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1. Introduction 

A protein domain is the basic unit of protein structure that can develop itself by using its own 

shapes and functions, and exists independently from the rest of the protein sequence. Protein 

domains can be seen as distinct functional or structural units of a protein. Protein domains 

provide one of the most valuable information for the prediction of protein structure, function, 

evolution, and design. Protein domain is detected from protein structure that is predicted from 

protein sequence of amino acid. The protein sequence may be contained of single-domain, 

two-domain, or multiple-domain with different or matching copies of protein domain. A 

protein domain comprises of protein domain boundary that relates to a part in amino acid 

residue where each residue in the protein chain is defined as domain position. Each shape of 

protein domain is a compacted and folded structure that is independently stable. It exists 

independently since the protein domain is a part of the protein sequence. The independent 

modular nature of protein domain means that it can often be found in proteins with the same 

domain content, but in different orders or in different proteins. The knowledge of protein 

domain boundaries is useful in analysing the different functions of protein sequences.  

Several methods have been developed to detect the protein domain, which can be categorized 
as follows: (1) Methods based on similarity and used multiple sequence alignments to 
represent domain boundaries, e.g. KemaDom (Lusheng et al., 2006) and Biozon (Nagaranjan 
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and Yona, 2004); (2) Methods that depend on known protein structure to identify the protein 
domain, e.g. AutoSCOP (Gewehr et al., 2007) and DOMpro (Cheng et al., 2006); (3) Methods 
that used dimensional structure to assume protein domain boundaries, e.g. GlobPlot (Linding 
et al., 2003), Mateo (Lexa and Valle, 2003), and Dompred-DPS (Marsden et al., 2002); (4) 
Methods that used comparative model such as Hidden Markov Models (HMM) to identify 
other member of protein domain family, e.g. HMMPfam (Bateman et al., 2004) and 
HMMSMART (Ponting et al., 1999); and (5) Methods that are solely based on protein sequence 
information, e.g. Armadillo (Dumontier et al., 2005) and SBASE (Kristian et al., 2005). 
However, these methods only produce good results in the case of single-domain proteins. 

There is no sign to indicate when a protein domain starts and ends. Protein sequence with 
closely related homologues can reveal conserved regions which are functionally important 
(Elhefnawi et al., 2010). Nowadays, it is not only important to detect a protein domain 
accurately from large numbers of protein sequences with unknown structure, but it is also 
essential to detect protein domain boundaries of the protein sequence (Chen et al., 2010). 
Protein domain boundaries are important to understand and analyse the different functions 
of protein (Paul et al., 2008) as shown in Fig. 1. The difficulty in protein domain prediction 
lies in the detection of the protein domain boundaries in the protein sequences, since the 
protein sequences alone contain the structural information but it is only available in small 
portion along the protein space. The secondary structure provides the sequence information 
used in protein domain prediction such as the similarity of protein chain, the potential of 
protein domain region and boundaries. Methods that used secondary structure information 
in protein domain prediction, such as DOMpro and KemaDom has shown improvement in 
predicting the protein domain compared to other protein domain predictors. 

 

Fig. 1. An example of constructing a new protein from different protein domain boundaries. 

Previously, Neural Network (NN) is used as a classifier to detect protein domain such as in 
the work of Armadillo, Biozon, Dompred-DPS, and DOMpro. Of late, Support Vector 
Machines (SVM) is perceived as a strong contender to NN in protein domain classification. 
Unlike NN, SVM is much less affected by the dimension of the input space and employs 
structural risk minimization rather than empirical risk minimization. SBASE (Kristian et al., 
2005) and KemaDom are examples that apply SVM in protein domain prediction. The 
results from these methods are more accurate compared to NN. 
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2. BRNN-SVM algorithm 

The BRNN-SVM begins with seeking the seed protein sequences using BLAST (Altschul et al., 

1997) in order to generate a dataset. The dataset is split into training and testing sets. Multiple-

alignment is performed using ClustalW (Larkin et al., 2007), where the alignments are 

represented as a protein sequence of alignment column that is associated to one position in the 

seed protein sequence. Bidirectional Recurrent Neural Network (BRNN) is used to generate 

secondary structure from alignment of protein sequence in order to highlight the signal of 

protein domain boundaries. The protein secondary structure is predicted into three types: 

alpha-helices, beta-sheet, and coil. The information of secondary structure are extracted using 

six measures (which are entropy, protein sequence termination, correlation, contact profile, 

physio-chemical properties, intron-exon information, and score of secondary structure) to 

increase the domain signal. This extracted information will be used for SVM input for the 

protein domain prediction. SVM processes the information and classify the protein domain 

into single-domain, two-domain, and multiple-domain. The BRNN-SVM is evaluated by 

comparing it with other existing methods either based on similarity and multiple sequence 

alignment (Biozon and KemaDOM), known protein structure (AutoSCOP and DOMpro), 

dimensional structure (GlobPlot, Mateo, and Dompred-DPS), comparative model (HMMPfam 

and HMMSMART), and sequence alone (Armadillo and SBASE). An analysis of the results has 

demonstrated that the BRNN-SVM shows outstanding performance on single-domain, two-

domain, and multiple-domain. The steps involved in BRNN-SVM can be simplified as follows: 

(1) Generate training and testing sets using BLAST; (2) Perform multiple sequence alignment 

using ClustalW; (3) Predict secondary structure by BRNN; (4) Extract information from protein 

secondary structure; (5) Classify the protein domain by SVM; and (6) Evaluate the 

performance using sensitivity and specificity, and accuracy.  

3. Secondary structure prediction by BRNN 

For each protein sequence, the secondary structure information is predicted based on an 

ensemble of BRNNs. The input for predicting secondary structure is a single protein sequence 

from a multiple sequence alignment. Then, BRNN derives protein sequence information from 

PSI-BLAST (Altschul et al., 1997) to include homology structure that is used in the protein 

secondary structure information prediction. Subsequently, the protein secondary structure 

information is divided into three classes: alpha-helices, beta-sheets, and coils.  

The BRNN is described in Fig. 2–3. This BRNN involves a set of i protein sequences as input 

iX  variable, a forward iF , and backward iB , a chain of hidden variables, and a set of iO  as 

an output variable. The relationship between these variables is implemented using feed-

forward NN. Three NNs oN , fN , and bN  are used to implement BRNN. The output iO  

(Chen and Chaudhari, 2007) is as follows: 

 ( , , )i o i i iO N X F B .   (1) 

The output iO  depends on input iX  at the position i, the forward iF  (Chen and Chaudhari, 

2007) is the hidden context in the vector n
iF   and the backward iB  (Chen and Chaudhari, 

2007) is the hidden context in the vector m
iB   where m n . To obtain the composite the 

iF  and iB , the BRNN equation is applied as follows: 
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 1( , )i f i iF N X F  ,  (2) 

 1( , )i b i iB N X B  ,  (3) 

where 1( , )f i iN X F   and 1( , )b i iN X B   are learnable non-linear state transition function. The 

boundary condition for iF  and iB  can be set to 0, for example 1 0i nF F    where n is length 

of the protein sequence being processed. 

The fN  and bN  are assigned to be a “tool” that can be shifted along the protein sequence. For 

the prediction class at the position i, the “tool” is shifted in the opposite direction starting from 

the N, and C terminus, up to position i. Then, the “tool” output at position i is combined with 

the input iX  to compute the output iO  using N . From the output iO , the membership 

probability of the residue at the position i is computed to predict the domain boundary. 

BRNN is used to predict protein secondary structure into alpha-helices, beta-sheet, or coils. 
The BRNN consists of an input layer, hidden layer, and output layer. The protein sequences 
are fed into the input layer. The protein secondary structure is encoded into the output layer 
as follows: 

(1, 0) = Alpha-Helices 
(0, 1) = Beta-Sheets 
(0, 0) = Coil 

The input layer (John et al., 2006) is defined as follows: 

 k ik i k
i

I W Y b  ,  (4) 

where ikW  is the sum of all the input to the unit, iY  is the connection strength, kb  is the bias 

from the protein sequence, i is the number of protein sequence, and k is the number of 

output from the protein sequence. The output layer (John et al., 2006) is defined as follows: 

 
1

1 k
k X

O
e




, (5) 

where X  is a real number between -8 and 8. This has been experimentally determined as 

the best range. k represents the number of outputs from the protein sequence.  

The alpha-helices measure is divided into two types: amphipathic helices and hydrophobic 
helices. To predict an amphipathic helices region, Helical Wheel Representation (HWR: 
Renaund and McConkey, 2005) is applied. The HWR predicts the residues from the solvent 
and side chains interaction of protein sequence with amphipathic helices. Then, the score of 

amphipathic helices and hydrophobic helices are merged to predict the alpha-helices region 
for the protein sequence. The beta-sheets are assigned using Kabsch and Sander’s program 
(Kabsch and Sander, 1983). The extension of beta-sheets is situated and connected to form 

theatre-backbone H-bonds according to the Pauling pairing rules (Pauling and Corey, 1951). 
When two H-bond is formed or surrounded by two H-bond in the sheet, this formation is 
defined as beta-sheet (E). If only one amino acid fulfils the criteria, the sheet will be called beta-
bridge (B). The residues that are neither alpha-helices nor beta-sheets are classified as coils. 
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Fig. 2. BRNN architecture with left (forward) and right (backward) context associated with 
two recurrent networks (“tool”). The left and right contexts are produced by two similar 
recurrent networks which intuitively can be thought in term of two “tools” that are shifted 
along the protein chain. 

 

Fig. 3. An example of secondary structure prediction using BRNN. 

4. Features extraction 

Features extraction in BRNN-SVM is important to obtain the protein domain information 
from the predicted secondary structure. The secondary structure information is used to 
compute the change of the protein sequence position that constitutes a part of the protein 
domain boundary. This information is believed to reflect the protein structural properties 
that have informative protein domain structure and is used to detect the protein domain 
boundaries. The information as shown in Fig. 4–9 is entropy, protein sequence 
termination, correlation, contact profile, physio-chemical properties and intron-exon 
information. 
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Fig. 4. An example of entropy calculation. 

The effective entropy measure takes into account the similarity of amino acids. An 
evolutionary pressure is used to calculate the evolutionary span (Nagaranjan and Yona, 
2004) defined as: 

 
1

2
( ) ( , )

( 1)

t

p q p

Span x s j k
t t  


   ,  (6) 

where ( , )s j k  is ( , )px qxs   . ()Span  is used to compare the sum of pairwise similarity of 

amino acids. The x is an alignment from the multiple sequence alignment and t is the 

number of protein sequences that has participated in x. px  and qx  represent the amino 

acids in position x. ( , )s j k  is the similarity score of amino acids where j and k refer to the 

scoring matrix BLOSUM50 (Henikoff and Henikoff, 1992). 

 

Fig. 5. An example of protein sequence termination calculation. 

In a multiple sequence alignment, the protein sequence termination is not necessarily 
displayed. The left and right protein sequence termination score is calculated for each 
protein sequence with an e-value that is larger than 0. The scores of protein sequence 
termination are then used to identify the strong signal of the protein domain boundary. Left 
and right protein sequence terminations score (Menachem and Chen, 2008) are defined as: 

 1 2log( ... ). . .seq_termination nT   ,  (7) 

where  n  is the e-value of the n protein sequence. 
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Fig. 6. An example of correlation calculation. 

Correlation is two random protein sequences that are positively correlated if high values of 
one are likely to be associated with high values of the other. Possible correlations range is 1 
or 0. A zero correlation indicates that there is no relationship between the sequences. A 
correlation of 1 indicates a perfect positive correlation, meaning that both sequence move in 
the same direction together. The correlation of amino acids with protein secondary structure 
information is used to predict the protein structure. It is also important to understand the 
force that causes the flexibility of a protein structure. Every protein sequence in a multiple 
sequence alignment contains information of structural flexibility. To find a position that is 
more flexible in a protein sequence, indel entropy (Zou et al., 2008) based on the distribution 
of protein sequence lengths is used: 

 ( ) logg p p

p

E     ,  (8) 

where p  is the various indel lengths seen at a position. 

 

Fig. 7. An example of contact profile calculation. 

The predicted contact profile of a protein sequence is obtained by getting the structural 
flexibility information. Then, the number of pairwise contact profile is counted for each 
protein sequence. The contact profile between residues in a protein sequence is predicted 
based on correlated mutations. Correlated mutations (Pazos et al., 1997) between two 
columns x and y are defined as: 
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2

1 1

( ( , ) ( ( , ) )1
( , ) .

t t
px qx x py qy y

m

X yp q

s s s s
Corr x y

t

   

  

     
   , (9) 

where px and qx  represent the amino acids in position x and the py  and qy  represent 

the amino acids in position y. The ( , )px qxs    and ( , )py qys   are the similarity score of 

amino acids and px , qx , py , and qy  refer to the scoring matrix BLOSUM50. The xs   

and ys   are the average similarity of amino acids in position x and y. The X  and y  are 

standard deviations and t is the number of protein sequences that are indicated in the 

columns.  

 

Fig. 8. An example of physio-chemical properties calculation. 

Physio-chemical properties are information that is used to predict protein domain 
boundaries. Hydrophobicity is used to display the distribution of protein sequence residue 
that in turn, used for the detection of physio-chemical properties. In BRNN-SVM, the score 
of hydrophobicity and molecular weight (Black and Mould, 1991) is used to predict physio-
chemical properties in protein sequence. The average hydropobicity and molecular weight 
for each measure of protein sequence is calculated to determine the physio-chemical 
properties that are affecting the protein domain boundary detection. 

 

Fig. 9. An example of intron-exon calculation. 
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The intron-exon data contains intron-exon structure at Deoxyribonucleic Acid (DNA) level 
that is related to protein domain boundaries in which folded protein domain boundaries 
exist independently. Each protein domain defines the intron-exon position. The intron-exon 
data is taken from the EID database (Saxonov et al., 2000). Then, each protein sequence is 
compared with the database and the gapless matching protein sequence is kept. The 
similarity of the protein sequence is calculated in order to define the exon boundary using 
an equation defined as the sequence termination. Finally, the exon termination score 
(Saxonov et al., 2000) is calculated as follows: 

 exon_termination 1 2log( ... ). . . nE    ,  (10) 

where n  is the e-value of the n protein sequence. After that, the average of measures score 

from features extraction’s phase is calculated in order to generate the features vector and 

used as input to SVM as follows: 

 
( _ _ )

,
Score of measures

n
    (11) 

where _ _Score of measures  is obtain from features extraction (entropy, protein sequence 

termination, correlation, contact profile, physio-chemical properties and intron-exon 
information) score and n refer to quantity of features extraction measurements where it 

could be seven. Fig. 10 has shown the example of features vector calculation. 

 

Fig. 10. An example of features vector calculation. 

5. Domain detection by SVM 

SVM is a machine learning technique based on statistical learning theory that trains multiple 
functions such as polynomial functions, radial basic functions and spines to form a single 
classifier. The SVM is applied to identify the protein domain boundaries position. The SVM 
works by: (1) Mapping the input vector into a feature space which is relevant to the kernel 
function; and (2) Seeking an optimized linear division from multiple n-separated 
hyperplane, where n is classes of protein sequence in the dataset. The input (Dong et al., 
2003) vector is defined as follows: 
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 { 1, 1}sl    ,  (12) 

where sI  is the input space with corresponding predefined labels (Dong et al., 2003): 

 ( 1,..., )i sy I i n  ,  (13) 

where +1 and -1 are used to stand, respectively, for the two classes. The SVM is trained with 
Radial Basic Function (RBF) kernel, a function that is often used in pattern recognition. The 

parameters of SVM training are 2 , the RBF kernel smoothing parameter and C, the 

learning variable to trade-off between under- and over-generalization. The RBF (Zou et al., 
2008) is defined as follows: 

 
2

2

|| ||
( , ) exp( )

2

i j
i j

r y y
K y y



 


 
 

,  (14) 

where iy


 is labels and jy


 is input vector. The input vector will be the centre of the RBF and 

  will determine the area of influence this input vector has over the feature space. A larger 

value of   will give a smoother decision surface and a more regular decision boundary since 

the RBF with large   will allow an input vector to have a strong influence over a larger area. 

The best pair of parameter of C and   is search via k-fold cross-validation scheme to safeguard 

unbiased tweaking. In this study, k = 10 is applied where the protein sequence is split into k 

subsets of approximately equal size portions. The best combinations of C and   obtained from 

the optimization process were used for training the final SVM classifier using the entire training 

set. The SVM classifier is subsequently used to predict the testing datasets. The SVM training 

detects the protein domain boundaries based on scores that corresponds to the domain 

information or different domain information. The SVM classified the protein domain into 

single-domain, two-domain, and multiple-domain. Various quantitative metrics were obtained 

to measure the effectiveness of the BRNN-SVM: true positives (TP) for the number of correctly 

classified protein domain; false positives (FP) for the number of incorrectly classified protein 

domain; true negatives (TN) for the number of correctly classified non protein domain; and 

false negatives (FN) for the number of incorrectly classified non protein domain. 

6.  Dataset and evaluation measure 

To test the BRNN-SVM, seed protein sequences obtained from the PDB database (Berman et 
al., 2000) are selected with their corresponding domain structure that exists in SCOP 
database (Andreeva et al., 2008) version 1.73. The SCOP 1.73 with 40% less identity in PDB 
contains 9,536 protein sequences. The protein sequences are reconstructed from which short 
protein sequences that are less than 40 amino acids are removed. Then, the protein 
sequences are searched from the NR database (Henikoff et al., 1999) using BLAST and 
protein sequences that have more than 20 hits are kept. Hence, the number of protein data 
retained is 6,242.  The dataset is divided into training and testing sets. Training set is used 
for optimizing the SVM parameters and for training the SVM classifier to predict unseen 
protein domain boundaries. Testing set is used for evaluating the performance of the SVM. 
The dataset are randomly split into training and testing sets in the same ratio which is 3,121 
protein sequences respectively. The process of generating the dataset is shown in Fig. 10. 
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Fig. 11. Dataset generation process. 

Based on the classification output of SVM, a series of statistical metrics were computed to 

measure the effectiveness of the BRNN-SVM. Sensitivity (SN: Zaki et al., 2006) and 
specificity (SP: Zaki et al., 2006), which indicates the ability of the prediction system to 
correctly classify the protein domain and not protein domain respectively; the SN and SP 

are defined as follows: 

 100
TP

SN
TP FN

 


,  (15) 

 100
TP

SP
TP FP

 


.  (16) 

To provide an indication of the overall performance of the system, we computed accuracy 

(AC: Zaki et al., 2006), for the percentage of the correctly predicted protein domain. The AC 

is defined as follows:  

 100
TP TN

AC
TP FN TN FP


 

  
.  (17) 

7. Computational results 

The BRNN-SVM is tested and compared its performance with other methods such as based 
on similarity and multiple sequence alignment (Biozon and KemaDOM), known protein 
structure (AutoSCOP and DOMpro), dimensional structure (GlobPlot, Mateo, and 
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Dompred-DPS), comparative model (HMMPfam and HMMSMART), and sequence alone 
(Armadillo and SBASE). The properties of protein sequence are derived from a protein 
secondary structure using several measures such as entropy, correlation, protein sequence 
termination, contact profile, physio-chemical properties and intron-exon boundaries 
measures. The protein secondary structure generates a strong signal of protein domain 
boundaries and is used to locate the protein domain regions using the following procedures. 
Firstly, the BRNN-SVM starts by searching large protein sequences and comparing them 
with the NR database to generate multiple sequence alignments. Secondly, the secondary 
structure is predicted for each protein sequence using BRNN. Thirdly, some of the scores 
from several measures are calculated as input in the SVM training. Finally, the results 
generated by SVM are evaluated. This evaluation provides a clear understanding of 
strengths and weaknesses of an algorithm that has been designed.  

The datasets obtained from SCOP 1.73 that have been defined in the previous section are 

used to test and evaluate the BRNN-SVM and other protein domain prediction methods. 

The results of the prediction accuracy compared with other protein domain prediction 

methods including sensitivity and specificity for single-domain, two-domain and multiple-

domain are presented in Table 1 and Fig. 11-14. It is easy to see that predicting two-domain 

or multiple-domain is more difficult than predicting single-domain. The results depict the 

higher sensitivity and specificity represent better achievement and the priority is given to 

sensitivity in order to determine the achievement of protein domain prediction since 

sensitivity measures the proportion of actual positives which are correctly identified for 

protein domain prediction. The BRNN-SVM achieved a higher sensitivity of 87% for single-

domain, 73% for the two-domain and 81% for the multiple-domain compared to other 

methods. The BRNN-SVM achieved a higher specificity of 76% for the two-domain and 79% 

for the multiple-domain compared to other methods. The BRNN-SVM increases of 83% for 

accuracy as compared to KemaDom method with 79% and SBase method with 80%. 

The properties of protein sequence have given a strong signal to assign protein boundaries 

because the protein secondary structure predicted is based on interaction between long-

range interactions of the amino acid. The use of protein secondary structure prediction 

based on BRNN involves informative communion between an input and an output 

sequence of variable length. The BRNN is based on the forward, backward and hidden 

Markov chains that transmit information in both directions along the sequence between the 

input and output. This shows that interaction exists in protein folding and plays an 

important role in the formation of protein secondary structure. The information does have 

an effect on the protein domain boundaries prediction. The BRNN-SVM relies on scores of 

measures to detect the protein domain region in order to classify a domain for the protein 

sequence.  

However, the prediction of specificity for a single-domain prediction is 79% which is 14% 

lower compared to the Biozon and 10% lower compared to Armadilo. The reason is that the 

BRNN-SVM classifies the protein sequence with no predicted protein domain boundaries as 

a single-domain. Therefore, the number of protein domain for the protein sequence is from 

the start until the end. The situation is aggravated when the protein sequence is too long. To 

solve this problem, the protein sequence can be split into protein sub-sequences before 

predicting the protein domain (Kalsum et al., 2009). 
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 Single-Domain Two-Domain 
Multiple-
Domain

 

Method SN SP SN SP SN SP AC 

BRNN-SVM 0.87 0.79 0.73 0.76 0.81 0.79 0.83 

Similarity and multiple 
sequence alignment

       

Biozon 0.27 0.93 0.33 0.23 0.21 0.35 0.38 

KemaDom 0.82 0.76 0.70 0.73 0.78 0.76 0.79 

Known protein 
structure 

       

AutoSCOP 0.80 0.65 0.62 0.57 0.73 0.72 0.69 

DOMpro 0.85 0.80 0.43 0.55 0.79 0.73 0.71 

Dimensional structure  

GlobPlot 0.78 0.74 0.32 0.58 0.59 0.67 0.69 

Mateo 0.57 0.74 0.21 0.25 0.47 0.53 0.45 

Dompred-DPS 0.55 0.73 0.52 0.43 0.67 0.66 0.62 

Comparative model  

HMMPfam 0.65 0.60 0.53 0.59 0.35 0.33 0.62 

HMMSmart 0.77 0.69 0.66 0.63 0.23 0.20 0.71 

Sequence alone  

SBASE 0.86 0.77 0.69 0.74 0.76 0.76 0.80 

Armadillo 0.31 0.89 0.29 0.21 0.17 0.35 0.27 

Table 1. Performance comparison between BRNN-SVM and other protein domain 
prediction methods. 

 

Fig. 12. Performance comparison between BRNN-SVM and other protein domain prediction 
methods on single-domain. The best sensitivity is BRNN-SVM with 87% and the best 
specificity is Armadillo with 89% since the BRNN-SVM classifies the protein sequence with 
no predicted protein domain boundaries as a single-domain. 
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Fig. 13. Performance comparison between BRNN-SVM and other protein domain prediction 

methods on two-domain. The best performance for two-domain prediction is BRNN-SVM 

with 73% for sensitivity and 76% for specificity since the secondary structure information has 

given a strong signal to assign protein boundaries because the protein secondary structure 

predicted is based on interaction between long-range interactions of the amino acid. 

 

Fig. 14. Performance comparison between BRNN-SVM and other protein domain prediction 

methods on multiple-domain. The best performance of multiple-domain prediction is BRNN-

SVM with 81% sensitivity and 79% specificity since the BRNN is a transaction between an 

input and an output sequence of variable length. This shows that interaction exists in protein 

folding and plays an important role in the formation of protein secondary structure. 
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Fig. 15. Performance comparison between BRNN-SVM and other protein domain prediction 

methods on accuracy. The best accuracy of protein domain prediction is BRNN-SVM with 

83% since the protein secondary structure is predicted using BRNN and the information of 

secondary structure is extracted from features extraction which increases the protein domain 

signal. 

8. Conclusion 

An algorithm named BRNN-SVM has been developed in order to solve the problem of 

weak domain signal. The algorithm begins with searching the seed protein sequences as 

dataset from SCOP 1.73. The dataset is split into training and testing sets. Then, multiple 

sequence alignment is performed prior to the prediction of protein secondary structure 

using BRNN. Several measures such as entropy, protein sequence termination, 

correlation, contact profile, physio-chemical properties and intron-exon data are used to 

increase the strength of domain signal from protein secondary structure. SVM classified 

the prediction into single-domain, two-domain and multiple-domain. Lastly, the results 

from SVM are evaluated in term of sensitivity and specificity. BRNN is based on forward, 

backward and hidden Markov chains that transmit information in both directions along 

the sequence between the input and output. Therefore, it increases accuracy of protein 

secondary prediction and well as providing strong domain signal from this protein 

secondary structure based on the generated measures. This is believed to be the reason 

why BRNN-SVM is a good method for protein domain predictors especially in two-

domain and multiple-domain 
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