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1. Introduction  

T cell-mediated immune suppression of adaptive immune responses is important for the 
homeostatic function of tissues. Compelling evidence has found that the normal immune 
system produces T cells with a specialized function in immune suppression and this type of 
T cell is called a regulatory T cell (TRC). There are various types of TRCs with suppressive 
function. The majority of TRCs express the transcription factor called forkhead box p3 or 
Foxp3, and play a pivotal role in the maintenance of immune tolerance by preventing 
autoimmunity and rejection of transplanted tissue [Grazia Roncarolo et al., 2006; Sakaguchi 
et al., 2008]. Recently TRCs have also been implicated in preventing inflammatory diseases. 
Extensive evidence has shown that TRCs exacerbate and suppress inflammatory responses 
in various diseases, including the human multiple sclerosis model, experimental 
autoimmune encephalomyelitis (EAE) [Farias et al., 2011] and chronic inflammatory bowel 
disease [Veltkamp et al., 2011]. TRCs also play major roles in regulating immunity to 
infections of viral, bacterial or parasitic pathogens. TRCs dampen immune response which 
control pathogen replication. In many instances, these responses increase pathogen survival. 
Alternatively, TRCs can also limit collateral tissue damage caused by powerful immune 
responses directed toward microbes [Belkaid & Tarbell, 2009]. However, tumors and 
microbes commandeer the immune suppressive properties of TRCs to evade host immunity 
and cause disease. This is especially prominent at mucosal tissues since they are exposed to 
a plethora of pathogens. In this review, we will introduce the broad category of TRCs with 
focus on their phenotype, function and role in maintaining mucosal tissues, especially of the 
genital tract.  

2. Characterization of T regulatory cells in mice and humans 

Control of immune responses is critical to host survival and there are many mechanisms 
that can mediate control. Intrinsic control mechanisms exist which are programmed as the 
immune system develops. However, control also exists at the cellular level and involves 
interaction with specialized TRCs. TRCs are categorized into two general compartments 
based on their origin, mechanism of action, and generation; natural TRCs (nTRCs) or 
induced TRCs (iTRCs). The distinction between the two has been blurred by showing that 
regulatory function can be induced in previously non-regulatory T cells. T regulatory 
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functions can be induced by signals received in the environment such as; regulatory 
cytokines, immunosuppressive drugs and antigen presenting cells (APC) modified by 
infectious agents [Belkaid & Tarbell, 2009]. Thus, iTRCs can be further divided into Tr1 cells 
which secrete IL-10, TRCs which secrete TGF-ǃ and TRCs which express Foxp3. However, 
all of these markers of T regulatory function, with the exception of Foxp3, do not always 
correlate with suppressive function. The finding that loss of function mutations in the Foxp3 
gene of humans lead to a severe multi-organ autoimmune and inflammatory syndrome 
called immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) 
and a similar disorder in scurfy mice allowed the definitive identification of TRC [Bennett et 
al., 2001; Brunkow et al., 2001; Chatila et al., 2000; Wildin et al., 2001]. 

Subsequent studies focused on the ability of Foxp3+ cells to cause various tissue pathologies. 
Foxp3 is primarily expressed in CD4 cells. The first approach was in knock-in mice which 
showed that cell-intrinsic regulatory functions did not rely on Foxp3 but it was 
indispensible for lack of expression and was responsible for disease in humans and mice 

[Chen et al., 2005; Fontenot et al., 2003; Fontenot et al., 2005; Hsieh et al., 2006; Wan & 
Flavell, 2005]. Further studies using anti-Foxp3 antibodies or conditional knock-out mice in 
the Cre-lox system to target various epithelial cells, proved without a doubt, that the 
suppressive function of Foxp3-dependent T cells was important for immune homeostatsis 
and tissue integrity [Kim et al., 2009; Liston et al., 2007; Rudensky, 2011].  

The balance of TRCs with other immune cells has a bearing on immunity and 
immunopathology after infection. Evidence has been reported for two functions of TRCs in 
immunity against infection. In the first, increasing the number of TRCs interferes with 
pathogen elimination and supports survival and persistence in humans and mice. Examples 
are Leishmania [Belkaid et al., 2006; Belkaid et al., 2002; Campanelli et al., 2006], Plasmodium, 
[Amante et al., 2007; Hisaeda et al., 2004; Torcia et al., 2008; Walther et al., 2005] and 
Mycobacteria [Chen et al., 2007; Kursar et al., 2007; Scott-Browne et al., 2007]. The pathogen 
exploits TRCs to its advantage to persist in the host. Secondly, while decreasing the number 
of TRCs leads to better pathogen control, it also increases the immunopathology formed. 
Examples of this type of effect of TRCs include infection with herpes simplex virus (HSV) 
[Suvas et al., 2004] and C. albicans [Montagnoli et al., 2002].  

A few studies have examined the involvement of TRCs in chlamydial infections. As 
described below, TRCs are found in a number of mucosal surfaces of which Chlamydia cause 
infection. The first study focused on C. trachomatis infection of the ocular mucosa. C. 
trachomatis infects the conjunctiva of the eye and eventually facilitates accumulation of 
inflammatory cells and organized follicle formation or clinical signs of progression to 
trachoma. The authors, Faal, N. et al. [Faal et al., 2006] divided individuals into three 
groups: Group 1: those with acute infection as defined as chlamydial PCR positive; Group 2: 
those with serological evidence of past chlamydial infection plus clinical disease signs of 
trachoma; and Group 3: those with serological evidence of past chlamydial infection and no 
signs of clinical disease. The authors showed that FOXP3 mRNA was found in Group 1 
(only acute infection) and Group 2 (past infection and clinical disease) but not in Group 3 or 
those with past chlamydial infection but no signs of developing trachoma. The data clearly 
showed that during acute infection, FOXP3 mRNA was present. However, it was intriguing 
that Foxp3 transcripts continued to be elevated despite the fact that acute infection had 
resolved in the group that presented with clinical signs of trachoma development. The 
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authors speculated that since the presence of Foxp3 transcripts correlated with acute 
infection, Foxp3 was present to protect conjunctival tissue from immune damage during 
acute infection. However, its continued presence in the group which had resolved the 
disease but also showed signs of clinical disease, suggested that Foxp3 was unable to 
prevent tissue damage in certain individuals [Faal et al., 2006]. The mechanism of tissue 
protection has not been determined and one must exercise caution when interpreting data 
based on FOXP3 transcript levels as opposed to expression of protein in cells since these do 
not directly correlate [Probst-Kepper, 2006]. 

TRCs cells have also been identified in the lungs of mice infected with C. pneumoniae using 
Foxp3 protein expression in cells identified by flow cytometry. C. pneumoniae infection of the 
lung regulates the degree of T cell activation and can exacerbate development of asthma. In 
this model, depletion of TRCs increases T cell activation and lung tissue damage [Crother et 
al., 2011; Schröder et al., 2008]. These data further supported the hypothesis that TRCs 
prevent tissue from damaging immune responses. 

TRCs are also present in the genital mucosa during chlamydial infection. Marks, E. et. al.  

[Marks et al., 2010] found Foxp3 expression in the upper genital tracts of mice following 

chlamydial genital infection. The expression of Foxp3 also corresponded to the number of 

Th1 cells in that site. These authors further noted that depleting TRCs increased 

immunopathology in the upper genital tract [Marks et al., 2007]. Similar to the trachoma 

study above, only transcripts of FOXP3 were followed in tissue as evidence of the presence 

of TRCs. Recently; we have shown that Foxp3+ TRCs are present in the genital tract after 

infection with the murine model of C. trachomatis infection, C. muridarum. TRCs were 

identified by expression of Foxp3 protein on the cell surface and quantitiated by flow 

cytometry. We found that Foxp3+ TRCs peaked during early infection and correlated with 

the disappearance of Th1 cells in the genital tract [Moniz et al., 2010]. We have further 

investigated the role of TRCs during genital infection using Foxp3-EGFP-DTR mice (gift 

from T. Chatila). The Foxp3+ TRCs can be depleted by administration of diphtheria toxin 

and followed by monitoring green fluorescent TRCs [Haribhai et al., 2011]. Our preliminary 

studies show that Th1 cell numbers inversely correlate with the number of TRCs. Further, 

the depletion of TRCs before and during early infection, at a time when TRCs peak in the 

genital tract, resulted in a decrease in tissue pathology in the oviducts (unpublished data). 

This suggests that TRCs do not protect upper genital tract tissue from pathology but instead 

contribute to tissue pathology by interfering with the eradicating function of Th1 cells in the 

genital tract. 

The few studies reported in chlamydial infections have provided evidence that TRCs can 
both protect tissue and contribute to tissue damage as described above. These reports differ 
in the means TRCs were defined, by FOXP3 mRNA transcripts or cellular protein 
expression. In addition, they differ in the type of mucosal surface studied, such as 
conjunctiva, lung and genital tract. Although the mechanisms by which TRCs influence 
immune responses have been identified, none have been thoroughly examined in 
chlamydial infection. However, the data reported are consistent in that they all implicate 
TRCs with tissue pathology, either by prevention or exacerbation. Therefore, one can 
conclude that TRCs play a role in tissue pathology following chlamydial infection and 
additional studies are needed for a complete understanding of the mechanism(s). We would 
propose that TRCs form a third type of function in chlamydial infection; TRCs interfere with 
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the elimination of organism but do not enhance chronic persistence of the organism and 
instead contribute to tissue pathology by prolonging organism elimination from tissues.   

2.1 Defining T regulatory cells by expression of phenotypic markers 

Complex human biological systems require immune regulatory mechanisms which are 

effective at containing immune responses to self and foreign antigens, as well as to 

commensal microorganisms. Presently, TRCs are classified into two subsets: “natural” 

CD4+Foxp3+ TRCs (nTRCs) which emerge from the thymus as a distinct lineage [Fontenot et 

al., 2005; Sakaguchi et al., 1995]; and “induced” CD4+CD25+ TRCs (iTRCs). iTRCs have a 

different developmental program compared to nTRCs and develop outside the thymus from 

CD4+CD25- T cell precursors. They are then converted to TRCs by antigenic stimulation and 

the surrounding cytokine milieu [Chen et al., 2003; Curotto de Lafaille et al., 2004].  

Experiments have found that CD25, the high-affinity subunit of the IL-2 receptor, is an 

important marker of thymic-derived TRCs. CD4+CD25+ TRCs were capable of preventing 

autoimmunity not only in neonatal thymectomized mice [Asano et al., 1996], but also in the 

lymphopenic animal infused with pathogenic effector T cells [Sakaguchi et al., 1995]. 

Adoptive transfer of CD25+ T cell-depleted splenocytes into lymphopenic hosts induced a 

multi-organ autoimmunity syndrome with similar characteristics of neonatal 

thymectomized mice [Sakaguchi et al., 1995]. Later on, the transcription factor, Foxp3, was 

found by three independent laboratories to be expressed constitutively by CD25+ TRCs 

[Fontenot et al., 2003; Hori et al., 2003; Wildin et al., 2002]. Foxp3 is a forkhead transcription 

factor family member and mutations in the Foxp3 coding gene were identified as 

responsible for the immune dysregulation [Brunkow et al., 2001]. It was concluded that 

Foxp3 was mandatory for the development of nTRCs in the thymus and its expression 

constituted a valuable marker for this independent lineage of T cells [Kim & Rudensky, 

2006]. Data has shown that adoptive transfer of nTRCs isolated from normal wild type mice 

significantly prevented disease and related mortality in the Foxp3 mutant mice [Kim & 

Rudensky, 2006]. 

Even though iTRCs may be phenotypically similar to nTRCs, they differ in their 

developmental requirements and function. iTRCs differentiate outside of the thymus under 

more varied conditions. During induction of oral tolerance, iTRCs first are induced in 

mesenteric lymph nodes (MLN) in response to microbial and food antigens [Mucida et al., 

2005]. iTRCs also continuously differentiate in peripheral tissues such as the lamina propria 

of the gut [Coombes et al., 2007], tumors [Liu et al., 2007], chronically inflamed tissues 

[Curotto de Lafaille et al., 2008] and transplanted tissues [Cobbold et al., 2004]. The 

microenvironments that support the development of iTRCs are not yet completely 

understood. However, it was determined that TCR stimulation and the cytokines TGF-ǃ and 

IL-2 are required [Chen et al., 2003; Davidson et al., 2007; Zheng et al., 2007]. Studies on the 

gene expression of Foxp3 between the two subtypes of TRCs identified that the Foxp3 locus 

of nTRCs show complete demethylation within an evolutionary conserved region and 

maintain Foxp3 expression and suppressive functions in the absence of TGF-ǃ stimulation. 

In contrast, iTRCs lose both Foxp3 expression and suppressive functions without TGF-ǃ re-

stimulation [Floess et al., 2007; Huehn et al., 2009]. Thus, iTRCs can be viewed as “transient” 

suppressive cells. 
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2.2 Types of T regulatory cells 

There are multiple subsets of Foxp3+TRCs that exist within an individual [Stephens et al., 

2007]. The majority is CD4+ but small number of CD8+, CD4+CD8+ and CD4-CD8- ǂǃTCRhi 

thymocytes and peripheral T cells are also found. Not all Foxp3+TRCs are MHC class I or II 

restricted [Stephens et al., 2007]. In addition, Foxp3+TRCs can be categorized as “natural”. 

This subset is constitutively present and prevents development of immune responses 

against self-tissues. In contrast, subsets of Foxp3+TRCs are also induced by inflammation or 

infection and are call “inducible or adaptive” Foxp3+TRCs. It has been debated whether 

nTRCs and iTRCs are separate types of TRCs with differing function. [Bluestone & Abbas, 

2003]. Both iTRCs and nTRCs have suppressive function as shown by their ability to prevent 

T cell activation [Fantini et al., 2006; Huter et al., 2008; Mottet et al., 2003]. However, the 

contribution of each cell type to peripheral tolerance is dependent on the model studied 

[Curotto de Lafaille et al., 2008; Haribhai et al., 2009]. Recent data has disclosed that each 

subset of TRCs have distinct functions; nTRCs prevent lethal disease while iTRCs prevent 

chronic inflammation and mostly have distinct TCR repertoires [Haribhai et al., 2011]. The 

TRCs that participate in chlamydial infection appear to be members of iTRCs and we will 

discuss them in depth.  

2.2.1 Inducible or transient tregs 

Naïve CD4+Foxp3- cells can be converted to functional regulatory CD4+CD25+ by cytokines 
in the environment and are called iTRCs. In general, there are two types of iTRCs that have 
been described based on the cytokines which are responsible for their conversion to iTRCs: 
TGF-ǃ+ iTRCs and IL-10+ iTRCs. Both types of iTRCs have suppressive properties in vitro 
and in vivo [Chen et al., 2003; Grazia Roncarolo et al., 2006; Groux et al., 1997]. However, 
they are quite distinctive on molecular level. TGF-ǃ+ iTRCs express Foxp3 and secrete 
mainly TGF-ǃ whereas IL-10 iTRCs do not express Foxp3 after conversion and secrete IL-10. 

T cells that are exposed to TGF-ǃ, IL-2 and are stimulated by co-stimulation through the 
TCR are converted to TGF-ǃ+ iTRCs. Chen et al. has shown that addition of TGF-ǃ to TCR-
stimulated naïve CD4 T cells induced the transcription of Foxp3, acquisition of anergic and 
suppressive activities in vitro, and the ability to suppress inflammation in an experimental 
asthma model [Chen et al., 2003]. Further it has been disclosed that TGF-ǃ induces 
transcription of FOXP3 and involves cooperation of the transcription factors STAT3 and 
NFTA at a Foxp3 gene enhancer element [Josefowicz & Rudensky, 2009]. Consistently, in 
vivo neutralization of TGF-ǃ inhibited the differentiation of antigen-specific Foxp3+ iTRCs 
[Mucida et al., 2005] and also blocked iTRCs cell-dependent tolerance to tissue grafts in an 
experimental model [Cobbold et al., 2004]. The ability of cells to be converted to iTRCs 
occurs in a finite time frame and depends on the presence of TGF-ǃ. Conversion takes place 
only when TGF-ǃ is added within a 2-3 day window of TCR stimulation, and withdrawal of 
TGF-ǃ results in the loss of Foxp3 within 4 days [Selvaraj & Geiger, 2007]. Thus, 
microenvironments commonly found to contain TGF-ǃ, such as the genital tract, have the 
propensity to produce iTRCs. 

IL-2 appears to be essential for the generation and/or homeostasis of iTRCs. In vitro, 
stimulation of naïve CD4 T cells with anti-CD3 and TGF-ǃ found that IL-2 was required to 
release the TGF-ǃ-mediated inhibition of proliferation [Chen et al., 2003]. By neutralizing IL-
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2 and using IL-2 deficient T cells, Zheng et al. has shown that IL-2 is required for in vitro 
TGF-ǃ induction of Foxp3 transcription and suppressor activity [Zheng et al., 2007]. Unlike 
TGF-ǃ, IL-2 is not required to maintain Foxp3 expression, since iTRCs transferred into RAG-
deficient recipient mice did not lose their suppressive functions [Davidson et al., 2007]. 

2.2.2 Antigen specificity 

Recent findings have shifted attention to other types of TRCs which do not fit into the 
traditional classification scheme described above. One of them is IL-35 induced TRCs found 
in both human and animal models [Belkaid & Chen, 2010; Collison et al., 2010; Collison et 
al., 2007]. IL-35 belongs to the IL-12 cytokine family, including IL-12, IL-23 and IL-27. IL-
35 is a heterodimeric cytokine composed of an alpha chain (p19, p28 or p35) and a beta 
chain (p40 or Ebi3). IL-35 signals through any of five receptor chains (IL-12Rǃ1, IL-12ǃ2, 
IL-23R, gp130 and WSX-1)[Collison & Vignali, 2008]. Although IL-12, IL-23, IL-27 and IL-
35 belong to one family, their tissue source, activity, function and kinetics of expression 
are quite different. IL-12, IL-23 and IL-27 share the common feature of inducing IFN-Ǆ, 
promoting Th1 differentiation and proliferation. In contrast, the function of IL-35 is solely 
suppressive [Collison et al., 2007]. It has been shown in humans, that IL-35 is required for 
maximal suppressive capacity of TRCs by upregulating Epstein-Barr-virus-induced gene 3 
(EB13) and IL-12A. This was not found to occur with TGF-ǃ or IL-10 exposure. Thus, IL-35 
secreting TRCs mediate contact-independent suppression which is IL-35 dependent 
[Chaturvedi et al., 2011]. 

Accumulating evidence demonstrates that TRCs are not only defined by markers but also 

more precisely by their ability to regulate immune responses. CD8+TRCs can exercise non-

contact dependent regulatory function by secreting IL-10 or increasing IL-4 mRNA to 

generate more IL-4 [Gilliet & Liu, 2002; Zhou et al., 2001]. In addition, our group and others 

have shown that natural killer T (NKT) cells can regulate immune responses and prevent 

extensive tissue damage [Seino et al., 2001; Jiang, J. et al., submitted]. Seino, et al. reported 

that NKT cells expressing the invariant chain, Valpha 14, were necessary to produce cardiac 

allograft acceptance and prevent graft rejection [Seino et al., 2001]. We have found that 

CD1d-restricted NKT cells, activated by antigens contained in chlamydial elementary 

bodies, can regulate the number of effector T cells during inflammatory responses by 

inducing the production of multiple inflammatory cytokines and chemokines. The 

prolonged induction of chemokines results in the accumulation of T cells dominated by Th1 

cells in a murine model of chlamydial genital infection [Jiang, J. et al., submitted]. Thus, 

there are numerous examples of non-Foxp3 expressing T cells with regulatory functions that 

are important for controlling immune responses against microbial and alloantigens which 

prevent excessive inflammation in peripheral tissues.  

3. Understanding mechanisms of T regulatory cell function 

Regulatory T cells play a crucial role in self-antigen tolerance, tissue grafts, and suppression 

of autoimmune reactions. These cells modulate the intensity and quality of immune 

responses through attenuation of the activities of reactive immune cells. They modulate 

immunity by 1) secreting inhibitory cytokines, 2) direct killing cytolysis, 3) metabolic 

disruption of T cells and 4) modulation of dendritic cell maturation or function. 
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3.1 Suppression by inhibitory cytokines 

TRCs cells produce immunoregulatory cytokines at the site of inflammation. Those 

regulatory cytokines, including IL-10, IL-35, TGF-ǃ, directly affect the activity of cytotoxic T 

cells and antigen presenting cells (APCs). 

3.1.1 IL-10 

IL-10 released by TRCs down regulates the ability of APCs to produce IL-12 and further 

inhibits the differentiation and responses of Th1-type cells [Moore et al., 2001]. Interaction of 

T cells with APCs triggers IL-2 production, which acts to enhance reactive T cell 

proliferation. Thus IL-10 reduces the activity of APCs and indirectly lowers the intensity of 

entire immune reaction through inhibition of IL-2 production. 

3.1.2 IL-35 

IL-35 is a newest member of the IL-12 family. In the CD4 T cell population, IL-35 is expressed 
by resting and activated TRCs but not effector cells [Collison et al., 2007]. In addition, it has 
been suggested that IL-35 can suppress Th17 development in vivo and improve collagen-
induced arthritis [Niedbala et al., 2007]. More studies are needed to define the mechanism.  

3.1.3 TGF- 

TGF-ǃ reduces cytokine secretion by activated CD4 T cells [Zheng et al., 2004], without 
limiting their capacity to expand and without inducing their apoptosis [Cottrez & Groux, 
2001]. TGF-ǃ also induces IL-10 production in Th1 cells, which further inhibits cytokine 
production and directly attenuates effector T cell function [Annacker et al., 2001]. In a 
correlative interaction, IL-10 also enhances the response of activated T cells to TGF-ǃ 
[Cottrez & Groux, 2001]. Therefore, the combined effects of TGF-ǃ and IL-10 inhibit the 
activity of effector T cells with minor changes on their expansion 

3.2 Suppression by cytolysis 

One other potential mechanism for regulatory T cell mediated suppression would be 
cytolysis of target cells. Many human CD4+ cells display the ability to lyse other cells via 
cytotoxic mechanisms. Together, TRCs in certain contexts can differentiate and function as 
cytotoxic suppressor cells.  

3.2.1 Granzyme A 

It has been reported that human CD4+CD25+Foxp3+ TRCs can be activated and lyse target 
cells which requires granzyme A and perforin [Grossman et al., 2004]. The authors further 
showed that granzyme A and perforin mediated target cell lysis through adhesion of CD18. 

3.2.2 Granzyme B 

Activation of mouse TRCs cells also lead to up-regulation of granzyme B expression 
[Gondek et al., 2005]. The up-regulation of granzyme B induced a reduction in contact 
mediated suppression by TRCs in vivo [Gondek et al., 2005]. 
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3.2.3 Perforin 

Although other cell types required granzyme B and perforin to mediate cytoxicity, it is not 
true for cytotoxicity mediated by TRCs. This is shown by the independent suppression of 
contact sensitivity by TRCs using perforin-/- mice [Gondek et al., 2005]. 

3.3 Suppression by metabolic disruption 

There are several examples of TRCs mediating suppression by metabolic disruption. These 
include IL-2 cytokine deprivation and intracellular or extracellular release of adenosine 
nucleosides [Vignali et al., 2008a]. 

3.3.1 IL-2 cytokine deprivation 

T effector cells require IL-2 for growth but TRCs do not and instead use IL-7. The hypothesis 
of IL-2 mediated suppression is that CD25 expression could cause the consumption of IL-2 
and “starve” T effector cells [de la Rosa et al., 2004; Thornton & Shevach, 1998]. One study 
has reported this occurs by inducing apoptosis [Pandiyan et al., 2007]. 

3.3.2 Cyclic AMP-mediated inhibition 

TRCs have been reported to transfer the ability of cyclic AMP (cAMP) to mediate 
suppression by passing on the cAMP to T effector cells through gap junctions [Bopp et al., 
2007]. However, this is the only study which reports this mechanism and further reports are 
needed as confirmation that this is a general mechanism of suppression.   

3.3.3 Adenosine receptor-2A 

TRCs have been shown to express the ectoenzymes, CD39 and CD73 and generate 
adenosine secretion [Deaglio et al., 2007; Kobie et al., 2006]. Development of TRCs does not 
occur in the presence of IL-6 and also requires the presence of TGF-ǃ. The binding of 
adenosine to the adenosine receptor-2A, not only suppresses T effector cell function but also 
produces additional TRCs by inhibiting IL-6 production and favoring TGF-ǃ secretion 
[Zarek et al., 2008]. 

3.4 Suppression by modulation of dendritic cell maturation or function 

There is evidence to support a function of TRCs which act directly on dendritic cells to 

influence the ability of dendritic cells to activate effector T cells [Bluestone & Tang, 2005; 

Tang et al., 2006].  

3.4.1 Modulation of co-stimulatory molecules 

Many studies have reported that TRCs reduce effector T cell function by acting on dendritic 
cells to influence their maturation [Lewkowich et al., 2005; Misra et al., 2004; Serra et al., 
2003]. One of the prominent means for a dendritic cell to influence effector T cell function is 
modulation of co-stimulatory molecules. Studies have disclosed this function by showing 
that the use of antibodies which block the function of T-lymphocyte antigen-4 (CTLA4) or 
CLTA4-deficient T cells have a reduction in the suppression of effector T cells [Oderup et al., 
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2006; Serra et al., 2003]. Alternatively, TRCs can also act on dendritic cells to decrease the 
expression of CD80 and CD86 [Cederbom et al., 2000]. 

3.4.2 Indoleamine 2,3-dioxygenase 

TRCs have also been shown to alter effector T cell function by causing the dendritic cells to 
produce indoleamine 2,3-dioxygenase (IDO). IDO has the ability to regulate cellular 
function by encouraging apoptosis by producing precursors from the catabolism of 
tryptophan. This also results in the down-regulation of CTLA4, CD80 and CD86 [Fallarino 
et al., 2003; Mellor & Munn, 2004]. 

3.4.3 LAG/MHC class II 

TRCs have also been reported to mediate suppression through the expression of lymphocyte 
activation gene-3 (LAG3). LAG3 molecules on murine [Liang et al., 2008)] TRCs bind to 
MHC II molecules on immature dendritic cells and suppress maturation by transducing an 
inhibitory signaling pathway. Alternatively, human TRCs have been shown to express a 
greater amount of LAG3 and potentially could interact directly with effector T cells 
[Baecher-Allan et al., 2006].  

4. Induction of T regulatory cells 

As described above, although many types of TRCs have been identified, two major subsets 
have emerge; nTRCs and iTRCs. The nTRCs mature in the thymus [Fontenot et al., 2005; 
Sakaguchi et al., 1995]. On the other hand, iTRCs have a different developmental program 
compared to nTRCs and develop outside the thymus from CD4+CD25- T cell precursors. 
They are then converted to TRCs by antigenic stimulation and the surrounding cytokine 
milieu [Chen et al., 2003; Curotto de Lafaille et al., 2004]. However, both subsets are 
identified by the expression of Foxp3. 

4.1 Expression of Foxp3 

Foxp3 is a forkhead transcription factor family member and mutations in the Foxp3 coding 

gene were identified as responsible for the immune dysregulation [Brunkow et al., 2001]. 

The FOXP3 gene is essential for the ability of nTRCs to mature in the thymus and this subset 

always expressed Foxp3 [Kim & Rudensky, 2006]. This subset of TRCs is important 

throughout the life of the individual for preventing lethal autoimmune diseases [Kim & 

Rudensky, 2006]. Conversely, iTRCs only transiently express Foxp3 and Foxp3 expression 

correlates with suppressive function [Floess et al., 2007; Huehn et al., 2009]. Thus, expression 

of Foxp3 is necessary for TRCs to suppress immune responses.  

4.2 Infections associated with T regulatory cell function 

Pathogens are not the only culprits of tissue inflammation. Adaptive immune responses 
against host-antigens which have escaped deletion or control in the periphery provoke 
tissue inflammation [Rudensky et al., 2006]. This has been demonstrated during 
transplantation rejection and autoimmune diseases. Pathogens associated with chronic 
infections are hypothesized to encourage immune responses against host antigens. 
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Alternatively, microbial infections may simultaneously recruit regulatory cells to tissues to 
prevent inflammation while anti-microbial immune responses eliminate the pathogen 
[Sinclair, 2004]. The inability of a host to mount and recruit a sufficient regulatory response 
in tissues appears to result in tissue inflammation [Sather et al., 2007]. 

4.3 Dendritic cell populations 

There have been many reports that TRCs target dendritic cells to mediate immune 

suppression. The interaction of TRCs with immature or activated myeloid dendritic cells or 

marrow-derived dendritic cells results in the down-regulation of co-stimulatory 

molecules CD80, CD86 and CD40 and MHC on dendritic cells [Tadokoro et al., 2006] as 

well as up-regulation of inhibitory factors [Mahnke et al., 2007], leading to impaired T cell 

stimulatory function of dendritic cells. Consistent with in vitro data, in vivo evidence in 

experiment models show that TRCs inhibit T cell immune response mediated by dendritic 

cells at various locations [Mahnke et al., 2007]. TRCs exert an early effect on immune 

responses by attenuating the establishment of stable contacts during priming of naïve T 

cells and dendritic cells and by forming synapses and aggregation with dendritic cells 

more frequently than with naïve T cells. Moreover, visualization of adoptively transferred 

TRCs in the lymph nodes of mice revealed that TRCs form stable associations with 

dendritic cells that in turn prevents subsequent strong interactions between dendritic cells 

and autoreactive effector T cells [Tang & Bluestone, 2006]. Together, strong evidence 

implies that dendritic cells are the primary targets of TRCs in vivo [Tadokoro et al., 2006; 

Tang et al., 2006]. 

Dendritic cells are needed to influence the development of adaptive TRCs. Production of 

Foxp3+TRCs can be induced by plasmacytoid dendritic cells (pDC) by causing expression of 

Foxp3 in non-regulatory T cells within peripheral tissues. However, the precise dendritic 

cell subset is under debate and actively investigated [Tang & Bluestone, 2006]. The current 

consensus states that immature conventional dendritic cells and pDC can induce expression 

of Foxp3 in non-regulatory T cells within peripheral tissues. Although little is known 

regarding the interaction of pDCs and TRCs, recent evidence shows that this interaction 

occurs in draining lymph nodes and not spleen, and is specific for foreign antigens 

[Ochando et al., 2006]. Evidence suggests that newly activated Foxp3+TRCs may act on 

conventional dendritic cells to limit production of T effector cells [Kim et al., 2007].  

Plasmacytoid dendritic cells induce Foxp3 expression by interacting with T cells via certain 

co-stimulatory molecules such as ICOS-L [Akbari et al., 2002]. 

5. Migration of T regulatory cells 

TRCs also influence the composition of immune cells in the genital tract as TRCs were 

shown to regulate the trafficking of cells between vaginal tissue and the lymph node 

inductive site in a murine herpes simplex model. Specifically, Lund, et al. has found that 

TRCs influence chemokine secretion in secondary lymphoid organs which interferes with 

the trafficking of immune cells to the vaginal mucosa and viral clearance in herpes simplex 

infected mice [Lund et al., 2008]. This implies that microbes activate TRCs which orchestrate 

immune responses. 
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5.1 Chemokine receptor expression 

As mentioned above, TRCs can also perform immunosuppressive functions at inductive 

sites within draining lymph nodes. Homing properties of dendritic cells are very 

important for their ability to induce iTRCs. Production of retinoic acid occurs through 

CD103+ dendritic cells. The activated CD103+ dendritic cells must first be able to induce 

expression of CCR7 and travel to a MLN in order to promote the production of iTRCs 

during T cell activation. It was shown that the lack of ccr7 gene in knockout mice prevents 

development of oral tolerance in CCR7-/- mice [Mora et al., 2003]. During activation of T 

cells, retinoic acid also induces the homing receptor, ǂ4ǃ7, and the chemokine which 

attracts cells to the intestinal mucosa, CCR9 [Iwata et al., 2004; Mora et al., 2003; 

Papadakis et al., 2003; Svensson et al., 2002]. The ability of TRCs to express tissue-specific 

homing properties appears to follow the same rules as effector T cells [Siewert et al., 

2007]. 

5.2 Control of migration of CD8+ cells 

An additional function of TRCs that requires further investigation is their ability to migrate 

into tissue to prevent or control the activation of effector T cells. In a CD8+ model of type I 

diabetes, transgenic expression of TNF-ǂ was shown to be necessary for the TRCs to enter 

the pancreas, accumulate and prevent destruction and development of CD8+ cells specific 

for islet cells [Green et al., 2003]. In support of this, a subset of TRCs has been shown to 

express CCR6 and accumulate in the CNS of mice which have EAE [Kleinewietfeld et al., 

2005]. Taken together, these data suggest that a subset of TRCs may prevent the continued 

activation of effector T cells within peripheral tissues.  

6. Suppression of specific cell populations by T regulatory cells 

The majority of studies show that TRCs inhibit functions of effector T cells. However, TRCs 

have been reported to control B cells [Zhao et al., 2006]. In addition, TRCs have also been 

shown to prevent the killing of tumor cells [Cao et al., 2007]. It is anticipated that other types 

of cells will also be regulated by TRCs since they are important for controlling a plethora of 

diseases.  

6.1 Targeting dendritic cells 

Several reports have demonstrated that TRCs modulate the maturation, activation and 

function of various subsets of human and murine dendritic cells both in vitro and in vivo. 

This gives further evidence that TRCs “educate” dendritic cells and impact outcomes of 

immune responses [Mahnke et al., 2007; Tadokoro et al., 2006; Tang et al., 2006]. In vitro, the 

interaction of TRCs with immature or activated myeloid dendritic cells or marrow-derived 

dendritic cells results in the down-regulation of co-stimulatory molecules CD80, CD86 and 

CD40 and MHC [Tadokoro et al., 2006] and up-regulates inhibitory factors [Mahnke et al., 

2007]. TRCs also target dendritic cells and form stable interactions preventing naïve T cell 

activation [Tang & Bluestone, 2006]. Since TRCs regulate many types of immune responses 

it is plausible that dendritic cells are a major target of TRCs [Tadokoro et al., 2006; Tang et 

al., 2006]. 
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6.2 CD4 effector T cells 

A major target of TRCs is CD4 effector T cells. TRCs have been reported to prevent 
activation by directly acting on effector T cells to prevent clonal expansion and proliferation 
by limiting access to IL-2 [Thornton & Shevach, 1998], modulating T cell activation through 

exposure by suppressive cytokines such as IL-10 [Annacker et al., 2001] and TGF- [Zarek et 
al., 2008]. These diverse ways to prevent T cell activation suggest that there are either 
multiple subsets of TRCs or one type of TRC with plastic development. This has been 
debated in recent review and likely will be the subject of ongoing research [Vignali et al., 
2008b]. 

6.3 Innate immune cells  

There are a few reports of TRCs modulating the functions of innate immune cells, 
particularly monocytes and macrophages [Taams et al., 2005; Tiemessen et al., 2007]. These 
reports use human cells and may be specific to humans. 

7. Implications (implications) for vaccines and therapies to prevent 
reproductive tract inflammation 

The primary function of TRCs is to suppress immune responses which are harmful for the 
individual and maintain survival. As we have reviewed, TRCs are important for numerous 
diseases and mediate suppression thorough a number of mechanisms. This suggests that 
certain TRCs as defined by function or phenotype can be exploited as therapeutics to 
prevent autoimmune disease. This has been accomplished in mice to prevent joint 
inflammation using two approaches; genetic transfer of TCRs from TRCs and the transfer of 
Foxp3 cells [Wright et al., 2009].  TRCs have also been proposed to prevent allergy and may 
replace tolerating injections which are effective for preventing allergic reactions [Robinson 
et al., 2004]. However, TRCs may also interfere with beneficial immune responses and 
inhibit tumor or pathogen eradication as described above. In the specific case of developing 
a vaccine for chlamydial infection, speculation on TRCs is premature, and will likely depend 
on the tissue site of infection as shown in the few studies to date. The ability of TRCs to 
prevent asthma may encourage preventative therapeutics. Chlamydial infection is 
widespread across the world and 92 million cases of genital infection and near 40 million 
cases of blindness due to chlamydial infection was reported around the beginning of the 
decade [Resnikoff et al., 2004; WHO, 2004]. This number of infections suggests that 
harnessing of TRCs could greatly reduce morbidity following infection. 

8. Conclusion 

T regulatory cells (TRCs) play a central role in adaptive and innate immunity by controlling 
immune responses and affecting the outcome of tissue inflammation. They initially 
comprised a phenotypic group of thymic-derived natural TRCs (nTRCs), which also 
expressed Foxp3. Currently, the group has been expanded to include a number of T cells 
(CD4+CD25+Foxp3+, IL-35 secreting TRCs, CD8+ and NKT cells) which can be induced to 
acquire immune suppressive function especially at mucosal surfaces. They have been shown 
to mediate immune suppression by a number of mechanisms, both contact-dependent and 
through secretion of cytokines. In addition, TRCs influence immunity at mucosal surfaces 
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by orchestrating the composition of immune cells in response to microbial infection. The 
combination of phenotype, mechanism of suppression, influence on immune cell migration 
and type of microbial infection, impart TRCs with a crucial function in mucosal tissues.  
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