogen abstraction reaction between (I) and (coI), which plays the role of a 
hydrogen donor (such as an alcohol, a thiol, etc.); two radicals are formed: one on an 
donor and another on (I), 

 An electron transfer process between (I) and (coI). 

The spectral absorption range of photoinitiator is a decisive factor: the wavelength range of 

the (I) absorption has to match the spectral emission range of the light source. Therefore, 

when pigmented or colored media are used, a spectral window has to be found to excite. It 

may happen that the direct excitation of photoinitiator is impossible. In that case, a 

photosensitizer (S) must be added. The role of sensitizer is to absorb the light and to transfer 

the excess of energy to the photoinitiator through the well-known energy transfer process. 

The process is efficient only if the energy level of a donor is higher than that of an acceptor. 

The panchromatic sensitization of free radical polymerization under visible light can occur 

in a presence of the dye alone (one-component) or in a presence of two-, three- or multi-

component photoinitiating systems composed of dye molecule (sensitizer) and second 

compound acting as a co-initiator (either as electron or hydrogen atom donor). 

Commonly, visible-light activated initiators are typically two-component initiator systems: a 
light-absorbing photosensitizer and co-initiator. In this type of photoinitiating system, the 
photo-excited dye may act as either an electron acceptor (for example, if an amine is used as 
the second component), or an electron donor (for example, when an iodonium salt is used as 
the second component) [3]. Athouugh both reaction pathways are known, electron transfer 
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from an electron donor to the photo-excited dye and the generation of radicals followed by 
either proton transfer from radical cation of electron donor or bond cleavage in electron 
donor is more common [3]. The intrinsic characteristics of two-component initiator systems 
leads to numerous kinetic limitations. For example, since the back electron transfer step is 
invariably thermodynamically feasible, back electron transfer and radical recombination 
decrease the potential concentration of free radical active centers. Furthermore, an inefficient 
radical is often produced simultaneously in this electron transfer/proton transfer reaction 
step because the dye-based radical is not active for initiation but is able to terminate a 
growing polymer chain [3]. These cumulative effects significantly limit polymerization 
kinetics of two-component initiator systems and tend to make visible light polymerization 
less attractive, than UV photocuring in applications where reaction rate is a primarily 
consideration [3]. 

Some dyes absorbing in the visible region have been reported to be photoreduced in the 
presence of amines [1]. These compounds belong to the families of xanthenes, fluorones, 
acridines, phenazines, thiazenes, and so on. For example, methylene blue is well known to 
react from its triplet state with amine to initiate the photopolymerization of acrylates. The 
photoreduction is accompanied with an important photobleaching of the dye, rendering the 
photopolymerization of thick samples under visible light. The photobleaching is not so 
important in the case of xanthenes or fluorones, although the polymerization can be very 
efficient. Very good efficiencies were reported using thionine, rose bengal, eosin Y, 
erythrosin, riboflavin, polymethine dyes as photosensitizers, and co-initiators, such as 
amines, sulfinates, carboxylates, organoborate salts [1]. In the case of amine as co-initiator, 
the reaction involves a hydrogen abstraction from a amine to semireduced form of a dye. 
But in the case of organoborate salts acting as a co-initiator, the reaction involves an electron 
transfer from borate anion to polymethine dye in its excited singlet state. These systems are 
able to shift the spectral sensitivity of photopolymers up to the red region of the visible 
spectrum. However, dye/co-initiator systems were not developed significantly in the 
industry. Very often, dark reactions take place that lead to poor shelf life of the formulation, 
an effect that was detrimental to their industrial use for a long time. In addition, the 
conversion of the monomer to polymer was generally limited. Indeed, for most of the 
industrial applications, conversion of more than 60% have to be reached, a goal that is 
difficult to achieve with conventional dye/co-initiator photoinitiating systems (PIS) [1]. 

In the last decade, three-component photoinitiating systems have emerged as an attractive 

alternative for visible light polymerization based on numerous demonstrations that the 

kinetic effectiveness of a two-component electron/proton transfer initiator system can be 

improved by the addition of a third component. 

Like the two-component system, the three-component (PIS) include a light absorbing 
moiety, an electron donor (ED) and an electron acceptor (EA). In such systems, the third 
component is supposed to scavenge the chain-terminating radicals that are generated by the 
photoreaction between other two components or produce the additional initiating radicals. 
This process leads to an increase of the free radical polymerization rate. Therefore, certain 
additives improve the polymerization efficiency, leading to the development of the so-called 
three-component photoinitiating systems [3-12]. Three-component initiator systems have 
consistently been found to be faster, more efficient, and more sensitive than their two-
component counterparts [3]. The mechanism involved is rather complex and is based on 
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chemical secondary reactions. It was reported, that different radical intermediates generated 
during the irradiation and in the subsequent polymerization reaction react with the additive 
to give new reactive radicals. 

The development of new photoinitiating systems remains an interesting challenge. In 
specific areas, for example in graphic arts or in conventional clear coat and overprint varnish 
applications, the photoinitiators must exhibit particular properties, among them a high 
photochemical reactivity leading to high curing speeds. 

Kim et al. [4], used the thermodynamic feasibility and kinetic considerations to study 

photopolymerization initiated with rose bengal or fluorescein as photosensitizer to 

investigate the key factors involved with visible-light activated free radical polymerization 

involving three-component photoinitiating systems. Many of the same photosensitizers 

used for two-component electron-transfer initiating systems may also be used in three-

component ones [3]. Examples include coumarin dyes, xanthene dyes, acridine dyes, 

thiazole dyes, thiazine dyes, oxazine dyes, azine dyes, aminoketone dyes, porphyrins, 

aromatic polycyclic hydrocarbons, p-substituted aminostyryl ketone compounds, 

aminotriaryl methanes, merocyanines, squarylium dyes, and pyridinium dyes [3, 13-17]. 

A number of kinetic mechanisms have been suggested to explain the enhanced kinetics and 
sensitivity for three-component initiatior systems. 

There are few mechanisms of free radicals generation in dyeing three-component 

photoinitiating systems: 

 Photooxidizable series mechanism, 

 Photoreducible series mechanism (dye/amine/iodonium salt), 

 Parallel series mechanism. 

The photoreducible series mechanism is the well-known representative kinetic mechanism 

for three-component photoinitiating systems. Until now, photoreducible series mechanism 

for (PIS) containing camphoquinone or methylene blue dye have been reported as a 

representative kinetic mechanism. However, alternative kinetic mechanisms must be 

considered since a variety of dyes used in three-component initiator systems impose 

different thermodynamic and kinetic constraints. For this study, we used three-component 

photoinitiator systems containing thiacarbocyanine dye (Cy). This dye has excellent 

attributes that make it attractive for these mechanistic studies. Because this photosensitizer 

has both reduction potential as well as oxidation potential, the photo-excited dye allows 

thermodynamically feasible direct interactions with an electron donor as well as with an 

electron acceptor simultaneously. 

In this chapter, the efficiency of the three-component photoinitiating system based on 

thiacarbocyanine dye to induce visible light polymerization of triacrylate monomer will be 

described. The ability of both photoinitiating systems formed by Cy/n-

butyltriphenylborate/second co-initiator and Cy/1,3,5-triazine derivative/heteroaromatic 

thiol to initiate polymerization under visible light will be reported. 

To understand their efficiency in terms of monomer conversion, the photochemistry of these 

systems was investigated by means of steady state and time resolved spectroscopy. 
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2.1 Polymethine dyes as sensitizer in photoinitiating system 

Polymethine dyes were first synthesized in 1856 by Greville Williams. Classical polymethine 
dyes are cationic molecules in which two terminal nitrogen heterocyclic subunits are linked 
by a polymethine bridge as shown by the general structure 1. 

N
N

R1
R1

n

X

 

(1) 

In the ensuing 150+ years, thousands more cyanines have been synthesized due to 

demand based on diverse applications of these versatile dyes [18]. As it is known, these 

dyes present intense absorption and fluorescence bands in the green-red visible region of 

the electromagnetic spectrum and exhibit high fluorescence quantum yields. The best 

known application of these dyes is in the laser field, where they showed higher laser 

efficiency than rhodamine dyes. Besides their use as laser dyes, polymethines have also 

shown very good performance as sensitizing dyes in free radical photopolymerization, 

with the idea of using the photopolymers in industrial applications, such as 

photoimaging, holography, computer-to-plate, and so on. They have been used as 

sensitizer dye with organoborate or 1,3,5-triazine derivatives as a radical generating 

reagent. The ion pair composed of cyanine dye cation and an alkyltriarylborate anion was 

first described by G. B. Schuster et al. [19, 20]. 

The work of Schuster and co-workers [19, 20] on the photochemistry of cyanine borates led 

to the preparation of the color-tunable, operating in the visible region commercial 

photoinitiators [21]. This research group discovered that, photolysis of 1,4-

dicyanonaphthalene containing an alkyltriphenylborate leads to one electron oxidation of 

alkyltriphenylborate salts yielding an alkyltriphenylboranyl radical that undergoes carbon-

boron bond cleavage and the formation of free radicals [22]. 

The laser flash photolysis data allows one to describe the mechanism of the polymerization 
initiation process. The initiation step of the reaction involves alkyl radical formation as a 
result of photoinduced electron transfer from borate anion to the excited singlet state of 
cyanine dye, followed by the rapid cleavage of the carbon-boron bond of the boranyl radical 
(see Scheme 1). 

Scheme 1 summarizes possible primary and secondary processes, which may occur during 
the free radical photoinitiated polymerization with the use of cyanine borate initiators; 
where kBC denotes the rate of the carbon-boron bond cleavage, the reverse step is designated 
as k-BC, and kbl is the rate constant of the free radicals cross-coupling step yielding bleached 
dye. 

As it was mentioned above this chapter reports the use of polymethine dye as a part of a 
three-component photoinitiating system for radical polymerization in the visible region of 
the spectrum, together with an alkyltriphenylborate salt and different additives as co-
initiators. In the study, we examined the ability of the systems formed by Cy/borate salt,  
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Scheme 1. Primary and secondary processes occuring during the free radical photoinitiated 
polymerization with the use of cyanine borate photoinitiators. 

Cy/borate salt/different derivatives, and Cy/1,3,5-triazine/heteroaromatic tiol to initiate 
polymerization under visible light (Scheme 2). 
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Scheme 2. Compounds used in this study 

2.1.1 Kinetic key factors for visible-light activated free radical polymerizations 

The efficiency of different combinations of polymethine dye and additives as (PIS) for the 

polymerization of triacrylate, was evaluated using the differential scanning calorimetry 

(DSC), under isothermal conditions at room temperature, using a photo-DSC apparatus 

constructed on the basis of the TA Instruments DSC 2010 Differential Scanning 

Calorimeter. 

The different formulations, in molecular ratio of each component, for dye studied are 

detailed in Table 1. No significant photopolymerization was detected in the absence of the 

dye. Figures 1-4 show the corresponding kinetic observed for N,N’-diethylthiacarbocyanine 

dye, and Table 1 shows the final conversions, polymerization rates and inhibition times for 

all runs after 5 min of irradiation.  
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Fig. 1. Comparative study of the photopolymerization of TMPTA/MP mixture (9:1) (2-ethyl-
2-(hydroxymethyl)-1,3-propanediol triacrylate/1-methyl-2-pyrrolidinone) using different 
photoinitiating systems based on the polymethine dye and onium salts. 
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Fig. 2. Comparative study of the photopolymerization of TMPTA/MP mixture (9:1) using 
different photoinitiating systems based on the polymethine dye and 1,3,5-triazine 
derivatives. 
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Fig. 3. Comparative study of the photopolymerization of TMPTA/MP mixture (9:1) using 
different photoinitiating systems based on the polymethine dye and other additives. 
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Fig. 4. Comparative study of the photopolymerization of TMPTA/MP mixture (9:1) using 
photoinitiating systems based on the polymethine dye, heteroaromatic thiol and 1,3,5-
triazine derivative. 

 

Co-initiator 
Dye 
[M] 

B2 
[M] 

Other 
Additives

[M] 

Molar 
ratio 

B2/other 
additives

Inhibition 
time 
[s] 

RP 

[mol/s] 

Final 
conversion 

(%) 

B2 5  10-3 5  10-3 0 0 6.5 0.502 10 
NO 5  10-3 5  10-3 5  10-4 10 1 1.54 22 
NOB2 5  10-3 1  10-2 1  10-2 1 0 9.38 46 
Bp 5  10-3 5  10-3 5  10-4 10 0 3.20 39 
I 5  10-3 5  10-3 3  10-3 1.67 0.8 1.11 10 

T1 5  10-3 5  10-3 5  10-2 0.1 0 4.92 31 
T2 5  10-3 5  10-3 1  10-2 0.5 1.4 2.24 30 

E1B 5  10-3 5  10-3 1  10-2 0.5 1 5.86 28 
E1BB2 5  10-3 1  10-2 1  10-2 1 1.5 2.11 25 
MS 5  10-3 5  10-3 5  10-2 0.1 9 2.02 24 
K1 5  10-3 5  10-3 1  10-1 5 9 0.84 15 
EPM 5  10-3 5  10-3 5  10-3 1 0 0.261 4 

T1 5  10-3 0 5  10-2 0 3 0.388 7 
MS 5  10-3 0 5  10-2 0 8 0.29 10.7 
T1 + MS 5  10-3 0 5  10-2 0 9 0.63 13 

Table 1. Molar composition of the samples, corresponding B2/other additive molar ratio, 
final conversion obtained after 5 min of irradiation, maximum polymerization rate RP and 
inhibition time. 

It has been reported that to enhance the kinetics of a visible-light activated initiation process, 

it is important to: (1) retard the back electron transfer and recombination reactions and (2) 

use the secondary reaction step to consume the nonproductive dye-based radical and 

thereby regenerate the original photosensitizer (dye) [3]. Figures 1-4 provide a comparison 

of the visible-light activated free radical polymerizations initiated by two-component 
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initiator systems (CyB2, Cy/MS and Cy/T) with the corresponding three-component PIS. 

These examples clearly show that the three-component initiator systems produce the highest 

rates and final conversion as predicted.  

Figures 1-3 demonstrate that the photoreducible series mechanism (Cy/B2/second co-

initiator) produces the highest conversion and the fastest rates of polymerization. In such 

photoinitiating system, since Cy* reacts directly with borate salt (ED), this kinetic pathway 

can prevent photon energy wasting steps such as back electron transfer [23]. But it is well 

known, that in a case when stable alkyl radical (initiating radical) is formed as a result of 

carbon-boron bond cleavage in boranyl radical (product of primary photochemical reaction) 

the back electron transfer process does not occur. Therefore, in the EA-based secondary 

reaction step, the dye-based radical can be consumed and photosensitizer (Cy) can be 

regenerated. 

The parallel-series mechanism (Figure 4 (Cy/thiol/triazine)) showed intermediate reaction 

kinetics because this kinetic pathway simultaneously involves both the photoreducible and 

photooxidizable mechanisms in the primary photochemical reaction. These results are also 

supported by Table 1 which illustrates that the photoreducible series mechanisms 

(Cy/B2/second co-initiator) produced the highest reaction kinetics and photo-sensitivity 

then the alternative kinetic pathway. 

The comparison of Cy/MS and Cy/T systems also illustrates the importance of preventing 

of back electron transfer reaction. Grotzinger and coworkers reported that when 1,3,5-

triazine derivative accepts an electron, it produce 1,3,5-triazine radical anion which 

fragments to produce an active, initiating 1,3,5-triazynyl radical and a chloride anion [12]. 

Thus, triazine (T) accepts an electron from Cy*, and the product obtained undergoes a rapid 

unimolecular fragmentation reaction that limits back electron transfer. Because of the 

reduced back electron transfer between the Cy* and T, Cy/T system leads to the generation 

of higher concentrations of active centers than Cy/MS system (however, complete bleaching 

of the dye in the photochemical reactions results in the low conversion in the two-

component systems and the conversion reaches < 10 %. 

On the other hand, the excited dye wastes photon energy in an electron transfer process 

between dye and co-initiator because of the back electron transfer competes with separation 

of gemine radical pair. It has generally been reported than only 10% of the absorbed light 

energy may be used for photo-induced electron transfer in the bimolecular organic electron 

transfer reaction [23]. Hence the Cy/MS initiator system only reached ~ 10 % of final 

conversion. The Cy/MS/T three-component initiator system produced enhancened 

conversion about 13 %.  

As expected, this behavior is strongly dependent on the composition of the photoinitiating 
system. The photoinitiating ability of the (PIS) under study depends mostly on the nature of 
the co-initiator. The use of diphenyliodide or N-phenylethylmaleimide in the CyB2 
photoinitiating system leads to poor and slow conversion of the monomer. 

On the other hand, the Cy/B2/second co-initiator photoinitiating systems produced 
dramatically enhanced conversion ranging from 15 to 46 % because of effective retardation 
of the recombination reaction step and consumption of the dye-based radical to regenerate 
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of the original photosensitizer (dye) in the secondary reaction step. The enhanced 
conversion relative to the two-component initiator system also arises from production of 
two radicals: an active initiating butyl radical and an active alkoxy, triazinyl, picolinium 
ester, thyil or phenyl radical. These results are supported by Table 1, which illustrates the 
reaction rate as well as the final conversion of monomer with photoinitiating systems under 
study. The data clearly indicate that the three-component initiator system (Cy/B2/second 
co-initiator) is the most effective in overall radical active centre production as well as the 
rate of initiation from the onset of polymerization. 

On the contrary, the system Cy/T1 exhibits a good reactivity with both higher rate of 

polymerization and final conversion. However, the best results were obtained for the three-

component system CyB2/T1 and CyB2/T2. The addition of 1,3,5-triazine derivative to the 

CyB2 system increased the polymerization rate as well as the final conversion of the 

triacrylate compared with the two-component systems. 

Finally, all these kinetic results provide very useful information in terms of the selection 

criteria for each component of photoinitiating system. Because once photosensitizer with 

both reduction and oxidation potentials is selected, the kinetic pathway is controlled by 

selection of an electron donor or an electron acceptor based on the thermodynamic 

feasibility, thereby influencing the conversion and rate of polymerization kinetic data. 

As before, these kinetic differences of two kinetic pathways are ascribed to differences in the 

efficiency of retarding back electron transfer as well as regenerating photosensitizer through 

the secondary reaction step. 

2.1.2 Excited state reactivity 

Because polymethine dye tested exhibits medium fluorescence quantum yield (Table 2), the 

fluorescence quenching by co-initiators was first studied. 

 

 Cy 

max [nm] 556 

max [mol-1dm3cm-1] 113 000 

Es [kJ/mol] 203 

f 0.05 

0 [ps] 139, 392 
Eox [V/SCE] 1.0 
Ered [V/SCE] -1.34 

Maxiumum absorption wavelength max, molar extinction coefficient max, 

singlet state energy Es, fluorescence quantum yield f, singlet state lifetime 0, 
half-wave oxidation and reduction potentials Eox and Ered, respectively. 

Table 2. Photophysical and Electrochemical Properties of Polymethine Dye 

The quenching rate constants kq of the singlet excited state by co-initiators tested were 

determined in ethyl acetate:1-methyl-2-pyrrolidinone mixture (4:1) (Table 3), and showing 

values close to the diffusion rate constant (kq = 2  1010 M-1s-1). 
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 kq [M-1s-1] Gel [kJ/mol] 

B2 9.51011 -1.93 

NO 6.151010 -64.64 

Bp 1.961010 -67,.06 

T1 3.61010 -27.02 

E1B 7.42109 -26.44 

Thiol 2.781010 -12.54 

Table 3. Fluorescence Quenching Data kq and Gibbs Free Energy Gel Changes for 
Thiacarbocyanine Dye with Co-initiators Tested. 

2.1.3 Thermodynamics of photo-induced electron transfer reaction 

Before investigating the kinetic mechanisms for efficient design of photoinitiator systems, 

thermodynamic feasibility for electron transfer reactions must be verified. The Rehm-

Weller equation was used to predict the thermodynamic feasibility for electron transfer 

reaction as shown below [24]. In this study, N,N’-diethylthiacarbocyanine dye was 

selected as photosensitizer because allows thermodynamic feasibility for direct 

simultaneous interaction with an electron donor as well as with an electron acceptor 

previously described. B2 or MS are used as electron donor (ED) and NO, Bp, I, T1, T2, 

E1B, K or EMP is used as (EA). 

Because of the redox properties of the dye (Table 2) and the co-initiators, the mechanism for 

the quenching of sensitizer’s excited state likely involves an electron transfer process. The 

values of the Gibbs free energy change for the photoinduced electron transfer Get on 

excited state is given by the Rehm Weller equation (2) [24]. 

 *
el ox redG E E E C      (2) 

where:  

Eox and Ered are the half-wave oxidation and reduction potentials for the acceptor (Cy; Ered = 
-1.34 V/SCE) and the donor (B2; Eox = 1.16 V/SCE), respectively, and E* is the energy of the 
excited state. The coulombic term C is usually neglected in polar solvents.  

The Get values are very useful for determining the potential kinetic pathway. As can be 
seen in Table 3, the calculated values for the intermolecular singlet electron transfer 
reactions are favorable, indicating that the dye can be reduced in the presence of the electron 
donors, such as: B2 or heteroaromatic thiol or oxidized with 1,3,5-triazine derivative. 

From these results, one can conclude that the carbocyanine dye reacts with the co-initiators 
mainly through the quenching of the first excited singlet state. The reaction proceeds 
through the formation of a geminate radical pair, which can recombine through a back 
electron transfer process or separate into free radicals. The latter process explains the 
formation of the dye-based radical when alkyltriphenylborate salt is used as a quencher, or 
the radical cation of the dye when 1,3,5-triazine is used instead. 

These results can lead to two initiator systems with two corresponding thermodynamically 
feasible kinetic pathways, which are (i) photoreducible series mechanism: Cy/B2/onium 
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salt, Cy/B2/N-methylpicolinium ester, Cy/B2/acetal, Cy/B2/thiol, Cy/B2/triazine, (ii) 
parallel-series mechanism: Cy/thiol/triazine. 

2.2 Mechanism of free radicals formation 

From the transient absorption spectra obtained during laser flash photolysis, the ground 
state photobleaching of sensitizer under addition of borate salt, heteroaromatic thiol or 1,3,5-
triazine derivative can be observed at 420 nm. Laser flash photolysis experiments were 
carried out in acetonitrile solution, exciting at 355 nm. Accordingly, it can be seen in Scheme 
3 that the depletion increases with increasing concentration of borate salt, as a consequence 
of the formation of the dye-based radical and boranyl radical. 

2.2.1 Photoreducible series mechanisms 

As illustrated in Scheme 3, the kinetic pathway involves electron transfer and carbon-boron 

bond cleavege from borate salt to the photo-excited dye (Dye*) and produces an active 

initiating radical (such as butyl radical) as the primary photochemical reaction. The second 

onium salt (N-alkoxypyridinium or diphenyliodonium salt), as an electron acceptor, 

consumes an inactive radical and produces another active radical (alkoxy or phenyl), 

thereby regenerating the original dye in the secondary reaction step. The regenerated (PS) 

may re-enter the primary photochemical reaction. This kinetic pathway is designed as a 

photoreducible series mechanism. It is the well-known representative kinetic mechanism for 

three-component initiators. In this mechanism, the second co-initiator increases the 

photopolymerization kinetics in two ways: (1) it consumes an inactive dye-based radical 

(Dye) and produces an active initiating radical, thereby regenerating the original (PS) (dye), 

and (2) it reduces the recombination reaction of dye-based radical and boranyl radical. 

Unfortunately, the latter species can not be observed under our experimental conditions. 
The initiating radicals in this case could come mainly from the boranyl radical, which 
undergoes rapid and irreversible fragmentation as a result of carbon-boron bond cleavage. It 
should be noted that this reaction will compete with the back electron transfer from dye-

based radical (Dye) to boranyl radical within the gemine radical pair; as well with the 
recombination of the both radicals. 

As stated above, when carbocyanine dye is used with borate salt as co-initiator the excited 
singlet state is quenched with the rate close to the diffusion rate constant, observing an 
increase in the signal of dye-based radical: as borate salt acts as an electron donor, the 

electron transfer reaction of sensitizer excited state and B2 leads to (Dye) and (B2) radicals 
(Schemes 1 and 3). Monitoring the dye radical formation at 420 nm leads to the observation 
of a increasing absorbance of the dye-based radical, in line with the results obtained for 
heteroaromatic thiol. This demonstrates that the reaction between carbocyanine dye-excited 
state and borate salt behaves similary to that of thiol. From all these results, the low 
conversion observed in the photopolymerization for Cy/MS photoinitiating system could be 

explained by a low quantum yield of radical formation from MS+. 

Turning now to the study of the three-component system, transient absorption spectroscopy at 

420 nm shows that the signal of (Dye) formed from the interaction Dye/B2 (with excess of 
borate salt with respect to other additives) decreases under addition of N-alkoxypyridinium  
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Scheme 3. Mechanism of the reactions occurring in three-component photoinitiating systems 
based on carbocyanine dye, borate salt and other onium salt. Inset: Left: Transient 
absorption spectra recorded 100 ns after laser flash (355 nm) for dye in MeCN (squares) and 
500 ns after lash for dye in presence n-butyltriphenylborate salt presented dye-based radical 
formation. In the midst of: Kinetic traces for dye-based radical decay at 610 nm in the 
presence of various amount of N-methoxy-p-phenylpyridinium salt. The concentration of 
quencher is marked in Figure. Right: The Stern-Volmer plot of the fluorescence quenching of 
cyanine dye-based radical by onium salt. 
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salt, iodonium salt, 1,3,5-triazine derivative, N-methylpicolinium ester or other co-initiators 
(Schemes 3-6). This indicates that onium salt, triazine or other co-initiators (with the 

exception of heteroaromatic thiol) react with the Dye-based radical (Dye) formed from the 
interaction of dye excited state with borate salt (Schemes 1-6). At the same time, the 
photobleaching of sensitizer ground state is lowered when second co-initiator is added to 

the Dye/B2 system. This means that the reaction of second co-initiator with (Dye) leads to 
recorvery of the dye ground state. The reaction is expected to proceed through an electron 
transfer process from dye-based radical to second co-initiator. From the value of the 

oxidation potential of (Dye) (Eox = 1.0 V/SCE), the free energy of the electron transfer 

reaction between (Dye) and second co-initiator is estimated to be in a range from –0.13 eV 

to 0.08 eV (e.g. –12.54 kJmol-1 to 7.72 kJmol-1), this value would lead to a fast rate constant 
of interactions (Schemes 3-6). 
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Scheme 4. Mechanism of the reactions occurring in three-component photoinitiating systems 
based on carbocyanine dye, borate salt and N-methylpicolinium ester. Inset: Transient 
absorption spectra of: (A) cyanine dye in a presence of borate salt recorded 50 ns after laser 
puls (squares) presented dye-based radical formation and (B) for cyanine dye in presence of 
equimolar ratio of tetramethylammonium n-butyltriphenylborate and N-methylpicolinium 
perchlorate recorded 100 ns after laser puls (circles) presented N-methylpicolinium ester 
radial formation.  
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Scheme 5. Mechanism of the reactions occurring in three-component photoinitiating systems 
based on carbocyanine dye, borate salt and cyclic acetal. 
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Scheme 6. Mechanism of the reactions occurring in three-component photoinitiating systems 
based on carbocyanine dye, borate salt and heteroaromatic thiol. 
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Similarly, if the deactivation of the excited state of the dye proceed through a photoinduced 

electron transfer with heteroaromatic thiol or triazine (Schemes 6 and 7), the dye-based 

radical and (Dye+) are formed, respectively. In this case, one can assume that the oxidation 

and reduction potentials of dye are 1.0 V/SCE and –1.34 V/SCE, respectively. But the 

oxidation potential of thiol and reduction potential of triazine are in the range from 0.69 

V/SCE to 0.90 V/SCE and –0.84 V/SCE, respectively. This leads to the calculation of Gel 

values of –12.54 and –27.02 kJ/mol for thiol and triazine, respectively, showing that this 

reaction is exergonic and to be feasible. 

In summary, when N,N’-diethylthiacarbocyanine dye is used as photosensitizer, the kinetic 

pathway is seen for the three-component initiator system composed of onium salt, 

picolinium ester, cyclic acetal, 1,3,5-triazine derivative or maleimide as second co-initiator 

enhances photopolymerization kinetics as previously described. As an example, the 

Cy/B2/NO photoinitiator system may be used to explain photoreducible series mechanism 

(Scheme 3). Because Cy/NO is not a thermodynamically feasible system, the primary 

photoinduced electron transfer reaction only proceeds between photo-excited dye and 

borate salt. Then, subsequent electron transfer involves the electron acceptor (NO) in a 

secondary reaction step. 

2.2.2 Parallel-series mechanism 

On the other hand, under conditions where photosensitizer (dye) has both reduction and 

oxidation potentials, the photoexcited dye may act as both an electron donor and an electron 

acceptor, resulting in a parallel-series mechanism [3]. In this kinetic pathway, the electron 

transfer between the excited dye molecule and an electron donor competes with an electron 

transfer between the excited dye and an electron acceptor, as the primary photochemical 

reaction. The Cy/thiol/1,3,5-triazine photoinitiating system provides example of the 

combined parallel-series mechanism. Because Cy/MS initiator system is thermodynamically 

feasible (which did produce free radical active centers as a two-component initiator system; 

Figure 4) and Cy/T system is also thermodynamically feasible (free radical active centers 

were also produced), the Cy/MS/T initiator system may engage in the parallel-series 

mechanism. 

For such system composed of polymethine dye/1,3,5-triazine derivative, the photobleaching 

of the ground state increases with increasing concentration of triazine. This indicates that 

the photochemical reaction between Dye-excited state and T yields to the formation of 

transient species. According to the electron transfer reaction, the radical anion (T-) is easily 

detected at 510 nm (Scheme 7). 

It can be seen from Scheme 7 that (T-) is formed within the laser pulse, as a consequence of 
its formation mainly in the electron transfer process from the excited singlet state of dye to 
triazine. This leads to the formation of radical cation of dye and the radical anion of triazine. 

The latter species afterwards loses chloride anion to give the initiating radical (T-), as was 
demonstrated for other triazine derivatives in presence of rose bengal [12]. Interesingly, the 
recorded cyclic voltammogram for T1 in acetonitrile (Figure 5 right) exhibits an irreversible 
reduction wave at –0.84 V/SCE and a noticeable oxidation wave at 1.270 V/SCE indicating a 

cleavage process within the radical anion (T-). It is expected that the chloride anion is 
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expelled in a fast time scale, preventing the (Dye+)/(T-) system to undergo a back electron 
transfer process. 
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Scheme 7. Mechanism of the reactions occurring in three-component photoinitiating systems 
based on carbocyanine dye, heteroaromatic thiol and 1,3,5-triazine derivative. Inset: Left: 
Transient absorption spectra of cyanine dye in a presence of 2-mercaptobenzothiazole (MS) 

recorded: 1 s (squares), 4 s (circles) and 10 s (triangles) after laser pulse presented the 
thiyl and dye-based radicals formation. In: Transient absorption spectra of cyanine dye in a 
presence of 2-mercaptobenzothiazole (MS) recorded 100 ns after laser pulse (circles) in 
acetonitrile solution. Right: Transient absorption spectra of cyanine dye in a presence of 2,4-
bis-(trichloromethyl)-6-(4-methoxy)phenyl-1,3,5-triazine (T) recorded 50 ns after laser pulse 
presented the 1,3,5-triazinyl radical formation. 
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Fig. 5. Cyclic voltammograms of Dye (Cy) and 1,3,5-triazine derivative (T) in 0.1 M 
tetrabutylammonium perchlorate solution in dry acetonitrile as the supporting electrolyte. 

At 510 nm (Scheme 7) it is possible to observe an increase of (T-) signal, which clearly 
evidences the electron transfer process from sensitizer to triazine. 

2.3 Photoinitiation efficiency 

From all these experiments, it turns out that the photoreactions from the excited state of the 
carbocyanine dye are very efficient with both borate salt and second co-initiator. These 
photoreactions lead to the formation of initiating species, and therefore, to the conversion of 
monomer. A rough estimate of the diffusion rate constant can be given by equation 3: 

 
8

3
d

RT
k


  (3) 

This leads to the value of kd = 1.84  106 M-1s-1 for the monomer used. Consequently, the 
quantum efficiency of dye excited state deactivation by a given quencher Q will depend on 

kd  [Q] for most of the photoreactions reported in Table 3. Therefore, the relative efficiency 
of the corresponding photochemical processes will be mainly dependent on the 
concentration of the co-initiators. 

In the case of the three-component photoinitiating systems, the highest concentration of 

additive makes the excited state quenched by second co-initiator, leading to initiating 

radical (after electron transfer process) and the dye-based radical (Dye). This latter is able to 

react with second co-initiator leading to the recorvery of the dye ground state and 

additional initiating species (Schemes 3-7). The fact that three-component photoinitiating 

systems have higher efficiences than two-component ones is in good agreement with the 

expected reaction of second co-initiator with the dye-based radical. The combination of co-

initiators B2 and others have clearly a beneficial effect on the photopolymeryzation process. 

By contrast, in a case of three-component photoinitiating system composed of 
dye/thiol/triazine, the deactivation of the (Cy) excited state will be mainly governed by the 
photoreaction with both thiol and 1,3,5-triazine derivative (Scheme 7). This leads to the 

formation of initiating radicals and radical cation (Dye+). 
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It was show that three-component photoinitiating systems acting via photo-reducible series 
mechanism producess the highest rates of polymerization and final conversion of monomer 
(Figure 6). 
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Fig. 6. The comparison of the photoinitiating ability of the dyeing photoinitiating systems 
acting via photoreducible series mechanism and parallel series mechanism. 

3. Conclusions 

In this chapter, we have characterized two different kinetic mechanisms using 

thermodynamic feasibility and key kinetic factors with three-component visible light 

photoinitiating systems containing thiacarbocyanine dye as a photosensitizer. We used the 

Rehm-Weller equation to verify the thermodynamic feasibility for the photoinduced 

electron transfer reaction. Based on this, we have suggested two different kinetic 

mechanisms, which are (i) photoreducible series mechanism (Cy/B2/second co-initiator) 

and (ii) parallel series mechanism (Cy/thiol/triazine). In addition, based on experimental 

kinetic data, we have evaluated two kinetic pathways. The photo-DSC kinetic experiments 

revealed that the photoreducible series mechanism produced the highest rates of 

polymerization and final conversion of monomer values. It was found, that three-

component PIS showed the best performance. Laser spectroscopy studies allowed the 

understanding the processes that may explain the behavior observed in terms of 

photopolymerization. The sensitizer reacts mainly throught a singlet electron transfer 

mechanism from the borate salt or heteroaromatic thiol to the dye and from the dye to the 

triazine derivative. Beneficial side-reactions were shown to limit the photobleaching of the 

dye, resulting in higher final monomer conversion. 

Although, these two kinetic pathways presented here can not govern the detailed 

interactions in all initiator mechanisms, this approach will provide useful information for 

selection criteria for each component, as well as provide a straightforward manner for 

classifying the photopolymerization process. 
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The goal of this book is to familiarize both research scholars and post graduate students with recent

advancement in various fields related to Photochemistry. The book is broadly divided in five parts: the

photochemistry I) in solution, II) of metal oxides, III) in biology, IV) the computational aspects and V)

applications. Each part provides unique aspect of photochemistry. These exciting chapters clearly indicate that

the future of photochemistry like in any other burgeoning field is more exciting than the past.
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