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1. Introduction 

European ecological regulations meant to protect nature and wild life along with 
construction cost reduction policies generated a set of government regulations that limit the 
access to new transmission and distribution corridors. As a result, gas, water or oil supply 
pipelines are forced to share the same distribution corridors with Electrical Power Lines 
(EPL), AC Railway Systems or Telecommunication Lines (figure 1).  

 
Fig. 1. Common distribution corridor. Right of way. 

The electromagnetic fields generated by high voltage electrical power lines produce AC 
interference in the nearby metallic structures. Therefore, in many cases these underground 
or above ground utilities supply Metal Pipelines (MP) are exposed to effects of induced AC 
currents and voltages (CIGRÉ 1995, Dawalibi & Southey 1989). Especially in case of power 
line faults, the resulting AC voltage in unprotected pipelines may reach thousands of volts. 
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This could be dangerous on both the operating personnel (that may be exposed to electric 
shocks), and to the structural integrity of the pipeline, due to corrosion. Underground steel 
pipelines are in permanent contact with the electrolyte solution from the soil, so proper 
protection measures are necessary in order to limit the induced current densities, which are 
the cause of electrochemical corrosion. Uncontrolled corrosion of supply pipelines may 
cause gas or/and oil spills with very serious ecological and economic implications.  
(Baboian 2002, Collet et al. 2001) 

In order to provide proper protection for pipelines the AC interference has to be well 
known. Normally, the electromagnetic interference between electrical power lines and 
nearby metallic pipelines could be generated by any of the following three types of 
couplings (CIGRÉ 1995): 

 Inductive Coupling: Aerial and underground pipelines that run parallel to or in close 
proximity to transmission lines or cables are subjected to induced voltages by the time 
varying magnetic fields produced by the transmission line currents. The induced 
electromotive forces (EMF) causes current circulation in the pipeline and voltages 
between the pipeline and surrounding earth. 

 Conductive Coupling: When a ground fault occurs in the electrical power system the 
current flowing through the grounding grid produce a potential rise on both the 
grounding grid and the neighbouring soil with regard to remote earth. If the pipeline 
goes through the “zone of influence” of this potential rise, then a high difference in the 
electrical potential can appear across the coating of the pipeline metal. 

 Capacitive Coupling: Affects only above ground pipelines situated next to overhead 
power lines. It occurs due to the capacitance between the power line and the pipeline. 
For underground pipelines the effect of capacitive coupling may be neglected, because 
of the screening effect of the earth. 

In case of interferences between EPLs under normal operating conditions and underground 
pipelines, only the inductive coupling described by the self and mutual impedance matrix 
has to be taken into consideration. Conductive and capacitive interference may be, also, 
neglected when a ground fault happens significantly away from the common corridor. 

 

 
Fig. 2. Cross section of an interference problem between an EPL and an underground MP. 
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To evaluate the self and mutual impedance between the conductors (phase wires, sky wires 
and pipelines) the magnetic vector potential has to be evaluated on the cross section    
(figure 2) of these conductors as presented in (Christoforidis et al. 2003, 2005).   

Thus, taking into account the cross section of the studied problem, the z-direction 
component of the magnetic vector potential Az and of the total current density Jz are 
described by the following system of differential equations: 
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where σ is the conductivity, ω is the angular frequency, µ0 is the magnetic permeability of free 

space (µ0= 74 10   H/m), µr is the relative permeability of the environment, Jsz is the source 
current density in the z-direction and Ii is the imposed current on conductor i of Si cross section.  

To solve this differential equation system, the finite element method (FEM) is recommended 
to be used. FEM effectively transforms the electromagnetic interference problem into a 
numerical one. Although FEM yielded solutions are very accurate, regarding to the problem 
complexity, the computing time of this method increases with the geometry, its mesh, 
material characteristics and requested evaluation parameters. 

The FEM calculations are used in the described method, as a means of calculating the self 
and mutual impedances of the conductors present in the configuration. Generally, if there 
exist n conductors in the configuration and assuming that the per unit length voltage drop  
on every conductor is known for a specific current excitation, the mutual complex 
impedance between conductor i and another conductor j carrying a certain current, where 
all other conductors are imposed to carry zero currents, is given by: 

  , 1,2, ,i
ij

j

V
Z i j n

I
    (2) 

Similarly, the self-impedance of conductor i may be calculated using (2), by setting i=j. 

The procedure is summarized below (Papagiannis et. al. 2000): 

 By applying a sinusoidal current excitation of arbitrary magnitude to each conductor, 
while applying zero current to the other conductors, the corresponding voltages are 
calculated. 

 The self and mutual impedances of the j conductor may be calculated using (2). 

The above procedure is repeated n times, so as to calculate the impedances for n conductors. 

Applying FEM calculations for the solution of linear electromagnetic diffusion equation (first 
relation from system (1)), the values for source current density in the z-direction (Jszi) on each 
conductor i having a conductivity of σi are obtained. Therefore, equation (2) becomes: 
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I I


     (3) 

Following the above procedure, effectively linking electromagnetic field variables and 
equivalent circuit parameters, the self and mutual impedances per unit length of the 
problem are computed. 

By using FEM to calculate the impedances of the problem instead of classic formulae, (e.g. 
Carson’s formulae), one can deal effectively with more complex situations, such as 
multilayer earth or terrain irregularities. 

Nevertheless, the study of electromagnetic interference between power lines and 
underground pipelines using FEM for different system configurations requires expensive 
computing time. This is because each new problem geometry taken under consideration 
involves a new mesh development and new calculations. To solve system equation (1) for a 
given problem geometry (EPL-MP separation distance, soil resistivity) with an Intel Core2 
Duo T6400 (2.0 GHz/2.0 GHz) processor PC it takes from 20 to 50 minutes depending on 
mesh discretization. Therefore, any scaling method of the results from one configuration 
case to another may be of interest if it provides less computing time.  

A first attempt in applying artificial intelligence techniques to scale EPL-MP interference 
results was made in (Satsios et al. 1999a, 1999b). A Fuzzy Logic Block (FLB) was 
implemented to evaluate the Magnetic Vector Potential (MVP) for an EPL-MP interference 
problem where phases to earth fault occurred. The input values were the geometrical 
parameters of the studied problem configuration (separation distance, soil resistivity) and 
the coordinates of the point where the MVP should be calculated. However, the 
implemented FLB provide relatively good results for MVP, the main disadvantage of this 
method consists in determination of the optimal parameters, which describes the fuzzy logic 
rule base. An iterative technique based on conjugate gradient has been used to optimize the 
fuzzy rule base parameters. Later on a Genetic Algorithm technique had been proposed in 
(Damousis et al. 2002) to determine the optimal parameters and rule base configuration  

Another approach in using artificial intelligence techniques in the study of electromagnetic 
interferences between power lines and underground metal pipelines was introduced by    
Al-Badi (Al-Badi et al. 2005, 2007). A feed-forward Neural Network with one output layer 
and one hidden layer was proposed to evaluate the induced AC interference in an 
underground pipeline exposed to electromagnetic fields generated by an electrical power 
line in case of a phase to earth fault. The input values of this Neural Network were the fault 
current, the soil resistivity, the separation distance and a fourth parameter which indicates 
the presence of mitigation wires. The main advantage of this NN solution was that it 
provided directly the value of the induced AC voltages. However, the limitation of this 
model consists in the fact that the results are obtained for a specific common distribution 
corridor length. 

In this chapter two artificial intelligence techniques are presented. These were applied by 
the authors in some EPL-MP electromagnetic interferences studies (Micu et al. 2009, 2011). 
The first one is a neural network alternative to the EPL-MP interference problem presented 
in (Satsios et al. 1999a, 1999b). The advantage of the proposed alternative consists in the 
accuracy of the obtained results and in the shorter training time. The second is a neural 
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network solution used to evaluate the self and mutual impedance matrix, which describe the 
inductive coupling between an electrical power line and an underground pipeline in the 
presence of a three vertical layer earth. For such a case, no analytical formula exists so far, 
and this means that lengthy calculations using FEM must be made. The obtained impedance 
matrix can be used to build and solve the equivalent electrical circuit model and thus 
evaluate the induce AC voltage. This equivalent electrical circuit approach permits to solve 
more complex problem geometries where for example the separation distance between EPL 
and MP varies along the common distribution corridor.    

2. Magnetic vector potential evaluation using neural networks 

The first attempt of the authors to use neural networks based artificial intelligence 
techniques in the study of electromagnetic interference problems was focused on finding an 
easier method to identify the optimal solution to scale the results from a set of known 
problem geometries to any other new problem geometries in case of specific EPL-MP 
interference problems.  

2.1 Studied electromagnetic interference problem 

The studied electromagnetic interference problem, presented in figure 3, refers to an 
underground metallic gas pipeline which shares for 25 km the same distribution corridor 
with a 145 kV EPL at 50 Hz frequency. The power line consists of two steel reinforced 
aluminium conductors per phase. Sky wire conductors have a 4 mm radius and the gas 
pipeline has a 0.195 m inner radius, a 0.2 m outer radius and a 0.1 m coating radius. The 
characteristics of the materials in this configuration have the following properties: the soil is 
assumed to be homogeneous; MP and sky wires have an σ =7.0E+05 S/m conductivity and a 
µr=250 relative permeability. 

 
Fig. 3. Top view of the parallel exposure. 

It is assumed that a phase to ground fault occurs at point B, far away outside the common 
EPL–MP distribution corridor. The earth current associated with this fault has a negligible 
action upon the buried pipeline. This fact allows us to assume only the inductive coupling 
caused by the flowing fault current in the section where the power lines runs parallel to the 
buried gas pipeline. End effects are neglected, leading to a two dimensional (2D) problem, 
presented in figure 4, were the magnetic vector potential has to be evaluated.  
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Fig. 4. Cross section of the studied EPL-MP interference problem. 

2.2 Fuzzy logic implementation  

A first attempt in applying artificial intelligence techniques to reduce the computational 
time needed by FEM to evaluate the MVP values for different problem geometries have 
been made in (Satsios et al. 1999a, 1999b). The presented Fuzzy Logic Block had as input 
values the separation distance, d, between EPL and MP, the soil resistivity, ρ, and the 
coordinates (x,y) of the point where MVP is wanted to be evaluated:  

 

0

The rule from the presented Fuzzy Logic Block’s rule base :

: , , and belong to the membership function, , and
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th

jj j jth
x yd
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j jj j j j
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The proposed Fuzzy Logic Block showed relatively good results for MVP’s amplitude and 
phase evaluation according to the training database created by calculating MVP with FEM 
for a set of known problem geometries (figure 5):  

 
Fig. 5. Absolute evaluation error provided by the presented Fuzzy Logic Block. 
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To identify the proper rule base and the optimal parameters for each rule an iterative 
technique has been applied using gradient based relations like:  

      
 2, , , , , , , , ,j

jj p
pp j pP
FEMj j

j

J A d x y A d x y A A d x y
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and 

      
 3, , , , , , , , ,j

jj p
pp j pP
FEMj j

j

J A d x y A d x y A A d x y


   
 





           
  (6) 

where  , , ,d x y   and    , , , , , , ,p p
FEMA d x y A d x y  are the MVP values obtained with 

FEM and respectively. 

In the following, in order to improve the accuracy of the obtained results and to simplify the 
implementation process of the applied artificial intelligence technique, the authors propose 
an alternative by using a Neural Network solution instead of the presented Fuzzy Logic 
Block presented in (Satsios et al. 1999a, 1999b). 

2.3 MatLab implementation of prosed neural networks 

To identify the optimal neural network solution different feed-forward and layer recurrent 
architectures were evaluated. To implement these neural network architectures the Neural 
Network Toolbox of the MatLab software application was used. This software was chosen 
because it enables the creation of almost all types of NN from perceptrons (single layer 
networks used for classification) to more complex architectures of feed-forward or recurrent 
networks. To create a feed-forward neural network in MatLab the following function can be 
called from command line:   

 net = newff(P,T,S,TF,BTF,BLF,PF) (7) 

where: 

 P – is a RxQ1 matrix of Q1 representative R-element input vectors; 
 T – is a SNxQ2 matrix of Q2 representative SN-element target vectors; 
 S – is a vector representing the number of neurons in each hidden layer; 
 TF – is a vector representing the transfer function used for each layer; 
 BTF – is the back propagation function used to train the NN; 
 BLF – is the weight/bias learning function; 
 PF – is performance evaluation function. 

A similar function can be called to create a layer recurrent neural network: 

 net = newlrn(P,T,S,TF,BTF,BLF,PF) (8) 

Once a neural network is created, to train it, the following Matlab function can be used: 

 train(net,P,T) (9) 
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where: 

 net – is the neural network that has to be trained; 
 P – is a RxQ1 matrix of Q1 representative R-element input vectors; 
 T – is a SNxQ2 matrix of Q2 representative SN-element target vectors; 

These to functions also provide a pre-processing of the four input parameters: d the 
separation distance between EPL and MP (which varies between 70 m and 2000 m), ρ the 
soil resistivity (which varies between 30 Ωm and 1000 Ωm) and (x,y) the coordinates of the 
point where the MVP is wanted to be evaluated (which varies between 0 and 2100 m, 
respectively between 0 m and -30 m); by scaling them in the range of [-1,+1]. 

To train the different NN architectures the Levenberg-Marquardt training method and the 
descendent gradient with momentum weight learning rule has been implemented. As 
training data base a set of MVP values evaluated with FEM and presented in (Satsios et al. 
1999a, 1999b) were used. These MVP values were calculated in different points up to 15 
different problem geometries (soil resistivity, separation distance) obtaining a set of 37 
input/output pairs used to train the proposed NN. Table 1 presents some of the training 
data sets. 
 

No 
d  

[m] 
x  

[m] 
y  

[m] 
  

[Ω*m] 

MVP 
Amp. 

10-5 [Wb/m] 
Phase 

[º] 

1 70 70 -15 30 36.1 -22.8 
5 800 818.25 -13.5 30 3.88 -82.61 
9 400 384.81 -7.82 70 17.2 -44.46 
14 70 40 0 100 55.9 -18.53 
18 1000 1022.5 0 100 7.23 -67.27 
23 300 290.26 -15.8 500 35.5 -26.74 
28 700 670 -22.5 700 26 -33.74 
30 150 150.55 -16.99 900 53 -19.7 
33 1500 1499.1 -17.48 900 15.6 -46.35 
37 2000 2030 -5 1000 12.2 -52.73 

Table 1. Training data sets. 

Once the NN are trained they can provide automatically the corresponding output values 
for any combination of input parameters by applying the following MatLab function: 

 sim(net,X) (10) 

where net is the implemented neural network and X is a set of input values. 

2.4 Results obtained with feed-forward neural networks 

To determine precisely the magnetic vector potential in each point of the studied domain, 
the amplitude and the phase of the MVP has to be evaluated. Considering the different 
variation range: 10-6÷10-4 [Wb/m] for amplitude, and -180°÷180° for phase, the authors 
chose to implement two different neural networks - one for amplitude and one for phase - 
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instead of implementing a single NN that would provide both amplitude and phase. Also 
the output values for NN which returns the MVP amplitude were scaled from 10-6÷10-4 to 
0.1÷100, so the final output values has to be multiplied by 10-5 to obtain the actual MVP 
amplitude value in  [Wb/m].  

Initially, feed-forward neural networks with one output layer and one hidden layer were 
tested (figure 6). Some of the obtained results were already presented in (Micu et al. 2009) 
and (Czumbil et al. 2009). In the following a more detailed study is presented.   

 
Fig. 6. Implemented feed-forward network architecture. 

The number of neurons in the hidden layer was varied from 5 to 30 with a step of 5 neurons. 
The transfer function of the output layer was set to purelin (the linear transfer function) and 
the transfer function on the hidden layer was varied between tansig (the hyperbolic tangent 
sigmoid function), logsig (the logarithmic sigmoid function) and purelin. Also, the 
performance evaluation function was varied between mse (mean square error), msereg (mean 
square error with regularization performance) and sse (sum squared error).  

After the implementation and training, the proposed feed-forward networks were 
submitted to a testing process. The error between the output values generated by NN and 
the magnetic vector potential evaluated with FEM for the training data sets was determined. 
Analysing the obtained errors, it was concluded that none of the tested architectures having 
the purelin transfer function on the hidden layer, had provided acceptable results. The 
average evaluation error was around 10% and the achieved maximum error was greater 
than 25%. For all the other NN architectures, the evaluation error for the training data sets 
was neglectable.  
 

No 
d  

[m] 
x  

[m] 
y  

[m] 
  

[Ω*m] 

MVP 

Amp. 
10-5 [Wb/m] 

Phase 
[º] 

1 70 40 -15 100 53.8 -19.34 
2 70 81.66 -27.03 30 32.90 -25.57 
3 400 392.25 -25.56 70 16.7 -46.05 
4 300 281.66 -27.03 500 37.5 -25.93 
5 700 690.36 -15.80 700 25.6 -34.07 
6 1000 1007.50 0 70 5.68 -72.98 
7 1000 1015 -30 100 7.16 -69.22 
8 1500 1524.77 -6.93 900 15.40 -46.56 

Table 2. Testing data sets. 
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Since the main goal was the implementations of a suitable NN, that would provide accurate 
solutions for any new problem geometry, a second testing database was used to select the 
optimal NN architecture. This second database is a totally new set of data, which was not 
applied to NN during the training process (table 2).  

Analyzing the average and maximum evaluation errors obtained for the testing data sets, in 
case of the neural network which would evaluate the amplitude of the magnetic vector 
potential, two possible NN architectures were determined (AmpFfNN2 and AmpFfNN7). 
The first one (AmpFfNN2) has 10 neurons with tansig transfer function on the hidden layer 
and uses an mse performance evaluation function. In this case the obtained average 
evaluation error for the testing data set is 0.71% with a maximum 1.72% achieved evaluation 
error. Figure 7 presents the evaluation error obtained for both training and testing data sets. 

 
Fig. 7. Absolute evaluation error for AmpFfNN2 network. 

The second possible solution (AmpFfNN7) for the amplitude network has 5 neurons with 
logsig transfer function on the hidden layer and uses an mse performance evaluation 
function. In this case the obtained average evaluation error for the testing data set is 0.77% 
with a maximum 2.50% achieved evaluation error. Figure 8 presents the evaluation error 
obtained for both training and testing data sets. 

 
Fig. 8. Absolute evaluation error for AmpFfNN7 network. 

Comparing the result for both possible amplitude NN architectures it can be observed that 
AmpFfNN2 provides better results for both training and testing data sets. 

Based on the obtained maximum and average evaluation errors for neural networks 
implemented for MVP phase evaluation, two possible optimal NN architectures were 
determined (PhaseFfNN38 and PhaseFfNN43). The first one (PhaseFfNN38) has 10 neurons 
with tansig transfer function on the hidden layer and uses an sse performance evaluation 
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function. In this case the obtained average evaluation error for the testing data set is 1.55% 
with a maximum 4.02% achieved evaluation error. Figure 9 presents the evaluation error 
obtained for both training and testing data sets. 

 
Fig. 9. Absolute evaluation error for PhaseFfNN38 network. 

The second possible solution (PhaseFfNN43) for the amplitude network has 5 neurons with 
logsig transfer function on the hidden layer and uses an sse performance evaluation function. 

In this case the obtained average evaluation error for the testing data set is 1.19% with a 
maximum 5.47% achieved evaluation error. Figure 10 presents the evaluation error obtained 
for both training and testing data sets. 

 
Fig. 10. Absolute evaluation error for PhaseFfNN43 network. 

Comparing the result for both possible phase NN architectures it can be observed that 
generally PhaseFfNN43 provides better results for the testing data sets. However, 
considering the fact that for the training data sets PhaseFfNN43 provides evaluation errors 
in range of 0.25 degrees while PhaseFfNN38 provides almost none existing evaluation 
errors, the optimal NN solution could be considered PhaseFfNN38. 

2.5 Results obtained with recurrent neural networks 

To find the best NN solution which would provide the most accurate results different layer 
recurrent architecture were also tested. Some of the results were presented in (Micu et al. 
2011) but a more detailed study is given in the following. 

A layer recurrent feed-forward neural network with one output layer and one hidden layer is 
considered (figure 11). The number of neurons in the hidden layer was varied from 5 to 30 
with a step of 5 neurons. The transfer function of the output layer was set to purelin (the linear 
transfer function) and the transfer function on the hidden layer was varied between tansig (the 
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hyperbolic tangent sigmoid function) and logsig (the logarithmic sigmoid function). Also 
performance evaluation function was varied between mse (mean square error), msereg (mean 
square error with regularization performance) and sse (sum squared error).  

 
Fig. 11. Implemented layer recurrent network architecture. 

Comparing the average and maximum evaluation errors obtained for the testing data sets, 
in case of the neural network which evaluates the amplitude of MVP, three different NN 
architectures (AmpLrnNN8, AmpLrnNN19 and AmpLrnNN43) were determined as 
possible solutions.  

The first one (AmpLrnNN8) has 10 neurons with logsig transfer function on the hidden layer 
and uses an mse performance evaluation function. In this case the obtained average 
evaluation error for the testing data set is 0.35% with a maximum 1.08% achieved evaluation 
error. Figure 12 presents the evaluation error obtained for both training and testing data sets. 

 
Fig. 12. Absolute evaluation error for AmpLrnNN8 network. 

The second possible solution (AmpLrnNN19) for the amplitude network has 5 neurons with 
logsig transfer function on the hidden layer and uses an msereg performance evaluation 
function. In this case the obtained average evaluation error for the testing data set is 0.65% 
with a maximum 1.12% achieved evaluation error. Figure 13 presents the evaluation error 
obtained for both training and testing data sets. 

 
Fig. 13. Absolute evaluation error for AmpLrnNN19 network. 
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The third possible solution (AmpLrnNN43) for the amplitude network has 5 neurons with 
tansig transfer function on the hidden layer and uses an sse performance evaluation function. 

In this case the obtained average evaluation error for the testing data set is 0.47% with a 
maximum 1.26% achieved evaluation error. Figure 14 presents the evaluation error obtained 
for both training and testing data sets. 

 
Fig. 14. Absolute evaluation error for AmpLrnNN43 network. 

Comparing the results from figures 12, 13 and 14 it can be observed that the most accurate 
solutions will be obtained for AmpLrnNN8 neural network. 

Studying the maximum and average evaluation errors obtained for neural networks 
implemented to evaluate the phase of MVP, three NN architectures (PhaseLrnNN8, 
PhaseLrnNN19 and PhaseffNN44) were determined as possible optimal solution.  

The first one (PhaseLrnNN8) has 10 neurons with logsig transfer function on the hidden 
layer and uses a mse performance evaluation function. In this case the obtained average 
evaluation error for the testing data set is 1.16% with a maximum 4.21% achieved evaluation 
error. Figure 15 presents the evaluation error obtained for both training and testing data 
sets. 

 
Fig. 15. Absolute evaluation error for PhaseLrnNN8 network. 

The second possible solution (PhaseLrnNN19) for the amplitude network has 5 neurons 
with tansig transfer function on the hidden layer and uses a msereg performance evaluation 
function (ffNN2). In this case the obtained average evaluation error for the testing data set is 
1.19% with a maximum 3.02% achieved evaluation error. Figure 16 presents the evaluation 
error obtained for both training and testing data sets. 
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Fig. 16. Absolute evaluation error for PhaseLrnNN19 network. 

The third possible solution (PhaseLrnNN44) for the amplitude network has 10 neurons with 
logsig transfer function on the hidden layer and uses a sse performance evaluation function. 
In this case the obtained average evaluation error for the testing data set is 1.18% with a 
maximum 3.58% achieved evaluation error. Figure 17 presents the evaluation error obtained 
for both training and testing data sets. 

 
Fig. 17. Absolute evaluation error for PhaseLrnNN43 network. 

Analysing the results shown in figures 15, 16 and 17 the authors concluded that the optimal 
layer recurrent NN architecture solution to evaluate the phase of the magnetic vector 
potential it is PhaseLrnNN19 network structure. 

2.6 Discussions 

Based on the maximum and average evaluation errors obtained for the implemented NN 
architectures the authors has concluded that it should be used a NN structures that have even 
tansig either logsig transfer function implemented on the hidden layer. Generally, a tansig 
transfer function will provide much better training results then a logsing function, but for totally 
new input values could provide less accurate results. Also it was observed that a higher number 
of neurons did not necessary provide more accurate results and instead of predicting the MVP 
values for new problem geometries it would identify the closest training input/output pair.  

Studying the results provided by the identified optimal NN architectures in case of layer 
recurrent networks (AmpLrnNN8 for MVP amplitude evaluation, respectively 
PhaseLrnNN19 for MVP phase evaluation) and comparing to the MVP solutions provided 
by the optimal feed-forward architectures (AmpFfNN2 and respectively PhaseFfNN38) it 
can be observed that even if the studied problem does not necessary require the 
implementation of recurrent neural networks, we can get more accurate solutions by using 
recurrent networks. 
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Comparing the results obtained with the implemented neural networks (figure 7÷10 and 
12÷15) with those provided by the fuzzy logic block presented in (Satsios et al. 1999a, 1999b) 
(figure 5) we can observe a 50% or more accuracy increase in determining MVP amplitude 
and phase, depending on the implemented neural network architecture.   

Once the magnetic vector potential is evaluated, the self and mutual impedance matrix, 
which describes the inductive coupling between the electrical power line and underground 
pipeline, can be evaluated using the relationships presented in (Christoforidis et al. 2003, 
2005). After that the equivalent electrical circuit of the studied EPL-MP problem can be 
solved to obtain the induced AC voltage.   

3. Self and mutual inductance matrix evaluation in case of a three layer earth 

Considering the accuracy of the results for the MVP obtained from the implemented neural 
networks, the authors started to develop a neural network solution to evaluate directly the 
self and mutual impedance matrix, which describe the inductive coupling. In this case a 
more complex EPL-MP interference problem had been chosen for study. 

3.1 Studied electromagnetic interference problem  

An underground gas transportation pipeline runs in the same right of way with a 
220kV/50Hz electrical power line (figure 18). In order to study more realistic problem 
geometries is considered a multilayer soil (three vertical layers) with different 
resistivities.  

 
Fig. 18. Right of way configuration 

The pipeline is considered to be buried at 2 m depth and having an 0.195 m inner radius, 5 
mm thickness and 5 cm bitumen coating. The EPL phase wires are placed on triagonal single 
circuit IT.Sn102 type towers with one sky wire. 

3.2 Neural network implementation 

In order to do not redo each time the finite element calculation when different problem 
geometry has to be studied, the authors had decided to implement a neural network 
solution to evaluate the self and mutual inductance matrix for any possible problem 
geometries. As input values the following geometrical parameters has been selected: 
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 d  - distance between EPL and MP (which varies between 0  m and 1000 m); 
 1 - resistivity of middle layer earth (which varies between 30  Ωm and 1000 Ωm); 

 2 , 3 ( 2 3 )   - resistivity of left and right side earth layer (which varies as 1 ); 

 D  - earth middle layer width (which varies between 50 m and 1100 m). 

During the pre-processing stage of the proposed neural network solutions implementation 
all the input parameters were automatically scaled by MatLab in the [-1,+1] range. 

The outputs of the proposed neural network will be the impedance matrix elements. 
Considering the fact that the impedance matrix is a symmetrical matrix, the output values 
are the matrix elements above the main diagonal. For the proposed EPL-MP problem with 
one pipeline, three phase wires and one sky wire the matrix elements will be: 11Z , 12Z , 13Z , 

14Z , 15Z , 22Z , 23Z , 24Z , 25Z , 33Z , 34Z , 35Z , 44Z , 45Z , 55Z , where iiZ represents the self 

impedance of conductor i and ijZ  the mutual impedance between conductor i and j 

( 1,3i  represents EPL phase wires, 4i  represents EPL sky wire and 5i   represents MP).   

After analysing in detail the impedance matrices for different EPL-MP problem geometries 
the authors concluded that in order to increase NN results accuracy and to reduce training 
time it will be better to implement different NN for the real and imaginary part of each 
impedance. Also for accuracy improvement were implemented 3 different networks for the 
impedance matrix elements: NN1 for all conductors self impedances 
( 11Z , 22Z , 33Z , 44Z , 55Z ), NN2 for the mutual impedances between the pipeline and the 

conductors( 15Z , 25Z , 35Z , 45Z ), NN3 for the other mutual impedance elements.  

 

Case 
No. 

d  
[m] 

D  
[m] 

2  
[Ω*m] 

1  

[Ω*m] 
3  

[Ω*m] 

Case 
No. 

d  
[m] 

D  
[m] 

2  

[Ω*m] 
1  

[Ω*m] 
3  

[Ω*m] 

8 5 60 500 50 500 2301 20 550 30 250 30 

373 100 60 500 750 500 2532 100 550 100 500 100 

875 20 120 100 750 100 2914 5 1050 10 250 10 

1231 500 120 100 30 100 3274 100 1050 500 1000 500 

1391 0 240 50 10 50 3545 750 1050 30 750 30 

1891 250 240 500 30 500 4320 750 1500 50 10 50 

2134 0 550 50 250 50 4442 1000 1500 250 1000 250 

Table 3. Training EPL-MP problem geometries. 

To train the proposed NN a training data base was created based on the impedance 
matrices obtained using FEM for different EPL-MP problem geometries. In order to create 
a useful training database approximately 5000 different EPL-MP problem geometries were 
simulated varying the EPL-MP separation distance from 0 m to 1000 m, the earth layers 
resistivity from 10 Ωm to 1000 Ωm and the middle layer width from 50 m to 1500 m. Table 
3 presents some of the different EPL-MP problem geometries used to train the proposed 
NN.   
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Case 
No. 

d  
[m] 

D  
[m] 

2  
[Ω*m]

1  
[Ω*m]

3  
[Ω*m]

Case 
No. 

d  
[m] 

D  
[m] 

2  
[Ω*m]

1  
[Ω*m] 

3  
[Ω*m] 

1 310 800 900 850 900 16 490 1100 300 400 300 
2 15 400 850 450 850 17 170 700 300 350 300 
3 105 1100 550 550 550 18 150 700 500 500 500 
4 350 900 500 800 500 19 240 500 80 750 80 
5 250 800 150 150 150 20 125 800 300 600 300 
6 60 800 500 900 500 21 420 100 550 20 550 
7 340 400 600 150 600 22 75 400 350 700 350 
8 65 400 650 350 650 23 105 1200 250 950 250 
9 170 800 650 750 650 24 100 700 650 850 650 
10 55 1000 900 400 900 25 85 400 140 160 140 
11 40 200 600 800 600 26 300 400 900 100 900 
12 115 800 800 800 800 27 145 300 350 900 350 
13 120 900 750 350 750 28 15 500 140 700 140 
14 135 400 180 500 180 29 100 1300 300 180 300 
15 310 800 900 850 900 30 10 1000 200 750 200 

Table 4. Training EPL-MP problem geometries. 

In order to find the optimal neural network solution which will provide the most accurate 
results, the authors have implemented and tested different NN architectures. To test the 
implemented neural networks, the training database and a totally different data set that was 
not applied during the training process, were used. The error between the solutions 
provided by each implemented NN and the self and mutual impedance matrices are 
determined to identify the optimal architecture. Table 4 presents the randomly generated 
EPL-MP problem geometries used to test the implemented NN 

3.3 Tested feed-forward architectures 

To identify the optimal solution for each of the proposed neural networks, different         
feed-forward architectures with one output layer and two hidden layers were implemented 
(figure 19). Based on the experience gained after implementing the neural network for MVP 
calculation, the transfer function for the output layer has been chosen to be purelin (linear 
function) and tansig (hyperbolic tangent sigmoid function) for the hidden layers. The 
number of neurons was varied from 5 to 30 for the first hidden layer and from 5 to 20 for the 
second hidden layer. The performance evaluation function was set to mse (mean square 
error) and the descendent gradient with momentum weight learning rule was selected to 
train the neural networks using the Levenberg-Marquardt method. 

 
Fig. 19. Implemented feed-forward network architecture. 
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The training process took around 1 to 5 minutes for each implemented neural network. 
Once the proposed neural network architectures were trained, to identify the optimal 
solution, the error between the output values provided by NN and the finite element 
solutions was calculated and compared for each NN.  

In case of NN used to evaluate the real part of the self-impedances, the optimal NN1 
architecture is a feed forward NN with two hidden layers: 30 neurons on the first hidden 
layer and 10 neurons in the second hidden layer. The average error is 0.048% for the training 
data set and respectively 0.064% for the testing data set, with a maximum achieved error of 
0.8% and 0.3% for the training and respectively the testing data sets. Figure 20 presents the 
error distribution for training and testing problem geometry data sets. 

 
Fig. 20. Percentege error distribution for Real Part NN1. 

For the NN used to evaluate the imaginary part of the self-impedances, the optimal NN1 
architecture is a feed forward NN with two hidden layers: 20 neurons on the first hidden 
layer and 20 neurons in the second hidden layer. The average percentage error is 0.14% for 
the training data set and respectively 0.129% for the testing data set, with a maximum 
achieved percentage error of 5.24% and 0.85% for the training and respectively the testing 
data sets. Figure 21 presents the percentage error distribution for training and testing 
problem geometry data sets. 

 
Fig. 21. Error distribution for Imaginary Part NN1. 

In case of NN used to evaluate the real part of the mutual impedances between EPL 
conductors (phase wires and sky wires), optimal NN3 architecture is a feed forward NN 
with two hidden layers: 20 neurons on the first hidden layer and 20 neurons on the second 
hidden layer. The average error is 0.014% for the training data set and respectively 0.034% 
for the testing data set, with a maximum achieved error of 3.12% and 0.14% for the training 
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and respectively the testing data sets. Figure 22 presents the error distribution for training 
and testing problem geometry data sets. 

 
Fig. 22. Error distribution for Real Part NN3 

For the NN used to evaluate the imaginary part of the mutual impedances between EPL 
conductors (phase wires and sky wires) optimal NN3 architecture is a feed forward NN 
with two hidden layers: 30 neurons on the first hidden layer and 20 neurons in the second 
hidden layer. The average error is 0.073% for the training data set and respectively 0.097% 
for the testing data set, with a maximum achieved error of 2.98% and 0.46% for the training 
and respectively the testing data sets. Figure 23 presents the error distribution for training 
and testing problem geometry data sets. 

Unfortunately in case on the NN used to evaluate the real part of the mutual impedances 
between MP and other conductors, none of the tested NN architectures provided acceptable 
results. This was caused by the fact that the real part of mutual impedances between MP 
and other conductors varies in a very large range from 1E-11 to 1E-6.  

 
Fig. 23. Error distribution for Imaginary Part NN3. 

After a complete analysis of the real and imaginary part of the mutual impedance between 
MP and other conductors another approach was used; two NN were implemented to 
evaluate the amplitude and argument of the mutual impedances, instead of the impedance 
real and imaginary part.  

In case of NN used to evaluate the amplitude of the mutual impedances between MP and 
other conductors the optimal NN2 architecture it was identified as a feed forward NN with 
two hidden layers: 30 neurons on the first hidden layer and 25 neurons in the second hidden 
layer. The average error is 0.066% for the training data set and respectively 0.087% for the 
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testing data set, with a maximum achieved error of 17.95% and 0.43% for the training and 
respectively the testing data sets. Figure 24 presents the error distribution for training and 
testing problem geometry data sets. 

 
Fig. 24. Error distribution for Amplitude NN2. 

For the NN used to evaluate the argument of the mutual impedances between MP and the 
other conductors the optimal NN2 architecture is a feed forward NN with two hidden 
layers: 20 neurons on the first hidden layer and 20 neurons in the second hidden layer. The 
average error is 0.249% for the training data set and respectively 0.313% for the testing data 
set, with a maximum achieved error of 6.71% and 1.43% for the training and respectively the 
testing data sets. Figure 25 presents the error distribution for training and testing problem 
geometry data sets. 

 
Fig. 25. Error distribution for Argument NN2. 

After identifying the optimal architecture of the neural networks these two NN were unified 
in a virtual black box in order to evaluate mutual impedances real and imaginary part. This 
unification procedure has as secondary unwanted result a change in the final complex 
mutual impedance evaluation error. Thus the average error become 0.665% for the training 
data set and respectively 0.407% for the testing data set, with a maximum achieved error of 
18.728% and 1.107% for the training and respectively the testing data sets. Figure 26 presents 
the global evaluation error distribution of complex mutual impedance for both training and 
testing problem geometry data sets. 

Also, the authors implemented and tested some layer recurrent neural network 
architectures. But unfortunately because of the large training database with very different 
output values the training process proved to be very time consuming (more than one hour) 
and the obtained results had the same accuracy  as the previous feed-forward networks.   
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Fig. 26. Global error distribution for NN2 optimal networks. 

4. Conclusions  

In this chapter the authors implement neural networks based artificial intelligence 
techniques in the study of electromagnetic interference problems (right of way EPL-MP) 
focusing on finding an easier method to identify the optimal solution.  

To solve the differential equation which describes the couplings between EPL and nearby 
MP usually a finite element method is used. This FEM calculation needs excessive 
computational time especially if different problem geometries of the same interference 
problem have to be studied. 

In order to reduce computation time the authors proposed two neural networks based 
artificial intelligence techniques to scale the results from a set of known problem geometries 
to any new problem geometry. The proposed neural networks were implemented for 
specific EPL-MP interference problems. The first one evaluates the magnetic vector potential 
in case of a phase to earth EPL fault and second one determines the self and mutual 
impedance matrix in case of a three vertical layer earth. 

The obtained results with the proposed neural network solutions proved themselves to be 
very accurate. Thus ad shown neural network based solution to study EPL-MP interference 
problems could be a very effective one, especially if we take into account the fact that the 
solutions provided are obtained instantaneously ones they are properly trained. 

Also it has been shown that even there is a special requirement to use recurrent neural 
networks, these NN architectures could provide more accurate solutions than the basic feed-
forward structures. 
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