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1. Introduction

Green’s functions are powerful tools for solving differential equations. They arise in the

resolution of boundary value problems (Stakgold, 1998) and heat diffusion equations (Folland,

1995), being also applied to economic modeling (Oppenheim & Willsky, 1996), and for

deriving numerical approximations to integral equations (Jerri, 1999).

In the computer vision context, Green’s functions of image matching equations have been

introduced for solving the shape-from-shading problem (Torreão, 2001), and later used for

edge detection (Torreão & Amaral, 2002; 2006), disparity estimation (Torreão, 2007), motion

synthesis (Ferreira Júnior et al., 2008), and video interpolation (Ferreira Júnior et al., 2005).

If we consider a dynamic 3D scene imaged by a single camera, a pair of captured images, f1

and f2, can be related through the image matching equation (Jahne et al., 1999),

f2(x + U, y + V) = f1(x, y), (1)

where U and V denote, respectively, the horizontal and vertical components of the optical

flow. Several models have been used for describing the pair (U, V), among them the uniform

model (which allows only for translational motions), the affine model (which incorporates

planar rotation, shear, and dilation), and the projective model (which also incorporates

perspective distortions).

Here, we will initially consider one-dimensional matching equations of the form

f2(x + U) = f1(x), (2)

where U ≡ U(x) follows the affine model U(x) = u0 + u1x, for u0 and u1 constants. The 2D

case will be tackled later. Expanding the left-hand side of Eq. (2) into a second-order Taylor

series, we obtain the approximation

U2(x)

2
f
′′
2 (x) + U(x) f

′
2(x) + f2(x) = f1(x) (3)
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The solution to Eq. (3), via the Green’s function method, can be obtained as

f2(x) = f1(x) ⋆ G(x) =
∫

D
G(x, ξ) f1(ξ)dξ (4)

where D is the domain of interest, and where G(x, ξ) is the Green’s function, whose form,

when considering an unbounded domain, has been obtained in (Ferreira Júnior et al., 2005),

and employed for video interpolation. There, the possible existence of singular points of Eq.

(3) – which are points where U(x) vanishes (Stakgold, 1998) – has not been considered, an

issue that will be taken up here.

Motion synthesis with the simultaneous introduction of motion blur is another task which

has been approached through the 1D affine Green’s function model, proving it superior to

competing techniques (Ferreira Júnior et al., 2008). Also, in (Ferreira Júnior et al., 2009), the

second-order matching model of Eq. (3) has been compared to first-order variants, having

been shown to generally yield more realistic motion effects.

In the present chapter, we propose to consider the following issues: i) that of improving

our motion synthesis approach by using a matrix formulation, instead of a filtering one, to

obtain the solutions to the affine matching equation; ii) that of solving the related problem

of motion reversal. The chapter is organized as follows: in Section 2, we model the Green’s

function image matching problem, considering its discretization and its solution via the matrix

approach. In Section 3, we apply the Green’s function method to the problems of video

interpolation and motion reversal. Finally, in Section 4, we present our concluding remarks.

2. Green’s matrices

Let us start by considering some properties of the general matching equation (Eq. (2)), in the

affine flow case. That equation can be formally rewritten as

f2(x) = MU [ f1] (x), (5)

where U(x) = u0 + u1x, for u0 and u1 constants, with u1 �= 0 (the case u1 = 0 reduces

to the uniform flow, and will not be considered here), and where MU denotes the linear

transformation

MU [ f ] (x) = f

(

x − u0

1 + u1

)

(6)

The affine vector field U(x) vanishes at the point xU = −u0
u1

, for which we have f2(x) = f1(x),
i.e., a fixed point. Fig. 1 illustrates the behavior of the matching operator in the neighborhood

of xU . Its effect consists in the combination of a translation by u0
1+u1

, and a scaling by 1
1+u1

.

When u1 > 0, we obtain an expansion, and when u1 < 0, a contraction results. Fig. 2 depicts

the overall effect of applying MU to the function f1(x) = sin(x2)
x . If we consider a second-order

Taylor series expansion of the left-hand side of Eq. (2), we obtain the approximation in Eq.

(3), whose solution can be expressed in terms of the Green’s function, as in Eq. (4). This will

be treated next.
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Fig. 1. Illustrating the behavior of the affine matching operator. Left: Expansion (u1 > 0).
Right: Contraction (u1 < 0).

Fig. 2. Application of the operator MU , with (u0, u1) = (0.31,−0.155), to the function

f1(x) = sin(x2)
x (solid line). The circles represent the resulting signal, f2(x) = MU [ f1] (x) =

sin
(

x−u0
1+u1

)2

(

x−u0
1+u1

) . The fixed point, in this case, is at x = 2.

2.1 Continuous Green’s functions

Assuming an unbounded domain D, a limited Green’s function can be obtained under two

different guises. The form

G+(x, ξ) = 2
u1

2 β(ξ−xU)

[

x−xU
ξ−xU

]α
sin

{

β log
[

x−xU
ξ−xU

]}

, (7)

181Motion and Motion Blur Through Green’s Matrices
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for x > ξ, with G+(x, ξ) = 0, otherwise, will be bounded over the domain D ⊂ (xU ,+∞),
as long as we take u1 > 0. On the other hand, a bounded Green’s function over the domain

D ⊂ (−∞, xU) can be obtained, assuming u1 < 0, as

G−(x, ξ) = 2
u1

2 β(xU−ξ)

[

xU−x
xU−ξ

]α
sin

{

β log
[

xU−x
xU−ξ

]}

, (8)

for x < ξ, with G−(x, ξ) = 0, otherwise. In either case, the parameters α and β are given as

{

α = − 1
u1

+ 1
2

β = 1
u1

√

1 + u1 − u2
1

4

(9)

Over finite domains, both forms will remain valid for 2(1 −
√

2) < u1 < 2(1 +
√

2). Fig. 3

shows plots of G+ and G−, and it can be noted that the Green’s function forms are mirror

reflections of one another about the axis x = ξ.

Fig. 4 illustrates the roles of the filters G+ and G− as approximations of the affine matching

operator. For instance, let us consider the expansion case (left-hand panel). When considering

a point x on the interval (xU ,+∞), we see that the value of the matching function f2(x) will

depend on the values of f1(ξ) for all ξ < x. Each of these values will be weighted by the

corresponding Green’s function, G+(x, ξ), to yield f2(x) by the linear combination in Eq. (4).

Similarly, the values of f1(ξ) for all ξ > x will be weighted by G−(x, ξ), in order to yield

f2(x) whenever x ∈ (−∞, xU). The contraction case (right-hand panel in the figure) can be

similarly treated. Fig. 5 illustrates the effects of the exact matching operator, MU , and of its

(a) G+ filter plotted as function of x, for ξ = 0.
Parameter values: u0 = 0.1 and u1 = 0.005.

(b) G− filter plotted as function of x, for ξ = 0.
Parameter values: u0 = −0.1 and u1 = 0.005.

Fig. 3. Plots of the G+ and G− filters.

approximation by the Green’s filters, G±, when applied to the same test signal as considered

in Fig. 2. The discretization of both operators will be discussed in the following subsection.
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(a) Expansion, with u0 > 0 and u1 > 0:
The central plot shows G+(x, ξ), and the
lower plot shows G−(x, ξ), as functions
of ξ, for a fixed x.

(b) Contraction, with u0 > 0 and u1 <

0: Similarly as in (a), but with G+ in the
lower plot and G− in the central one.

Fig. 4. Illustrating the roles of the G+ and G− filters.

(a) Curves f1, MU [ f1] and f1 ⋆ G± (b) The property of the fixed point

Fig. 5. Illustrating the action of the operator MU , and of its approximations G±. Plots of

f1(x) = sin(x2)
x (solid line), f2(x) = MU [ f1] (x) =

sin
(

x−u0
1+u1

)2

(

x−u0
1+u1

) (circles), and f1 ⋆ G± (crosses).

The parameter values were u0 = 0.31 and u1 = −0.155, leading to a fixed point at xU = 2.

183Motion and Motion Blur Through Green’s Matrices
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2.2 Discrete Green’s functions

In the discrete case, Eq. (4) will reduce to the form

f2(x) = ∑
k

G(x, k) f1(k) (10)

where G = G±. Since x = xU is a singular point of the Green’s operator, we found it necessary

to use stratified sampling for its discretization, with the sampling frequency increasing as we

approach xU (Ferreira Júnior et al., 2009). We consider this below.

2.2.1 Samples of the Green’s function

We have adopted a non-weighted area sampling (Foley et al., 1995), for computing G at an

image point. At each scanline, the area of a given pixel is partitioned along the horizontal

direction, and the value of G is computed there. The discretized value G(x, k) is then obtained

by considering a Haar basis {ϕ(x)}, such that

G(x, k) = ∑
j

Gj ϕ(k − j), (11)

where k plays the role of an index inside the pixel at coordinate x, and where the coefficients

Gj are computed as

Gj =
∫

j

j+1
G(x, ξ̄)dξ̄. (12)

Thus, the normalization condition

∫

D
G(x, ξ)dξ = 1, (13)

will also hold in the discrete case, where D is the considered domain. Fig. 6 illustrates the

sampling process.

The stages for the computation of G(x, k) can be summarized as follows:

1. At each scanline, an image pixel is partitioned into n subpixels (cells).

2. At the subpixel level, numerical integration is performed for determining the value of Gj

(see Eq. (12)).

3. Each Gj value will then contribute to the expansion of G(x, k), in terms of the Haar basis

(see Eq. (11)).

4. A larger sampling frequency, f ∗s > fs, is employed when |U(x)| < TU .

As we show next, the discretization of the Green’s function becomes more efficient if a matrix

representation is used. In this case, we need to compute the Green’s function samples only

once, and a single matrix product per line is required for yielding the transformed image. The

complexity of the original filtering process, as described in (Ferreira Júnior et al., 2008; 2009)

, is of order O(M.N2) per each image line, and since the filtering along the image columns

is also required, we have a total complexity of order O(M.N2) + O(N.M2). With the matrix

approach, this will be reduced to O(M) + O(N).
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(a) An uniform partitioning is
performed along a scanline.

(b) Each pixel is subdivided and
sampled at a frequency fs, contributing
to the value Gj.

(c) The sampling frequency increases to
f ∗s ( f ∗s > fs), when |U(x)| < TU , where
TU is a threshold value.

Fig. 6. Unweighted area sampling of the Green’s function

2.2.2 Constructing the Green’s matrix

Here we undertake the construction of the Green’s matrix for the expansion case, as in Fig.

4(a) (the contraction case can be similarly treated). Let us consider Eq. (4), with g = f2 and

f = f1, and let us partition the intervals (xU ,+∞) and (−∞, xU) in n subintervals, each of

length ∆ξ = 1. Thus, at each pixel xj, Eq. (4) can be rewritten as

g(xj) = ∆ξ

{

1

2
G±(xj, ξ0) f (ξ0) + G±(xj, ξ1) f (ξ1) + · · ·

+G±(xj, ξ j−2) f (ξ j−2) + G±(xj, ξ j−1) f (ξ j−1)
}

(14)

assuming xj > ξi > xU , for ξi > ξi+1 (j = 1, 2, · · · , n and i = 0, 1, · · · , j − 1), with xj ∈
(xU ,+∞), when considering g = G+ ⋆ f , and xj < ξi < xU , for ξi < ξi+1 (j = 1, 2, · · · , n and

i = 0, 1, · · · , j − 1), with xj ∈ (−∞, xU), when considering g = G− ⋆ f .

185Motion and Motion Blur Through Green’s Matrices
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Thus, at each domain, (xU ,+∞) and (−∞, xU), Eq. (14) yields 2n equations, n of which will

be given as

⎧

⎨

⎩

g1 = 1
2 G10 f0

gj =
1
2 Gj0 f0 + Gj1 f1 + .... + Gj,i−1 fi−1,

(15)

where gj = g(xj) (j = 1, 2, · · · , n), fi = f (ξi) (i = 0, 1, ..., j − 1) and Gji = G+(xj, ξi), for

xj ∈ (xU ,+∞). The other n equations will be similarly given, but for Gji = G−(xj, ξi), with

xj ∈ (−∞, xU). In matrix form, this corresponds to the product

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2 Gn,0 Gn,1 · · · Gn,n−1 0 0 0 · · · 0

0 1
2 Gn−1,0 · · · Gn−1,1 0 0 0 · · · 0

...
...

. . .
...

...
...

...
...

...

0 0 · · · 1
2 G1,0 0 0 0 · · · 0

0 0 · · · 0 1 0 0 · · · 0

0 0 · · · 0 0 1
2 Gn+1,0 0 · · · 0

0 0 · · · 0 0 Gn+2,1
1
2 Gn+2,0 · · · 0

...
...

...
...

...
...

...
. . .

...

0 0 · · · 0 0 G2n,n+1 G2n,n+2 · · · 1
2 G2n,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f0

f1

...
fn−1

fU

f̄n−1

f̄n−2

...
f̄0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

g1

g2

...
gn

gU

ḡn

ḡn−1

...
ḡ1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

or, equivalently,

Af̂ = ĝ (17)

with

A =

[

G− ©
© G+

]

(18)

being the Green’s matrix, and the vectors f̂ = ( f0, . . . , fn−1, fU , f̄n−1, . . . , f̄0)
T and ĝ =

(g1, . . . , gn, gU , ḡn, . . . , ḡ1)
T denoting, respectively, the lines of the input and of the output

images. Note that ( f0, f1, . . . , fn−1)
T will be the input pixels actuated on by G− and

( f̄n−1, f̄n−2, . . . , f̄0)
T will be those actuated on by G+. Also note that the value 1 appearing

at the center of the matrix A expresses the fixed point property

f (xU) = g(xU) (19)

When implementing consecutive horizontal and vertical filterings, as in(Ferreira Júnior et al.,

2009), separate kernels can be used, such that

Bf̂ = ĝ (20)

where B = AY .AX , with AX and AY implementing the filtering along the directions x and y,

respectively. Thus, the whole computational cost will be that of performing the multiplication

of each image line by the Green’s matrix.

In the following section, we present the application of the above strategy to the problems of

video interpolation and motion reversion.
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3. Experimental results

Motion synthesis with the simultaneous generation of blur is obtained here by the use of Eq.

(17), where A denotes the Green’s matrix, and where we are considering f̂ and ĝ as image

rows. In the interpolation of zoom sequences, Eq. (17) is applied twice, once over rows and

once over columns.

3.1 Motion estimation and reconstruction quality

For the video interpolation experiments, we take the output of a motion estimation algorithm

as input parameters to the Green’s function, similarly as in (Ferreira Júnior et al., 2009). The

general 2D affine model for motion estimation can be expressed as

[

Ũ

Ṽ

]

=

[

ũ0

−ṽ0

]

+

[

ũ1

ṽ1

−ũ2

ṽ2

]

.

[

x − cx

y − cy

]

, (21)

where (cx, cy)T denotes the image center. In our interpolation experiments, we considered

combined horizontal and vertical motions, such that our affine model will be separable, i.e.,

[

U

V

]

=

[

u0

v0

]

+

[

u1

0

0

v2

]

.

[

x

y

]

(22)

Note that we are using the tilde in Eq. (21), but not in Eq. (22), to distinguish the estimated

motion components from generated ones.

The signs of the components u1 and v2, in Eq. (22), allow the classification of the singular

(fixed) points of the generated vector field (Verri et al., 1989). Thus, the singular point (xU , yV)
(here, xU = − u0

u1
and yV = − v0

v2
denote the fixed points for the horizontal and the vertical

motion components, respectively ) will be a focus of expansion when u1, v2 > 0, a focus of

contraction, when u1, v2 < 0, and a saddle point , if u1 and v2 have different signs. Comparing

equations (21) and (22), we obtain

⎧













⎨













⎩

u0 = ũ0 − ũ1cx + ũ2cy ≡ u∗
0

u1 = ũ1

0 = −ũ2

v0 = −ṽ0 − ṽ1cx − ṽ2cy ≡ v∗0
0 = ṽ1

v2 = ṽ2

(23)

For estimating the motion components from a given image sequence, we have used an optical

flow algorithm based on affine regression, kindly made available to us by Professor Michael

Black (Black & Anandan, 1996). Using the estimated components in the relations above, the

Green’s function parameters (u0, u1, u2, v0, v1, v2) were then obtained. Similarly as in (Ferreira

Júnior et al., 2005), we here usually work with fractions of the translation components,

(r.u0, r.v0), where r is the proportion of movement desired at each frame (e.g., 1/2, 1/3, etc.).

As for the scaling components, u1 and v2, they are usually chosen as fractions of u0 and v0,

respectively.

187Motion and Motion Blur Through Green’s Matrices
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In what follows, we present results of the experimental analysis of the Green’s matrix affine

matching approach.

3.2 Results

We have considered here the effects of camera zoom-in and camera zoom-out (actually, both

processes can be construed as a single one, just differing on the order of presentation of the

frames). The Green’s function approach will give rise to the fixed point

(xU , yV) = (−u0

u1
,− v0

v2
) (24)

corresponding, respectively, to an expansion focus, in the zoom-in case, and to a contraction

focus, in the zoom-out case.

3.2.1 Application 1: Video interpolation

Ideally, since we are considering an affine model instead of a full projective one, we should

work with scenes depicting flat objects on a frontoparallel plane, such that there would be

little change in depth. It is also known that depth discontinuities increase the complexity of

the motion estimation process (Li, 2006).

The interpolated frames have here been obtained according to the following steps: (a)

we estimate the affine optical flow between a pair of original frames; (b) from this, the

corresponding Green’s function components are calculated through Eq. (23); finally (c), each

interpolation frame is generated through Eq. (17).

The example illustrated in Fig. 7 corresponds to a synthetic motion sequence, over which

we performed a zooming-in operation. It should be noted that the intermediate, interpolated

frame in the figure presents appreciable blur, as expected from the Green’s function approach.

The full sequence appears as Example 1 in our website (http://www.graphics.ufba.br/

intechpage), and simulates an optical zoom operation.

(a) A frame of reference -
150 × 150 pixels.

(b) Interpolated frame with
our Green’s Matrix from the
image in (a).

(c) A second frame of
reference - 150 × 150 pixels.

Fig. 7. Motion parameters were (u0, u1, v0, v2) = (−3, 0.040,−1, 0.013). A focus of expansion
appears at (xU , yV) = (75, 75).

188 Computer Graphics
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Table 1 presents the optical flow components estimated from the reference frames depicted in

Fig. 7(a) and (c). Fig. 8 presents a different pair of frames from the same video considered

Motion Estimation Parameters

u0 u1 u2 v0 v1 v2

6.226374 0.009514 0.005162 −1.119647 −0.014769 −0.014783

Table 1. Optical flow components obtained through Black’s algorithm (Black & Anandan,
1996).

above, along with the interpolated frame now obtained through a zooming-out operation.

The full generated sequence also appears, as Example 2, in our website.

(a) A frame of reference -
150 × 150 pixels.

(b) Interpolating frame,
obtained from the image
in (c) through the Green’s
Matrix approach.

(c) A second frame of
reference - 150 × 150 pixels.

Fig. 8. Motion parameters were (u0, u1, v0, v2) = (2,−0.027, 3,−0.040). A focus of contraction
appears at (xU , yV) = (75, 75).

Table 2 presents the optical flow components estimated from the reference frames depicted

in Fig. 8(a) and (c). We also performed an interpolation test with a fragmented sequence

Motion Estimation Parameters

u0 u1 u2 v0 v1 v2

−0.112766 0.022996 −0.007487 2.169647 −0.013922 0.054095

Table 2. Optical flow components obtained through Black’s algorithm (Black & Anandan,
1996).

from a real video (an old Three Stooges picture). It appears in Fig. 9 , and as Example 3 in

our website. In the original sequence, the camera recedes, leading to a sudden discontinuity

between frames (see the website), due to the appearance of new objects in the field of view.

The net visual effect is that of an elastic deformation of the scene, which in this case is much

more complex than in the previous examples, and not very amenable to our affine approach.

Table 3 presents the optical flow components obtained from the reference frames in Fig. 9(a)

and (c).

189Motion and Motion Blur Through Green’s Matrices
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12 Will-be-set-by-IN-TECH

(a) A frame of reference - 280 ×
210 pixels.

(b) Interpolating frame, obtained
from the image in (a) through the
Green’s Matrix approach.

(c) A second frame of reference -
280 × 210 pixels.

Fig. 9. Motion parameters were (u0, u1, v0, v2) = (−0.015, 0.000,−3, 0.029). A focus of
expansion appears at (xU , yV) = (140, 105).

Motion Estimation Parameters

u0 u1 u2 v0 v1 v2

−0.142945 −0.002325 −0.001457 −6.492826 −0.009811 0.026797

Table 3. Optical flow components obtained through Black’s algorithm (Black & Anandan,
1996).

Our next experiment is based on a sequence created by Chad Soriano, which can be found at

http://www.chadsorianophotoblog.com/2011_03_11_archive.html. It presents

a more favorable situation for the application of the Green’s function approach, by showing

a single object on a dark background. In Fig. 10, we display two reference frames in the

sequence, and the interpolated one.

(a) A frame of reference - 240 ×
131 pixels.

(b) Interpolated frame with our
Green’s Matrix from the image in
(a).

(c) A second frame of reference -
240 × 131 pixels.

Fig. 10. Motion parameters were (u0, u1, v0, v2) = (2,−0.008, 1,−0.008). A focus of
contraction appears at (xU , yV) = (120, 66).

Table 4 presents the optical flow components obtained from the reference frames of Fig. 10(a)

and (c).

Next, we will illustrate the use of the Green’s matrix approach for the removal of motion

effects.
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Motion Estimation Parameters

u0 u1 u2 v0 v1 v2

−10.093081 0.016620 −0.000431 0.104955 −0.002782 0.106368

Table 4. Optical flow components obtained through Black’s algorithm (Black & Anandan,
1996).

3.2.2 Application 2: Motion reversion

Here, as a means of validation of the obtained results, the mean reconstruction error and the

similarity measure, defined respectively as

ǫ =
∑

M−1
j=1 ∑

N−1
k=1 ‖ f (j, k)− fR(j, k)‖

M.N.P
(25)

and

(1 − ǫ) ∗ 100% (26)

have been used for assessing the quality of the restorations. In the first equation, f denotes

the original image, fR is its restored version, M and N stand for image width and height,

respectively, and P for the number of gray levels.

Fig. 11 (also Example 5 in our website) shows an example of reversal of motion effects.

(a) The original input - 270 ×
250 pixels.

(b) The result of applying the
Green’s matrix over the original
input.

(c) The result of motion
reversal.

Fig. 11. Motion Reversal Experiment. Here the Green’s Matrix has been applied to each
image line. Motion parameters for generating (b) were (u0, u1) = (−7, 0.052). A focus of
expansion appears at xU = 135.

In this case, through the Green’s matrix approach, the image in Fig. 11 (a) underwent an

expansion along the x direction (we used u1 > 0), generating the image in Fig. 11(b). Next,

both images were used for estimating the optical flow, and for computing the Green’s matrix

parameters as in Section 3.1. We finally obtained the inverse to that matrix and used it to

generate Fig. 11(c). As shown, this has the effect of removing most of the blur and motion

components. The quality measures of the reconstructed image are presented in Table 5.

We also performed another test, where we reversed the Green’s matrix separately, in the

horizontal and in the vertical directions. Fig. 12 (Example 6 in our website) shows more
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Quality Measures

Figures Mean error Similarity (%)

Figs. 11(a) and (c) 0.089303 91.07

Table 5. Mean error and similarity results.

results of reversal of motion effects. The image of Fig. 12(b) was obtained by consecutively

(a) The original input - 280 × 210
pixels.

(b) The result of applying the
Green’s matrix over the original
input.

(c) The result of motion reversal.

Fig. 12. Motion Reversal Experiment. The motion parameters were empirically chosen as
(u0, u1, v0, v2) = (0.03,−0.0002, 6.5,−0.062). A focus of contraction appears at
(xU , yV) = (140, 105).

applying the Green’s matrix over the lines and columns of Fig. 12(a) (the matrix parameters

were empirically chosen). The restored image in Fig. 12(c) was then generated by inverting

both processes. It can be seen that the motion and blur components are substantially reduced,

but the edges are substantially enhanced. Also, there appear some artifacts at the image

boundary, which are probably due to boundary conditions which have not been appropriately

considered here (Hansen et al., 2006) . Table 6 shows the quality measures of the restoration.

Quality Measures

Figures Mean error Similarity (%)

Figs. 12(a) and (c) 0.046797 95.32

Table 6. Mean error and similarity results.

4. Conclusions and future works

Here we have proposed a matrix formulation for the Green’s function affine matching

approach. Such formulation leads to reduced computational costs, and affords application

to complex problems, such that of interpolating video sequences including camera zoom-in

and camera zoom-out. We have also proposed an inverse filtering scheme for the reversal of

motion effects. This has so far yielded promising results, allowing the partial removal of both

motion and blur components introduced by the Green’s function itself. We are now testing its

application to real motion sequences.
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As future developments of our work, we envision a better treatment of the boundary problem

associated with the Green’s function, and also its regularization. A possible application could

lie in super-resolution for synthetic zooming. The robustness under noise of our approach

should also be assessed.

5. References

Black, M. & Anandan, P. (1996). The robust estimation of multiple motions: Parametric and

piecewise-smooth flow fields, Computer Vision and Image Understanding, CVIU 63(1),

pp. 75-104

Ferreira Júnior, P., E.; Torreão, J., R., A.; Carvalho, P.,C.,P.; and Velho, L. (2005).

Video Interpolation Through Green’s Functions of Matching Equations, Proc.

of IEEE International Conference on Image Processing, Vol. 3, pp. III-1080-3.

doi:10.1109/ICIP.2005.1530583 Key: citeulike:2804665

Ferreira Júnior, P.,E.; Torreão, J.,R.,A.; Carvalho, P.,C.,P.; and Vieira, M.,B. (2008). Motion

Synthesis Through 1D Affine Matching, Pattern Analysis and Applications 11, pp. 45-58

Ferreira Júnior, P.,E.; Torreão, J.,R.,A.; and Carvalho, P., C., P. (2009). A Comparative

Analysis of Green’s Functions of 1D Matching Equations for Motion Synthesis,

Pattern recognition Letters 30(14),pp. 1321–1334

Foley, J.; Van Dam, A.; Feiner, S.; Hughes, J. (1995). Computer Graphics: Principles and

Practice in C, Addison-Wesley Professional, 2nd Edition.

Folland, G., B. (1995). Introduction to Partial Differential Equations, Princeton University Press,

2nd edition

Hansen, P. C.; Nagy, J,; O’Leary, D. (2006). Deblurring Images: Matrices, Spectra, and Filtering,

Society for Industrial and Applied Mathematics, 1st edition

Jahne, B.; Hausseker, H.; Geissler, P. (1999). In: Handbook of Computer Vision and

Applications, Vol. 2, Academic Press

Jerri, A. (1999). Introduction to Integral Equations with Applications, Wiley-Interscience, 2nd

edition

Li, X. (2005). Super-Resolution for Synthetic Zooming, Journal on Applied Signal Processing,

Volume 2006, Article ID 58195, pp. 1–12, DOI 10.1155/ASP/2006/58195

Oppenheim, A.,V.; and Willsky, A.,S. (1996). Signals and Systems, Prentice Hall, 2nd edition

Sondhi, M. (1972). The Removal of Spatially Invariant Degradations, Proc. of IEEE 60(7), pp.

842–853

Stakgold, I. (1998). Green’s Functions and Boundary Value Problems, A Wiley-Interscience Pub.,

2nd edition

Torreão, J., R.,A. (2001). A Green’s Function Approach to Shape from Shading, Pattern

Recognition 34, pp. 2367-2382

Torreão, J.,R.,A. and Amaral, M.,S. (2002). Signal Differentiation Through a Green’s Function

Approach, Pattern Recognition Letters 23(14), pp. 1755–1759

Torreão, J.,R.,A. and Amaral, M.,S. (2006). Efficient, recursively implemented differential

operator, with application to edge detection, Pattern Recognition Letters 27(9), pp.

987–995

Torreão, J.,R.,A. (2007). Disparity Estimation Through Green’s functions of Matching

Equations, Biol. Cybernetics 97, pp. 307–316

193Motion and Motion Blur Through Green’s Matrices

www.intechopen.com



16 Will-be-set-by-IN-TECH

Verri, A.; Girosi, F.; Torre, V. (1989). Mathematical Properties of the 2D Motion Field: from

Singular Points to Motion Parameters, Journal of the Optical Society of America A 6(5),

pp. 698–712

194 Computer Graphics

www.intechopen.com



Computer Graphics

Edited by Prof. Nobuhiko Mukai

ISBN 978-953-51-0455-1

Hard cover, 256 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Computer graphics is now used in various fields; for industrial, educational, medical and entertainment

purposes. The aim of computer graphics is to visualize real objects and imaginary or other abstract items. In

order to visualize various things, many technologies are necessary and they are mainly divided into two types

in computer graphics: modeling and rendering technologies. This book covers the most advanced

technologies for both types. It also includes some visualization techniques and applications for motion blur,

virtual agents and historical textiles. This book provides useful insights for researchers in computer graphics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Perfilino E. Ferreira Junior and Jose R.A. Torreao (2012). Motion Blur and Deblur Through Green's Matrices,

Computer Graphics, Prof. Nobuhiko Mukai (Ed.), ISBN: 978-953-51-0455-1, InTech, Available from:

http://www.intechopen.com/books/computer-graphics/motion-blur-and-deblur-through-green-s-matrices



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


