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Controller Design for Nonlinear  

Dynamical Systems 

Hong Wei Ge and Guo Zhen Tan* 
College of Computer Science and Technology, Dalian University Of Technology, Dalian,  

China 

1. Introduction 

The design goal of a control system is to influence the behavior of dynamic systems to 

achieve some pre-determinate objectives. A control system is usually designed on the 

premise that an accurate knowledge of a given object and environment cannot be obtained 

in advance. It usually requires suitable methods to address the problems related to 

uncertain and highly complicated dynamic system identification. As a matter of fact, system 

identification is an important branch of research in the automatic control domain. However, 

the majority of methods for system identification and parameters' adjustment are based on 

linear analysis: therefore it is difficult to extend them to complex non-linear systems. 

Normally, a large amount of approximations and simplifications have to be performed and, 

unavoidably, they have a negative impact on the desired accuracy. Fortunately the 

characteristics of the Artificial Neural Network (ANN) approach, namely non-linear 

transformation and support to highly parallel operation, provide effective techniques for 

system identification and control, especially for non-linear systems [1-9]. The ANN 

approach has a high potential for identification and control applications mainly because: (1) 

it can approximate the nonlinear input-output mapping of a dynamic system [10]; (2) it 

enables to model the complex systems’ behavior and to achieve an accurate control through 

training, without a priori information about the structures or parameters of systems. Due to 

these characteristics, there has been a growing interest, in recent years, in the application of 

neural networks to dynamic system identification and control. 

“Depth” and “resolution ratio” are the main characteristics to measure the dynamic memory 
performance of neural networks [11]. “Depth” denotes how far information can be 
memorized; “resolution ratio” denotes how much information in input sequences of neural 
networks can be retained. The memory of time-delay units is of lower depth and higher 
resolution ratio, while most recurrent neural networks, such as Elman neural networks, are 
higher depth and lower resolution ratio. The popular neural networks have much defect on 
dynamic memory performance. This chapter proposed a novel time-delay recurrent 
network model which has far more “depth” and “resolution ratio” in memory for 
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identifying and controlling dynamic systems. The proposed identification and control 
schemes are examined by the numerical experiments for identifying and controlling some 
typical nonlinear systems. 

The rest of this chapter is organized as follows. Section 2 proposes a novel time-delay 
recurrent neural network (TDRNN) by introducing the time-delay and recurrent 
mechanism; moreover, a dynamic recurrent back propagation algorithm is developed 
according to the gradient descent method. Section 3 derives the optimal adaptive learning 
rates to guarantee the global convergence in the sense of discrete-type Lyapunov stability. 
Thereafter, the proposed identification and control schemes based on TDRNN models are 
examined by numerical experiments in Section 4. Finally, some conclusions are made in 
Section 5. 

2. Time-delay recurrent neural network (TDRNN) 

Figure 1 depicts the proposed time-delay recurrent neural network (TDRNN) by 

introducing the time-delay and recurrent mechanism. In the figure, 1Z denotes a one-step 
time delay, the notation “฀” represents the memory neurons in the input layer with self- 

feedback gain  (0 1)  , which improves the resolution ratio of the inputs. 
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Fig. 1. Architecture of the modified Elman network 

It is a type of recurrent neural network with different layers of neurons, namely: input 
nodes, hidden nodes, output nodes and, specific of the approach, context nodes. The input 
and output nodes interact with the outside environment, whereas the hidden and context 
nodes do not. The context nodes are used only to memorize previous activations of the 
output nodes. The feed-forward connections are modifiable, whereas the recurrent 
connections are fixed. More specifically, the proposed TDRNN possesses self-feedback links 
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with fixed coefficient   in the context nodes. Thus the output of the context nodes can be 

described by 

  ( ) ( 1) ( 1) ( 1,2, , )Cl Cl ly k y k y k l m      .  (1) 

where ( )Cly k  and ( )ly k  are, respectively, the outputs of the lth context unit and the lth 

output unit and   ( 0 1  ) is the self-feedback coefficient. If we assume that there are r 

nodes in the input layer, n nodes in the hidden layer, and m nodes in the output layer and 
context layers respectively, then the input u is an r dimensional vector, the output x of the 

hidden layer is n dimensional vector, the output y of the output layer and the output Cy  of 

the context nodes are m dimensional vectors, and the weights 1W , 2W and 3W  are n r, 

m n and mm dimensional matrices, respectively. 

The mathematical model of the proposed TDRNN can be described as follows. 

 2 3( ) ( ( ) ( ))Cy k g W x k W y k  ,  (2) 

 ( ) ( 1) ( 1)C Cy k y k y k    , (3) 

   1( ) ( ( ))x k f W z k ,   (4) 

 
1

( ) ( ) ( ) ( 1)
i

z k u k u k i z k


 


     . (5) 

where 0 , , 1,    1,   (0) 0z  , and  is the step number of time delay. ( )f x  is 

often taken as the sigmoidal function 

 
1

( )
1 x

f x
e




.  (6) 

and ( )g x  is often taken as a linear function, that is  

 2 3( ) ( ) ( )Cy k W x k W y k   .  (7) 

Taking expansion for ( 1)z k  , ( 2)z k  ,…, (1)z by using Eq.(5), then we have 

 
0 1

( ) ( ) ( ) (0)
k

i k

i i

z k u k i u k i u
 

  


 
       .  (8) 

From Eq.(8) it can be seen that the memory neurons in the input layer include all the 

previous input information and the context nodes memorize previous activations of the 

output nodes, so the proposed TDRNN model has far higher memory depth than the 

popular neural networks. Furthermore, the neurons in the input layer can memory 

accurately the inputs from time k   to time k , and this is quite different from the memory 

performance of popular recurrent neural networks. If the delay step  is moderate large, the 

TDRNN possesses higher memory resolution ratio. 
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Let the kth desired output of the system be ( )dy k . We can then define the error as 

 
1

( ( ) ( )) ( ( ) ( ))
2

T
d dE y k y k y k y k   .  (9) 

Differentiating E with respect to 3W , 2W  and 1W  respectively, according to the gradient 

descent method, we obtain the following equations 

  3 0
3 , ( ) ( 1,2, , ; 1,2, , )il i C lw y k i m l m      ,  (10) 

 ,2 0 3
2 2

( )
( ( ) ) ( 1,2, , ; 1,2, , )C i

ij i j ii
ij

y k
w x k w i m j n

w
 


    


  ,  (11) 

 1 0 2
1

1

( ) ( ) ( 1,2, , ; 1,2, , )
n

jq t tj j q
t

w w f z k j n q r 


       . (12) 

which form the learning algorithm for the proposed TDRNN, where 1 , 2  and 3  are 

learning steps of 1W , 2W and 3W , respectively, and 

 0
,( ( ) ( )) ( )i d i i iy k y k g    ,   (13) 

 , ,

2 2 2

( ) ( 1) ( 1)C i C i i

ij ij ij

y k y k y k

w w w


    
 

  
. (14) 

If ( )g x  is taken as a linear function, then ( ) 1ig   . Clearly, Eqs. (11) and (14) possess 

recurrent characteristics. 

3. Convergence of proposed time-delay recurrent neural network 

In Section 2, we have proposed a TDRNN model and derived its dynamic recurrent back 
propagation algorithm according to the gradient descent method. But the learning rates in the 
update rules have a direct effect on the stability of dynamic systems. More specifically, a large 
learning rate can make the modification of weights over large in each update step, and this will 
induce non-stability and non-convergence. On the other hand, a small learning rate will induce 
a lower learning efficiency. In order to train neural networks more efficiently, we propose three 
criterions of selecting proper learning rates for the dynamic recurrent back propagation 
algorithm based on the discrete-type Lyapunov stability analysis. The following theorems give 

sufficient conditions for the convergence of the proposed TDRNN when the functions ( )f   and 

( )g  in Eqs. (4) and (2) are taken as sigmoidal function and linear function respectively. 

Suppose that the modification of the weights of the TDRNN is determined by Eqs. (10-14). 
For the convergence of the TDRNN we have the following theorems. 

Theorem 1. The stable convergence of the update rule (12) on 1W  is guaranteed if the 

learning rate 1( )k  satisfies that 
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1

2

8
0 ( )

max ( ) max( ( ))k ij
k ij

k

nr z k W k

  . (15) 

Proof. Define the Lyapunov energy function as follows. 

 2

1

1
( ) ( )

2

m

i
i

E k e k


  .  (16) 

Where 

 ,( ) ( ) ( )i d i ie k y k y k  .  (17) 

And consequently, we can obtain the modification of the Lyapunov energy function 

 2 2

1

1
( ) ( 1) ( ) ( 1) ( )

2

m

i i
i

E k E k E k e k e k


         .  (18) 

Then the error during the learning process can be expressed as 

 1 1
1 1

1 1 1 1

( )( )
( 1) ( ) ( )

n r n r
ii

i i jq i jq
j q j qjq jq

y ke k
e k e k W e k W

W W   


      

 
  . (19) 

Furthermore, the modification of weights associated with the input and hidden layers is 

 1
1 11 1

( )( )
( ) ( ) ( ) ( ) ( ) ii

jq i i
jq jq

y ke k
W k k e k k e k

W W
 


   

 
.  (20) 

Hence, from Eqs.(18-20) we obtain 

 

2

2
1 1 1

1

22
2

1 1
1

2 1

1

( ) ( )1
( ) ( ) 1 ( ) 1

2

( )1
( ) 1 ( ) 1

2

( ) ( )

Tm
i i

i
i

m
i

i
i

m

i i
i

y k y k
E k e k k

W W

y k
e k k

W

e k k













                       
      
     

 







  (21) 

Where 

 

22
1

1 1

2 2

1 11 1

( )1
( ) 1 1 ( )

2

( ) ( )1
( ) 2 ( )

2

i
i

i i

y k
k k

W

y k y k
k k

W W

 

 

      
     

  
  
   

.    (22) 
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1W  represents an n r  dimensional vector and   denotes the Euclidean norm. 

Notice that the activation function of the hidden neurons in the TDRNN is the sigmoidal 

type, we have 0 ( ) 1 / 4f x  . Thus, 

 

2 ' 2
1

( ) 1
( ) ( ) ( ) max ( ) max( ( ))

4

( 1,2, , ; 1,2, , ; 1,2, , )

i
ij j q q ij

q ij
jq

y k
W k f z k z k W k

W

i m j n q r


  



    

. (23) 

 

According to the definition of the Euclidean norm we have 

 
2

1

( )
max ( ) max( ( ))

4
q ij

q ij

y k nr
z k W k




W
. (24) 

Therefore, while 1
2

8
0 ( )

max ( ) max( ( ))q ij
q ij

k

nr z k W k

  , we have 1( ) 0i k  , then from 

Eq.(21) we obtain ( ) 0E k  . According to the Lyapunov stability theory, this shows that 

the training error will converges to zero as t  . This completes the proof. 

Theorem 2. The stable convergence of the update rule (11) on 2W  is guaranteed if the 

learning rate 2( )k  satisfies that 

 2

2
0 ( )k

n
  . (25) 

Proof. Similarly, the error during the learning process can be expressed as 

 
2 2

2 2
1 1

( )( )
( 1) ( ) ( )

n n
ii

i i ij i ij
j jij ij

y ke k
e k e k W e k W

W W 


      

 
  .  (26) 

Therefore, 

 

2

2
2 2 2

1

22

2
2 2

1

2 2

1

( ) ( )1
( ) ( ) 1 ( ) 1

2

( )1
( ) 1 ( ) 1

2

( ) ( )

T
m

i i
i

i i i

m
i

i
i i

m

i i
i

y k y k
E k e k k

W W

y k
e k k

W

e k k













                          
           

 







.  (27) 
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Where 

 

22

2
2 2

( )1
( ) 1 1 ( )

2
i

i
i

y k
k k

W
 

           

. (28) 

Notice that the activation function of the hidden neurons in the TDRNN is the sigmoidal 

type, and neglect the dependence relation between ( )Cy k  and the weights 2
ijw , we obtain 

 0
2

( )i j
ij

E
x k

w


 


. (29) 

Hence, 

 
2

( )
( ) 1 ( 1,2, , ; 1,2, , )i

j
ij

y k
x k i m j n

W


   


  . (30) 

According to the definition of the Euclidean norm we have 

 
2

( )i

i

y k
n

W





.  (31) 

Therefore, while 2

2
0 ( )k

n
  , we have 2( ) 0i k  , then from Eq.(27) we obtain ( ) 0E k  . 

According to the Lyapunov stability theory, this shows that the training error will converges 
to zero as t  . This completes the proof. 

Theorem 3. The stable convergence of the update rule (10) on 3W  is guaranteed if the 

learning rate 3( )k  satisfies that 

 3 2

,

2
0 ( )

max( ( ))C l
l

k

m y k

  .   (32) 

Proof. Similarly, as the above proof, we have 

 

2

2
3 3 3

1

22
2

3 3
1

2 3

1

( ) ( )1
( ) ( ) 1 ( ) 1

2

( )1
( ) 1 ( ) 1

2

( ) ( )

T
m

i i
i

i

m
i

i
i

m

i i
i

y k y k
E k e k k

W W

y k
e k k

W

e k k













                          
      
     

 







.   (33) 
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Where 

 

22
3

3 3

( )1
( ) 1 1 ( )

2
i

i

y k
k k

W
 

      
     

.  (34) 

Furthermore, according to the learning algorithm we have 

 , , ,3

( )
( ) ( ) max( ( ))

( 1,2, , ; 1,2, , ; 1,2, , )

s
is C h is C l is C l

l
il

y k
y k y k y k

W

i m s m l m

  


  


    
. (35) 

Where 

 
1

0is

i s

i s



  

.    (36) 

According to the definition of the Euclidean norm we have 

 ,3

( )
max( ( ))C l

l

y k
m y k

W





. (37) 

Therefore, from Eq.(34), we have 3( ) 0i k  , while 3 2

,

2
0 ( )

max( ( ))C l
l

k

m y k

  . Then from 

Eq.(33) we obtain ( ) 0E k  . According to the Lyapunov stability theory, this shows that the 

training error will converges to zero as t  . This completes the proof. 

4. Numerical results and discussion 

The performance of the proposed time-delay recurrent neural network for identifying and 
controlling dynamic systems is examined by some typical test problems. We provide four 
examples to illustrate the effectiveness of the proposed model and algorithm. 

4.1 Nonlinear time-varying system identification 

We have carried out the identification for the following nonlinear time-varying system 
using the TDRNN model as an identifier. 

 3
2

( )
( 1) 0.78 ( ) ( )

1 0.68sin(0.0005 ) ( )

y k
y k u k v k

k y k
   


. (38) 

Where ( )v k  is Gauss white noise with zero mean and constant variance 0.1. The input of 

system is taken as ( ) sin(0.01 )u k k . 

To evaluate the performance of the proposed algorithm, the numerical results are compared 
with those obtained by using Elman neural network (ENN). The Elman network is a typical 
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recurrent network proposed by Elman [12]. Some parameters on the TDRNN in our 
experiments are taken as follows. The number of hidden nodes is taken as 6, the weights are 

initialized in the interval [-2, 2] randomly, besides,  ,  and  are set as 0.4, 0.6, 0.4 

respectively. The number of hidden nodes in the ENN is also taken as 6. 

Figure 2 shows the identification result, where the “Actual curve” is the real output curve of 
the dynamic system, represented by the solid line; the “Elman curve” is the output curve 
identified using the ENN model, and represented by the dash line; the “TDRNN curve” is 
the output curve identified by the proposed TDRNN model, and represented by the dash 
dot line. Figure 3 shows the identification error curves obtained with the TDRNN and ENN 
respectively, in which the error is the absolute value of the difference between identification 
result and the actual output. From the two figures it can be seen that the proposed method is 
superior to the ENN method. These results demonstrate the power and potential of the 
proposed TDRNN model for identifying nonlinear systems. 
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Fig. 2. Identification curves with different methods 
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Fig. 3. Comparison of error curves obtained by different methods 

4.2 Bilinear DGP system control 

In this section, we control the following bilinear DGP system using the TDRNN model as a 
controller. 

 ( ) 0.5 0.4 ( 1) 0.4 ( 1) ( 1) ( )z t z t z t u t u t       . (39) 

The system output at an arbitrary time is influenced by all the past information. The control 
reference curves are respectively taken as: 

1. Line type: 

 ( ) 1.0z t  ;  (40) 

2. Quadrate wave: 

 
0.0 (2 5 (2 1) 5, ( 0,1,2, ))

( )
1.0 ((2 1) 5 2 5, ( 1,2,3, ))

k t k k
z t

k t k k

     
       




  (41) 

The parameters on the TDRNN in the experiments are taken as follows. The number of 
hidden nodes is taken as 6, the weights are initialized in the interval [-2, 2] randomly, 

besides,  ,  and  are set as 0.3, 0.6, 0.4 respectively. Figures 4 and 5 show the control 

results. Figure 4 shows the control curve using the proposed TDRNN model when the 
control reference is taken as a line type. Figure 5 shows the control curve when the reference 
is taken as a quadrate wave type. From these results it can be seen that the proposed control 
model and algorithm possess a satisfactory control precision. 
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Fig. 4. Control curves with line type reference 
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Fig. 5. Control curves with quadrate wave reference 

4.3 Inverted pendulum control 

The inverted pendulum system is one of the classical examples used in many experiments 
dealing with classical as well as modern control, and it is often used to test the effectiveness 
of different controlling schemes [13-16]. So in this chapter, to examine the effectiveness of 
the proposed TDRNN model, we investigate the application of the TDRNN to the control of 
inverted pendulums. 

The inverted pendulum system used here is shown in Fig.6, which is formed from a cart, a 
pendulum and a rail for defining position of cart. The Pendulum is hinged on the center of 
the top surface of the cart and can rotate around the pivot in the same vertical plane with the 
rail. The cart can move right or left on the rail freely. 
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Fig. 6. Schematic diagram of inverted pendulum system 

The dynamic equation of the inverted pendulum system can be expressed as the following 
two nonlinear differential equations. 

 

2 1

2
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4 cos
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m M
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 
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2( sin cos ) sgn( )cF ml x

x
m M

      



   .  (43) 

Where the parameters, M and m are respectively the mass of the cart and the mass of the 

pendulum in unit (kg), 29.81g m s  is the gravity acceleration, l  is the half length of the 

pendulum in unit (m), F  is the control force in the unit (N) applied horizontally to the 

cart, cu  is the friction coefficient between the cart and the rail, pu  is the friction 

coefficient between the pendulum pole and the cart. The variables , ,  represent the 

angle between the pendulum and upright position, the angular velocity and the angular 
acceleration of the pendulum, respectively. Moreover, given that clockwise direction is 

positive. The variables x , x , x  denote the displacement of the cart from the rail origin, 

its velocity, its acceleration, and right direction is positive. 

We use the variables   and x  to control inverted pendulum system. The control goal is to 

make   approach to zero by adjusting F, with the constraint condition that x  is in a given 

interval.  The control block diagram of the inverted pendulum system is shown in Figure 7. 
The TDRNN controller adopts variables   and x  as two input items. 

www.intechopen.com



 
Recurrent Neural Network-Based Adaptive Controller Design for Nonlinear Dynamical Systems 

 

127 

Inverted
pendulum

Z-1

Z-1
1







1
W

2W

3
W

F



x



x

 

Fig. 7. Control block diagram of inverted pendulum system 

In the numerical experiments, the motion of the inverted pendulum system is simulated by 
numerical integral. The parameter setting is listed in the Table 1. 

 

parameter g M m l μc μp φ   x  x  

value 9.81 1.0 0.1 0.6 0.002 0.00002 5° 0 0 0 

Table 1. Parameter Setting of Inverted Pendulum 

Besides, the number of hidden nodes is taken as 6, the weights are initialized in the interval 

[-3, 3] randomly, the parameters  ,  and  on the TDRNN are set as 0.3, 0.6, 0.4 

respectively. The control goals are to control the absolute value of   within 10º and make it 

approximate to zero as closely as possible, with the constraint condition of the absolute 
value of x within 3.0m. 
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Fig. 8. Control curve of the angle  
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Fig. 9. Control curve of the displacement x  

The control results are shown in Figures 8 and 9, and the sampling interval is taken as 

1T ms . Figures 8 and 9 respectively show the control curve of the angle  and the control 

curve of the displacement x . From Figure 8, it can be seen that the fluctuation degree of   

is large at the initial stage, as time goes on, the fluctuation degree becomes smaller and 
smaller, and it almost reduces to zero after 3 seconds. Figure 9 shows that the change trend 
of x  is similar to that of  except that it has a small slope. These results demonstrate the 

proposed control scheme based on the TDRNN can effectively perform the control for 
inverted pendulum system. 

4.4 Ultrasonic motor control 

In this section, a dynamic system of the ultrasonic motor (USM) is considered as an example 
of a highly nonlinear system. The simulation and control of the USM are important 
problems in the applications of the USM. According to the conventional control theory, an 
accurate mathematical model should be set up. But the USM has strongly nonlinear speed 
characteristics that vary with the driving conditions and its operational characteristics 
depend on many factors. Therefore, it is difficult to perform effective control to the USM 
using traditional methods based on mathematical models of systems. Our numerical 
experiments are performed using the model of TDRNN for the speed control of a 
longitudinal oscillation USM [17] shown in Figure 10.  
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Fig. 10. Schematic diagram of the motor 

Some parameters on the USM model are taken as: driving frequency 27.8 kHZ , amplitude 

of driving voltage 300 V , allowed output moment 2.5 kg cm , rotation speed 3.8 /m s . 

Besides, the number of hidden nodes of the TDRNN is taken as 5, the weights are initialized 

in the interval [-3, 3] randomly, the parameters  ,  and  on the TDRNN are taken as 0.4, 

0.6, 0.4 respectively. The input of the TDRNN is the system control error in the last time, and 

the output of the TDRNN, namely the control parameter of the USM is taken as the 

frequency of the driving voltage. 

Figure 11 shows the speed control curves of the USM using the three different control 

strategies when the control speed is taken as 3.6 /m s . In the figure the dotted line a 

represents the speed control curve based on the method presented by Senjyu et al.[18], the 
solid line b represents the speed control curve using the method presented by Shi et al.[19] 
and the solid line c represents the speed curve using the method proposed in this paper. 
Simulation results show the stable speed control curves and the fluctuation amplitudes 
obtained by using the three methods. The fluctuation degree is defined as 

 max min( ) / 100%aveV V V     (44) 

where max min,V V  and aveV  represent the maximum, minimum and average values of the 

speeds. From Figure 11 it can be seen that the fluctuation degrees when using the methods 
proposed by Senjyu and Shi are 5.7% and 1.9% respectively, whereas, it is just 1.1% when 
using the method in this paper. Figure 12 shows the speed control curves of the reference 
speeds vary as step types. From the figures it can be seen that this method possesses good 
control precision. 
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Fig. 11. Comparison of speed control curves using different schemes 
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Fig. 12. Speed control curve for step type 

5. Conclusions 

This chapter proposes a time-delay recurrent neural network (TDRNN) with better 
performance in memory than popular neural networks by employing the time-delay and 
recurrent mechanism. Subsequently, the dynamic recurrent back propagation algorithm for 
the TDRNN is developed according to the gradient descent method. Furthermore, to train 
neural networks more efficiently, we propose three criterions of selecting proper learning 
rates for the dynamic recurrent back propagation algorithm based on the discrete-type 
Lyapunov stability analysis. Besides, based on the TDRNN model, we have described, 
analyzed and discussed an identifier and an adaptive controller designed to identify and 
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control nonlinear systems. Our numerical experiments show that the TDRNN has good 
effectiveness in the identification and control for nonlinear systems. It indicates that the 
methods described in this chapter can provide effective approaches for nonlinear dynamic 
systems identification and control. 
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