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1. Introduction  

FRS (Fuzzy Rule Systems) and ANNs (Artificial Neural Networks) have gained much 
popularity due to their capabilities in modeling human knowledge and in learning from 
data, respectively. Fuzzy systems have the advantage of allowing users to incorporate 
available experts' knowledge directly in the fuzzy model [2]. Thus, decisions made by fuzzy 
systems are transparent to the user (i.e. the reasons behind the decisions made are clearly 
understood by tracing the decision and finding out which rules fired and contributed to it). 
However, there are many parameters whose values are arbitrary. These values have to be 
"guessed" by a fuzzy system designer, yet they largely influence the system behavior. Thus, 
a fuzzy system is as good as its programmer. 

On the other hand, ANNs have the advantage of being universal functions approximators, 
requiring only sample data points and no expert knowledge [3]. Despite their advantages, 
they are essentially black box models. This means that the reasons behind their decisions are 
concealed in the knowledge acquired in the trained weights. However, these usually have 
no clear logical interpretation. Thus, their reliability is questionable. 

To combine the advantages of both systems while overcoming their disadvantages, two 
approaches have been proposed in literature. The first is rule extraction from weights of 
trained ANNs [4]-[7]. However, the proposed approaches often yield some "un-plausible" 
rules, thus rule pruning and retraining is often required. For examples, some rules may be 
impossible i.e. their firing depends on conditions that can never occur in reality (impossible 
antecedents). For example, a rule dictating that a certain action is to be taken in case time is 
negative. The second approach is ANFIS [8], which attempts to cast the fuzzy system as an 
ANN with five layers. Although, only two of these layers are adaptable, this model is still 
more complicated to build and train than a conventional feed-forward ANN for two main 
reasons. First, the user’s expertise is required to choose appropriate consequent (output) 
membership functions. Second, the desired output needs to be known a priori. This may not 
be possible for several applications including design problems, inverse problems and high 
dimensional problems. For example, in a robot path tracking problem, the ANN is required 
to predict the correct control input. In such application, the desired performance is known 
but no real-solid rules exist, especially, if the robot is required to be self-adaptive. Similarly, 
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consider a car shape optimization problem. The ANN is required to estimate the shape 
parameters required to achieve certain air resistance during car motion. Constraints on the 
shape parameters exist; however, no clear rule database exists relating shape parameters to 
the desired performance. 

The present work proposes a new approach that combines the advantages of fuzzy systems 
and ANNs through a simple modification of ANN's activation calculations. The proposed 
approach yields weights that are readily interpretable as logical consistent fuzzy rules 
because it includes the “semantic” of both input and output variables in the 
learning/optimization process. 

The rest of the chapter is organized as follows. Section II describes the proposed framework. 
Section III demonstrates its effectiveness through a case study. Section IV shows how it to 
can be generalized to solve optimization problems. An illustrative example is given for this 
purpose. Finally, Section V concludes the chapter with a summary of the advantages of the 
proposed approach. 

2. The proposed approach 

Fig.1 shows a typical feed-forward ANN with a single hidden layer of sigmoid neurons. 
Conventionally, the output of such an ANN is given by: 

 
1 1

N Nh i
p

k jk hij ji
j= i=

o = w sig w x + b
 
 
 
 

    (1) 

where p
hij j jk h iiw ,b ,w ,x ,N ,N , ko  are the weight of the connection between the ith input to the 

jth hidden neuron, the bias of the jth hidden neuron, the weight of the connection between the 
jth hidden neuron and the kth  output neuron, the number of hidden neurons, the number of 
inputs (elements in each input pattern), the kth output, respectively. The number of output 
neurons is oN . 

 

Fig. 1. Architecture of a typical feed-forward ANN 
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It has been proved in [1] that the sigmoid response to a sum of inputs is equivalent to 
combining the sigmoid response to each input using the fuzzy logic operator "ior" 
(interactive or). The truth table of the “ior” operator is shown in table 1. The truth table can 
be readily generalized to an arbitrary number of inputs. Eq.(1) can, thus, be interpreted as 

the output of a fuzzy inference system, where the weight jkw is the action recommended by 

fuzzy rule j. However, this  jkw  does not contribute directly to the ANN output. Instead, its 

contribution to the output is weighted by the sigmoid term 
1

Ni
p

hij ji
i=

sig w x + b
 
 
 
 
 .  

The sigmoid term corresponds to the degree of firing of the rule, which judges to what 
extent rule ‘j’ should participate in the ANN final decision. Moreover, the inference is based 
on 'ior' rather than the product/‘and’ fuzzy operator used in ANFIS. It is clear from the 'ior' 
truth table that the ‘ior’ operator decides that a rule fully participate in the ANN final 
decision if all its inputs satisfy their corresponding constraints or if some of them does, 
while the others are neutral. On the other hand, it decides that the rule should not 
participate if one or some of the inputs do not satisfy their constraints, while the others are 
neutral. In the case that some of the inputs completely satisfy the constraints; while others 
completely violate them, the rule becomes neutral participating by half-weighted 
recommended action in the final ANN output. The mathematical expression for "ior" is as 
follows [1]: 

 
1

1 2

1 2 2

............

. .................

1 . 1 ........... 1 . ............

2 n

n

n 1 n

ior(a ,a , ,a ) =

a a a

( a ) ( a ) ( a )+ a a a  
 (2) 

In linguistic terms, an antecedent formed by "ior-ing" several conditions, is equivalent to 
replacing the conventional phrase:  "if A & B & --- then" with "So long as none of the 
conditions A, B, … are violated --- then".  Throughout the paper we will use the Mnemonic 
"SLANCV" as a shortcut for this phrase.  Thus we can say that Eq. 1 can be restated as a set 
of rules taking the following format: 

 / /

1,2,...

p
j i hij jk jki

i

SLANCV x > b N w then o = w

i = ,N


 

Despite the successful deployment of the “ior” based rule extraction in several applications 
([1], [6] and [7]), it has several disadvantages. For example, the weights and biases of a 
hidden neuron have no direct clear logical interpretation. This makes the incorporation of 
available knowledge difficult. Such knowledge is of great use in accelerating the ANN 
training procedure. Besides, leaving weights and biases values unconstrained often lead to 
some un-plausible rules (rules with impossible antecedent) that need pruning. Therefore, to 
overcome these disadvantages, our approach is to modify Eq.(1) as follows:   

 
1 1

N Nh i
pc c c

k jk hij iji
j= i=

o = w sig w (x b )
 
 
 
 

    (3) 
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where, c
hijw  are the weights joining input i to hidden neuron j, and c

jkw  are the weights 

joining hidden neuron j to output neuron k. 

The superscript 'c' denotes that these weights are constrained. In general, a constrained 

variable cPar that directly appears in Eq. (3) is related to its corresponding free optimization 

variable Par by the following transformation: 

  
  max

c Par
Par = Parmx Parmn  sig + Parmn

Parmx, Parmn

 
 
 
 

 (4) 

where, Parmx,Parmn are the maximum and minimum values of the parameter, respectively. 

Comparing Eqs. (1) and (3), it is clear that our approach introduces two simple, yet effective, 
modifications: 

 First, in Eq. (3), whij is taken as a common factor to the bracket containing the input and 
bias. Second, there is a bias corresponding to each input (bij). Using these two 
modifications, Eq.(3) has a simple direct fuzzy interpretation.  

   0 0

 1,2,...

p pc c c c
ij hij ij hiji i

c
jk jk i

SLANCV x > b ifw > ,x < b ifw < then

o = w ,where i = ,N
 

 

First Input Second Input IOR Output 

0 0 0 

0 0.5 0 

1 0.5 1 

0.5 0.5 0.5 

1 0 0.5 

0 1 0.5 

1 1 1 

0.5 1 1 

0.5 0 0 

Table 1. Truth Table of the IOR- Operator. 

This direct interpretation makes it easy for the designer to incorporate available 
knowledge through appropriate weight initialization; as will be made clear in the adopted 
case study.  

 The weights and biases included in Eq. (3) are constrained according to limits defined 
by the system designer. This ensures that the deduced rules are logically sound and 
consistent. 

Furthermore, often, the nature of a problem poses constraints on the ANN output. Two 
possible approaches; are possible; to satisfy this requirement:  

 Modifying Eq.(2) by replacing the sigmoid with a normalized sigmoid.  
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1

1

1 1

Ni
pc c

hij ijiNh i=c
k jk N Nh ij= pc c

hij iji
j= i=

sig w (x b )

o = w

sig w (x b )

 
 
 
 
 
 
 
 




 
 (5) 

 Adding a penalty term to the objective function used in the ANN training so as to 
impose a maximum limit to its output.  

In this research, we adopted the first approach. 

To apply the proposed approach to a particular design problem, there are essentially three 
phases 

1. Initialization and knowledge incorporation: In this phase, the designer defines the 
number of rules (hidden neurons) and chooses suitable weights and biases constraints.  

2. Training phase. 
3. Rule Analysis and Post-Rule-Analysis Processing: The weights are interpreted as fuzzy 

rules. A suitable method is used to analyse the rules and improve the system 
performance based on the insight gained from this rule analysis. 

 
 

 
 

Fig. 2. Parameters used to describe the path tracking problem. 
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3. Case study: Robot path tracking 

In this example, an ANN is adapted to assist a differential-wheel robot in tracking an 

arbitrary path.   Fig. 2 illustrates the geometry of the problem. The robot kinematic model, 

the need for a closed loop solution, the choice of a suitable representation for the ANN’s 

inputs and outputs as well as the initialization, training and interpretation of the weights of 

the obtained ANN, are discussed below. 

3.1 The robot kinematic model  

The kinematic model of the robot is described by the following equations:  

 

cos

sin

R

R

X = v θ

Y = v θ

θ = ω






   (6) 

Where  

R RX ,Y ,θ,ω  

represent the horizontal, vertical components of the robot linear velocity v, its orientation 

angle and its angular velocity, respectively. Once a suitable control algorithm determines 

andv ω  , it is straightforward to determine the corresponding νr , νl values by solving 

the following 2 simultaneous equations: 

 
2

r lv + v
v =   r lv vω=

l


 (7) 

where l is the distance between the right and left wheels to yield:   

 
2v 2v

2 2
r l

+ωl ωl
v = ,v =


 (8) 

It is clear from (7) that an average positive (negative) velocity indicates forward (reverse) 

motion along the robot current axis orientation. Similarly, it is clear from (8), that a positive 

(negative) difference between νr and νl indicates a rotate-left or counter-clockwise (rotate-

right or clockwise) action. In case both wheels speeds are equal in magnitude and opposite 

in sign, the robot rotates in-place. 

3.2 Open vs closed loop solutions of the path tracking problem 

Consider a path with known parametric representation     x t ,y t . In this case, the robot 

reference linear and angular velocities (denoted andref refv ω  ) can  be calculated based 

on the known desired performance. For the robot to follow the desired path closely, its 

velocity should be tangent to the path. Thus the reference velocities can be computed 

using: 
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   
 

2 2

1sin

ref

ref
ref

v = x t + y t

y td
w =

dt v

 
 
 
 

 

  (9) 

Applying the control inputs (  and ref refv ω ) (or equivalently (vr and vl)) to the robot would 

enable it; in the absence of noise and other types of inaccuracies; to follow the required path. 

This open loop design will be called the "direct forcing case".  

However, to assist the ANN in learning the concept of a path (not an instance of a path) as 

well as making it robust against disturbances, we need to find a closed-loop control law. 

This is not straightforward because the kinematics model is nonlinear. In what follows, our 

objective is to show how the proposed ANN-based framework can provide reliable closed-

loop control; of the form shown in Fig. (3); compared to the direct forcing case. In Fig. (3), 

the role of the Robot kinematics simulator is to predict the robot location at the current time 

step given its current control inputs. 

For the purpose of illustration, we will restrict our case study to the following family of 

paths: 

    30 1 and 1 1x t = bt; < b < y t = ct ; < c <   

where  't' is the time vector= [0 (start time):0.05(time step):1 (final time)]. 

The ANN is trained on randomly chosen 11 members of this family and tested on different 

11 members of the same family. To demonstrate the robustness of the proposed approach an 

additive disturbance (of uniform distribution) is added to both andv ω . The value of the 

disturbance can reach up to 200% of v value and 100% of ω  value. 

3.3 Choice of the ANN’s inputs and outputs 

Several possible input-output choices exist. The first has been reported in [11]. The time is 

the input and the speeds are the output. An alternative choice is to consider the coordinates 

(x, y) of each point on the path; as inputs; and the corresponding actions (speeds); as output. 

The third choice is to input the path as a whole as a single input vector and the 

corresponding sequence of actions (speeds) as a single output vector.  All these choices 

share two fundamental disadvantages. First, it is impossible to interpret the trained weights 

as fuzzy rules. Furthermore, the ANN does not learn the "concept" of path tracking in 

general. Instead, it learns to track a single path only. In addition, the first and second choices 

do not explicitly capture the relation between consecutive path points. To   overcome these 

limitations, we investigated different combinations of ANN inputs and outputs.  

Only the two input-output combinations, that produced the best results, are discussed: 

i. Case “A”:  

The inputs to the ANN are chosen to be:  
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Fig. 3. A typical closed loop Block diagram for the flow of information in the Robot Path 
Tracking Problem 

 the distance ‘ ρ ’ to the goal point,    2 2
G R G Rρ= X X + Y Y   

 the angle ‘ ’ that the robot needs to rotate to orient itself in the direction of the goal.  

Refering to Fig. (2),    is calculated using the following equations: 

1tan G R

G R

Y Yǃ =
X X

  
   

, = θ+ ǃ   

 the deviations between the actual and reference robot linear and angular velocities   

(vref  – vrob) and ( ref robω ω ) 

The outputs are the corrections (increase/ decrease) ( inc incv ,ω ) needed for   (v, ω ) to keep 

following the required path.   Fig. 4 shows the block diagram of this system. 

ii. Case “B” 

The inputs and outputs are as in case A, with the following two additional inputs: 

 the previous control inputs  (v, ω ). 

Fig. 5 shows the block diagram of this system. 
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Fig. 4. Block diagram of the system in case study case A 

3.4 Initialization and knowledge incorporation phase 

Knowledge of the range of each input and output variables helps in the proper initialization 

of both the weights and biases. Recall that iN  is the number of inputs, oN  is the number of 

outputs, hN  is the number of hidden neurons (which corresponds to the number of rules 

used by the ANN in decision making). Biases are stored in a matrix Bc of dimensions iN  x  

hN : Thus, each column of Bc corresponds to a certain rule. Each entry (row number, column 

number), in Bc, contains the threshold to which the corresponding input is compared in a 
particular rule (corresponding to that column). The weights connecting the inputs to the 

hidden neurons are stored in a matrix Whc of dimensions iN  x  hN . As before, each column 

corresponds to a certain rule. This time, however, the sign of the number in each entry (row 
number , column number), in Whc, controls the comparison operator with the corresponding 
threshold stored in Bc (negative corresponds to ”less than”, while positive corresponds to 
”greater than”). Thus, each column from Bc together with the corresponding column from 
Whc determine the antecedent of a 'SLANCV' rule. The weights connecting the hidden 

neurons to the output neurons are stored in a matrix Woc of dimensions hN  x  oN . The 

numbers in each row of Woc indicate the outputs (consequents) suggested by a certain rule. 
Such an interpretation of the weights/bias matrices as rules antecedents/ consequents helps 
in  selecting suitable initial values for the ANN's parameters as well as understanding its 
decisions after training. For example, at initialization, the values in each row of Bc should be 
constrained to lie within the range of possible values for this input. For instance, if the third 
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input is ρ , then the entries in the third row of Bc should all be positive. Similarly, if the first 

output is the velocity correction incv  then the first column of Woc can take both negative 

/positive small values to allow the ANN to increase or decrease the robot speed while 
avoiding instability. 

 

Fig. 5. Block diagram of the system in case study case B 

3.5 Training phase  

To train the ANN, the following objective function is minimized: 

 
1 1

1
N Kp i

p
i

p p= i=

objg = ρ
N
  (10) 

where ‘ p
iρ ’ is the distance between the desired location on the pth path and the 

corresponding robot's actual location at the ith time instant,  iK  is the number of points 

along the path to be tracked and pN  is the number of paths used in training. Since the 

objective function is not a closed form function (in the ANN weights and biases) and can 

only be computed through a simulator, a numerical optimization algorithm is used [10], 

[11], where gradients are computed using a numerical version of the Broyden–Fletcher–

Goldfarb–Shanno (BFGS)  optimization algorithm. The gradients are calculated numerically 

using the following formula: 
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2ε

i i

i

Objg Objg(Par + ε) Objg(Par ε)
=

Par

  


 (11) 

where ε is a very small number, typically 1110ε =   . iPar  is the ith element of the vector Par 

For case ‘A’, the number of adjustable parameters is 2* (4 (inputs) * 4 (hidden neurons/ 
rules)) + 4 (hidden neurons)* 2 (outputs), which equals 40 parameters. For case B, the 
number of adjustable parameters is 2* (6 (inputs) * 7 (hidden neurons/ rules)) + 7 (hidden 
neurons)* 2 (outputs), which equals 98 parameters . Figs. (6 and 7) show the results for cases 
'A' and 'B', respectively. 

It is clear that case 'B' is more robust to disturbance. However, both cases clearly outperform 
the open loop (direct forcing) case.  

The fact that case 'B' produced better results is to be expected. Certainly, feedback provides 
memory to the system and helps in accumulating knowledge, which is an essential aspect of 
learning.  We tried two types of feedback; direct feedback in which the ANN learns the link 

between its own outputs ( inc incv ,ω ) and the errors in performance and indirect feedback in 

which the ANN learns the link between a certain action (v,ω ) and the errors in performance. 

The second memory type produced better results. Appendix A compares these results obtained 
using our approach with those obtained using conventional ANN [1,6,7] and ANFIS [8]. 

 

Fig. 6. Results for case A. It is clear that closed loop ANN-based control is more robust to 
disturbances than open-loop direct forcing 
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Fig. 7. Results for case B. It is clear that closed loop ANN-based control is more robust to 

disturbances than open-loop direct forcing. It is evident that adding to the ANN inputs the 

control actions at the previous step improved the results compared to those of case A. 

3.6 Rule extraction, analysis and post-processing 

Following the guidelines given in section 3.4, rule extraction from the trained weights and 

biases becomes straightforward.  

Fig. (8) illustrates how the rules, for case 'A', have been extracted. The discovered rule-base 

is summarized as follows : 
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Fig. 8. An illustration of the rules extraction from weights and biases matrices.  

0.3354632, 0.0125876, 0.6606180, 0.0061404

0.9311723, 0.8552953

0.485575, 0.6095190, 0.7308372, 0.3436044

ref rob ref rob

inc inc

ref rob ref rob

SLANCV v v > ω ω > ρ > ǂ <

then increase v by v = increase ω by ω =

SLANCV v v < ω ω > ρ > ǂ >

then d

  

   

0.1034854 0.3097751

0.2589412, 0.8426717, 0.5563425, 0.2103250

0.4279759, 0.7131302

0.6266

inc inc

ref rob ref rob

inc inc

ref rob

ecrease v by v = increase ω by ω =

SLANCV v v > ω ω < ρ > ǂ <

then decrease v by v = decrease ω by ω =

SLANCV v v <


   

 
 040, 0.9027552, 0.6558773, 0.1211869

0.5549105, 0.5208952

ref rob

inc inc

ω ω < ρ > ǂ >

then increase v by v = decrease ω by ω =

  



 

Similarly, the rule-base for case 'B' is summarized as follows: 

1.1800783, 0.5797996, 0.3283071, 0.1895662,

1.2352848, 0.3088343

0.6156011 0.8038080

1.258573, 0.817993, 0.4339714,

ref rob ref rob

inc inc

ref rob r

SLANCV v > ω < v v > ω ω >

ρ > ǂ > then

increase v by v = increase ω by ω =

SLANCV v > ω > v v < ω

  



  0.0552364,

1.246724, 0.2514984

0.6117282, 0.4437878

0.2235206, 0.7800814, 0.7777185, 0.7120344,

1.5151515, 0.0003327

ef rob

inc inc

ref rob ref rob

ω >

ρ > ǂ > then

decrease v by v = increase ω by ω =

SLANCV v < ω > v v < ω ω <

ρ > ǂ < then

decr




   


0.4927100, 0.0680181

1.4049258, 0.3766352, 0.0756778, 0.7105109,

0.1169906, 0.2358675

0.2173556, 0.35925

inc inc

ref rob ref rob

inc inc

ease v by v = decrease ω by ω =

SLANCV v > ω < v v < ω ω <

ρ < ǂ < then

decrease v by v = decrease ω by ω =

 
   


  29

0.9930632, 0.8202830, 0.1180958, 0.6506539,

0.1156700, 0.2116636

0.3642978 0.8061992

ref rob ref rob

inc inc

SLANCV v < ω > v v > ω ω <

ρ > ǂ < then

increase v by v = decrease ω by ω =

   


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0.7807096, 0.4849204, 0.4796375, 0.5922044,

1.2921157, 0.2758564

0.3424317, 0.8207999

0.5131913, 0.2240559, 0.4493099,

ref rob ref rob

inc inc

ref rob

SLANCV v < > v v > ω ω >

ρ > ǂ > then

increase v by v = increase ω by ω =

SLANCV v < ω > v v < ω

 

   0.7691425,

1.0904348, 0.2174491

0.5255254, 0.8943484

ref rob

inc inc

ω >

ρ < ǂ > then

decrease v by v = increase ω by ω =





 

In order to improve system performance and remove any inconsistencies, the rules above must 
be analysed. The following rule analysis procedure is limited to case 'B'. This procedure is 
assisted by a plot of the DOF (Degree-Of-Firing) of each rule (output of sigmoid) versus time. 
Such plots help in visualizing which rules the ANN is applying at each time instant and 
judging the decision/ performance made at this particular time. In particular, it is highly 
useful to identify dominant rules  (rules having relatively high outputs) at the time a wrong 
decision is made.  Correction is then possible by retraining the ANN keeping all rules fixed 
except the faulty dominant one. For example,  as shown in Fig. 9, at the time the deviation 
from the desired path becomes maximum, rule 5 is dominant followed by rule 4. Accordingly, 
three different strategies, have been attempted, to retrain the ANN, to improve its 
performance. In all three strategies, all rules have been kept fixed except: 

- for the first strategy: rule 5 (5th 
 
 column of Whc ,5th column of Bc  and the 5th row of Woc), 

- for the second strategy: both the degrees of firing of rules 4 and 5 (4th and 5th  column of 
Whc ), and their then part (4th and 5th 

 
row of Woc), 

- for the third strategy: the degree of firing of rule 5 and its then part (5th 
 
 column of Whc  

and the 5th row of Woc), with the addition of a new rule (rule  8) whose SLANCV part is 
the same as that of rule 5 (8th  column of Bc is same as its 5th column) but whose DOF (8th 
column of Whc) and consequent part (or then part) (8th  row of Woc) are to be determined 
by the training algorithm. The idea is to insert a new rule that co-fires with the 
malfunctioning rule to provide some correcting action. For our case study, this last 
strategy gave us the best results. The results after retraining are shown in Fig. 10. 

 

Fig. 9. Preliminary results of case B before post-rule analysis processing. The dashed curves 
represent the  degree of firing of each rule with time. It is clear that rule 5 is the dominant 
rule at the time the deviation from the desired path became maximum. 
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Fig. 10. Results of case B after retraining with only the parameters corresponding to rules 5 
degree of firing and its “then” part allowed to vary in addition to adding a new rule 8 with 
the same SLANCV part as rule 5 to co-fire with it and to provide corrective action. It is clear 
that this retraining improved the results. 
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3.7 Discussion 

Although the rule analysis method presented, helped in improving the results, it still needs 

improvement. In fact, rule analysis is a rather complex task. Understanding the logic behind 

the rules (why each rule recommends a particular consequent given a certain antecedent) is 

not simple for the following reasons:  

1. Rules operate in parallel and collectively.  Each rule recommends a certain consequent 

depending on the context of the neighbouring rules. Collectively, the overall decision 

helps achieving the desired objective. 

2. According to the training algorithm, rules recommend certain consequents in order 

to minimize the desired objective function which is a function of the robot 

kinematics. 

3. Rules are derived through batch (off-line) training.  Therefore, the overall objective 

function is minimized over time and not at a particular instant (rules are derived 

based on a global point of view). Therefore, a rule may not sound reasonable to 

employ at a certain moment. This what makes it necessary to train an ANN over a 

certain family of curves. Different families of curves are expected to require different 

global rules. 

4. Rule analysis is a trial and error process. Its complexity is proportional to the 

dimensionality (number of independent variables). 

4. Directions for future research: Solving general optimization problems 

The proposed approach can be applied to general optimization problems and not just path-

tracking. From an abstract point of view, any optimization problem can be mapped to a 

goal-tracking problem in which: 

 The goal point is the desired performance or desired objective function value. 

 The input is the absolute difference between the objective function value at the current 

solution and the desired objective function value. 

 The output is the correction, to the current solution, recommended by the ANN.  This is 

fed-back as an input to the ANN at the next iteration. 

 Time evolution corresponds to iterations. 

Hence, over the different iterations the ANN is expected to suggest a sequence of corrections 

that helps in approaching the required objective function value.  

This approach to optimization is expected to be less prune to local minima trapping, 

provides better insight into the nature of the investigated problem and can easily deal with 

multi-objectives/ errors optimization. For example, in the robot path tracking 

problem, ref rob ref rob,ρ,v v ,ω ω   were  error measures that, ideally are required to be all 

zeros. In this case, the robot perfectly tracks the desired path and remains tangent to it at all 

times. This property (being tangent at all times) is desirable, from a practical point of view, 

because even if the robot path is close to the desired path but with too many frequent 

changes of orientation, wear out will occur to the robot parts and it will be questionable 

whether the robot can, practically, makes these moves).  
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4.1 Illustrative example: Minimizing the camel benchmark function 

The camel objective function is defined as follows 

   
4

2 2 2 21
1, 2 1 1 1 2 2 2 1 24 2.1 4 4 3 3, 2 2.

3
Sixh

x
f x x = ·x + ·x + x ·x + + ·x ·x ; x x

 
         

 
 

 

Fig. 11. Camel function objective function. 

The global minimum is        1, 2 1, 21.0316 0.0898,0.7126 0.0898, 0.7126f x x = ; x x = , .    

Fig. 11 shows a plot of the camel objective function. 

 

Fig. 12. Block diagram of the system used to find the global minimum of the camel objective 
Function. 
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To apply the proposed ANN-based approach to find the global minimum of this function,  the 
closed loop system in Fig. 12 has been adopted. The inputs to the ANN are the values of 

1 2andx x  at the previous iteration, the absolute difference between the desired value of the 

objective function at the current iteration and its current actual value. The outputs of the ANN 

are the recommended corrections to 1 2andx x  (increase or decrease). The ANN weights and 

biases were estimated numerically as before such that the ANN minimize the camel objective 
function. The desired value for the objective function at any iteration is chosen to be slightly 
less than its current value (For example, for decrratio=0.85, the desired objective function at a 
certain iteration =decrratio* the actual objective function value corresponding to the current 
solution). This idea is borrowed from [13], where it has been recommended to be adopted with 
any optimization method. The ANN has been trained, as before, using a numerical BFGS 
algorithm, where the objective function to be minimized is defined as :  

 FObjg = ρ  (12) 

where, Fρ  is the absolute difference between the desired objective function value and its actual 

value at the last iteration. The rules extracted from the trained ANN are as follows:  

   

1 2

1 1inc 2 2inc

1 2

1 1inc 2 2inc

0.6755704, 1.5209156, 0.0161157,

0.0668506 0.0203858

1.4023561, 0.4688876, 0.1058053,

0.0617143 0.0195689

SLANCV x > x > ρ >

decrease x by x = decrease x by x =

SLANCV x > x > ρ >

increase x by x = decrease x by x =

S

 



1 2

1 1inc 2 2inc

1 2

1 1inc 2 2inc

0.6147782, 0.1270187, 1.504679,

0.0301060 0.0128413

0.0459426, 0.3802873, 0.5840457,

0.0279751 0.0338863

LANCV x > x < ρ <

increase x by x = decrease x by x =

SLANCV x > x > ρ <

decrease x by x = decrease x by x =



 

 

Fig. 13 shows the results (the objective function value versus iteration number). Clearly, the 
ANN-based optimization technique found the global optimal (The initial solution was 

1 22.5, 2.5x = x = ). When using the BFGS technique to minimize the camel objective 

function, with the same learning rate, the algorithm completely diverged. For a lower learning 
rate, direct BFGS reached the global optimal. However, ANN-based optimization offers 
greater promise for higher dimensions/ multi-objective/ error problems and provides insight 
into the solution through the analysis of the derived rules. A key reason for the robustness of 
the ANN-based optimization over direct optimization is that it explores the objective function 
and derives problem-dependent heuristics (as opposed to meta-heuristics). 

An important direction for future investigation is the use of concepts borrowed from 
“robust optimization” to enhance the quality of the rules extracted from the ANN. Robust 
optimization concepts can be applied at two different levels: 

 At the action level, we can include noise during ANN training. The error in path-
tracking can be defined as a function of the difference between the average expected 
location and the desired location as well as the variance (or standard deviation of this 
error). This will make the ANN develop a decision strategy that is more prudent and is 
less likely to cause divergence from the desired path, in case of disturbance. 
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Fig. 13. The results of using the proposed approach to find the global minimum of the camel 
objective function. The top figure shows the degree of firing of the different rules versus 
iteration number. The bottom figure depicts the objective function value versus iteration 
number. The approach successfully converged to the global minimum. 
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 At the weights/biases level, robust optimization can be used to develop robust rules. 
Rules are robust when they are reachable from different weight initializations (i.e. they 
are not sensitive to a particular initialization) and lead to acceptable performance when 
subject to small perturbations.   

5. Conclusion 

We believe that merging symbolic AI (logic) with non-symbolic AI (ANNs) through our 
new proposed framework can achieve the following advantages: 

1. The resulting learning system is transparent to the user and its reliability can be easily 
assessed.  A suitable strategy has been outlined for improving its reliability based on 
the analysis of the extracted rules. 

2. The system is robust to noisy inputs and disturbances. 
3. The logic-based approach to optimization can be less prune to local minima trapping. 
4. The approach is applicable to a broad class of engineering problems where the 

corresponding correct output to a certain example input is not necessarily available (but 
a means of assessing the fitness of the output is available through simulation or 
practical measurements). 

We do not claim that the proposed approach can outperform existing approaches in all 
problems, however, we can certainly claim that we offered researchers, a framework truly 
worthy of investigation for complex optimization, control and design problems. The best 
approach will always remain problem-dependent which is the charm and challenge of 
engineering optimization. 
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7. Appendix A 

In this appendix, we apply the conventional ANN formulation ([1] ,[6] ,[7]) and ANFIS [8] to 
case 'B' of the adopted case study. It is noteworthy that strict application of the conventional 
ANN or ANFIS to this case study is not possible because the desired system output is unknown 
(it is not possible to evaluate the objective function except by using the robot simulator). 
Therefore, the numerical BFGS has been used, as before, in the training phase with the same 
objective function defined in Eq. (9). As said earlier, with the conventional ANN formulation 
the output of the ANN described in Eq. (1) can be interpreted as fuzzy rules of the form: 

 / /

1,2,...

p
j i hij jk jki

i

SLANCV x > b N w then o = w

i = ,N


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The fact that the antecedent of a rule depends on both the bias of the corresponding hidden 

neuron and the weights from inputs-to this hidden neuron makes it difficult the use of 

known inputs constraints in weights/biases initialization. Thus, we are forced to use small 

random weights and biases initially, train the ANN, extract the rules and then re-train in 

case some of the rules yield un-plausible antecedents. For our case study, 3 out of the 7 rules 

had un-plausible antecedents. For example, one of the rules stated: 

 

 

1.1959689, 0.1675315, 0.8878251, 0.1353403,

2.7918388, 0.2060677,

6.6637447, 5.8271221

ref rob ref rob

inc inc

SLANCV v < w > v v > ω ω >

ρ < ǂ <

decrease v by v = decrease ω by ω =

  

 
 

 

 

Clearly comparing ρ  to a negative threshold is not logical.  

Fig. 14 illustrates a typical ANFIS architecture for the case of a 2 inputs  1, 2x x  single 

output, 2 rules example. ijA  is the membership function of the ith input in the jth rule. The 

DOF of a rule is computed using the 'Product' operator, i.e. it is the product of the output of 

the membership functions of a certain rule (Layer 2). NORM units (Layer 3) divides the 

individual DOF of each rule by the sum of DOF of all rules to produce a normalized degree 

of firing jw . Layer 4 computes the consequent of each rule j for each output k, jkf  as a 

function of the inputs 
1

Ni

jk ijk jk
i

f = p + r

 . The overall system output is computed as a 

weighted sum of the different rules consequents (
1

Nh

jk jk
j=

f = w f , hN  is the number of rules 

which equals 2 in Fig. 14). Similarly, to be able to compare our approach to ANFIS [8], we 

use the same block diagram given in Fig. 5 but replacing the typical feed-forward ANN with 

an ANFIS.  The ANFIS formulation does not impose restrictions on membership function's 

choices. Therefore, sigmoid membership functions have been chosen, for the purpose of 

comparison with our approach. In this case, the membership function of the jth rule takes the 

form:  

  sig ij ij i ijA = a x c  

Our approach can be viewed as a modified ANFIS system with the 'Product' operator 

replaced by the 'ior' operator and with 0ijkp = . As indicated by the results (Fig. 15), these 

modifications enhance the performance considerably.  ANFIS training involves the 

estimation of the parameters ,ijk jkp r  for each rule contributing to the output as well as the 

membership functions parameters ij ija ,c  of each rule. The extracted rules after training are 

as follows: 
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It is clear from Fig. 15, that both the conventional ANN and ANFIS produce inferior results 
to those obtained using the proposed approach (refer to Fig. 7). Thus, the proposed 
modifications to conventional ANNs succeeded in producing an improved ANFIS system 
capable  of  outperforming both conventional ANNs and ANFIS for problems where the 
desired ANN output is not known a priori (like in the path tracking case study). 
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Fig. 14. Architecture of a typical ANFIS system for a 2 inputs single output example 
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Fig. 15. Shows the results for using conventional ANNs and ANFIS instead of the proposed 
formulation for  case B. By comparing these results with those in Fig. 7 , the superiority of 
the proposed approach-thanks to Allah- is clear. 
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