
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322412879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

A Framework for Bridging the Gap Between
Symbolic and Non-Symbolic AI

Gehan Abouelseoud1 and Amin Shoukry2

1Alexandria University
2Computer Science and Eng. Dept, Egypt-Japan University of Science and Technology

(EJUST), Alexandria,
Egypt

1. Introduction

FRS (Fuzzy Rule Systems) and ANNs (Artificial Neural Networks) have gained much
popularity due to their capabilities in modeling human knowledge and in learning from
data, respectively. Fuzzy systems have the advantage of allowing users to incorporate
available experts' knowledge directly in the fuzzy model [2]. Thus, decisions made by fuzzy
systems are transparent to the user (i.e. the reasons behind the decisions made are clearly
understood by tracing the decision and finding out which rules fired and contributed to it).
However, there are many parameters whose values are arbitrary. These values have to be
"guessed" by a fuzzy system designer, yet they largely influence the system behavior. Thus,
a fuzzy system is as good as its programmer.

On the other hand, ANNs have the advantage of being universal functions approximators,
requiring only sample data points and no expert knowledge [3]. Despite their advantages,
they are essentially black box models. This means that the reasons behind their decisions are
concealed in the knowledge acquired in the trained weights. However, these usually have
no clear logical interpretation. Thus, their reliability is questionable.

To combine the advantages of both systems while overcoming their disadvantages, two
approaches have been proposed in literature. The first is rule extraction from weights of
trained ANNs [4]-[7]. However, the proposed approaches often yield some "un-plausible"
rules, thus rule pruning and retraining is often required. For examples, some rules may be
impossible i.e. their firing depends on conditions that can never occur in reality (impossible
antecedents). For example, a rule dictating that a certain action is to be taken in case time is
negative. The second approach is ANFIS [8], which attempts to cast the fuzzy system as an
ANN with five layers. Although, only two of these layers are adaptable, this model is still
more complicated to build and train than a conventional feed-forward ANN for two main
reasons. First, the user’s expertise is required to choose appropriate consequent (output)
membership functions. Second, the desired output needs to be known a priori. This may not
be possible for several applications including design problems, inverse problems and high
dimensional problems. For example, in a robot path tracking problem, the ANN is required
to predict the correct control input. In such application, the desired performance is known
but no real-solid rules exist, especially, if the robot is required to be self-adaptive. Similarly,

www.intechopen.com

Recurrent Neural Networks and Soft Computing

24

consider a car shape optimization problem. The ANN is required to estimate the shape
parameters required to achieve certain air resistance during car motion. Constraints on the
shape parameters exist; however, no clear rule database exists relating shape parameters to
the desired performance.

The present work proposes a new approach that combines the advantages of fuzzy systems
and ANNs through a simple modification of ANN's activation calculations. The proposed
approach yields weights that are readily interpretable as logical consistent fuzzy rules
because it includes the “semantic” of both input and output variables in the
learning/optimization process.

The rest of the chapter is organized as follows. Section II describes the proposed framework.
Section III demonstrates its effectiveness through a case study. Section IV shows how it to
can be generalized to solve optimization problems. An illustrative example is given for this
purpose. Finally, Section V concludes the chapter with a summary of the advantages of the
proposed approach.

2. The proposed approach

Fig.1 shows a typical feed-forward ANN with a single hidden layer of sigmoid neurons.
Conventionally, the output of such an ANN is given by:

1 1

N Nh i
p

k jk hij ji
j= i=

o = w sig w x + b
 
 
 
 

  (1)

where p
hij j jk h iiw ,b ,w ,x ,N ,N , ko are the weight of the connection between the ith input to the

jth hidden neuron, the bias of the jth hidden neuron, the weight of the connection between the
jth hidden neuron and the kth output neuron, the number of hidden neurons, the number of
inputs (elements in each input pattern), the kth output, respectively. The number of output
neurons is oN .

Fig. 1. Architecture of a typical feed-forward ANN

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

25

It has been proved in [1] that the sigmoid response to a sum of inputs is equivalent to
combining the sigmoid response to each input using the fuzzy logic operator "ior"
(interactive or). The truth table of the “ior” operator is shown in table 1. The truth table can
be readily generalized to an arbitrary number of inputs. Eq.(1) can, thus, be interpreted as

the output of a fuzzy inference system, where the weight jkw is the action recommended by

fuzzy rule j. However, this jkw does not contribute directly to the ANN output. Instead, its

contribution to the output is weighted by the sigmoid term
1

Ni
p

hij ji
i=

sig w x + b
 
 
 
 
 .

The sigmoid term corresponds to the degree of firing of the rule, which judges to what
extent rule ‘j’ should participate in the ANN final decision. Moreover, the inference is based
on 'ior' rather than the product/‘and’ fuzzy operator used in ANFIS. It is clear from the 'ior'
truth table that the ‘ior’ operator decides that a rule fully participate in the ANN final
decision if all its inputs satisfy their corresponding constraints or if some of them does,
while the others are neutral. On the other hand, it decides that the rule should not
participate if one or some of the inputs do not satisfy their constraints, while the others are
neutral. In the case that some of the inputs completely satisfy the constraints; while others
completely violate them, the rule becomes neutral participating by half-weighted
recommended action in the final ANN output. The mathematical expression for "ior" is as
follows [1]:

1

1 2

1 2 2

............

.

1 . 1 1

2 n

n

n 1 n

ior(a ,a , ,a) =

a a a

(a) (a) (a)+ a a a  
 (2)

In linguistic terms, an antecedent formed by "ior-ing" several conditions, is equivalent to
replacing the conventional phrase: "if A & B & --- then" with "So long as none of the
conditions A, B, … are violated --- then". Throughout the paper we will use the Mnemonic
"SLANCV" as a shortcut for this phrase. Thus we can say that Eq. 1 can be restated as a set
of rules taking the following format:

 / /

1,2,...

p
j i hij jk jki

i

SLANCV x > b N w then o = w

i = ,N



Despite the successful deployment of the “ior” based rule extraction in several applications
([1], [6] and [7]), it has several disadvantages. For example, the weights and biases of a
hidden neuron have no direct clear logical interpretation. This makes the incorporation of
available knowledge difficult. Such knowledge is of great use in accelerating the ANN
training procedure. Besides, leaving weights and biases values unconstrained often lead to
some un-plausible rules (rules with impossible antecedent) that need pruning. Therefore, to
overcome these disadvantages, our approach is to modify Eq.(1) as follows:

1 1

N Nh i
pc c c

k jk hij iji
j= i=

o = w sig w (x b)
 
 
 
 

  (3)

www.intechopen.com

Recurrent Neural Networks and Soft Computing

26

where, c
hijw are the weights joining input i to hidden neuron j, and c

jkw are the weights

joining hidden neuron j to output neuron k.

The superscript 'c' denotes that these weights are constrained. In general, a constrained

variable cPar that directly appears in Eq. (3) is related to its corresponding free optimization

variable Par by the following transformation:

  
  max

c Par
Par = Parmx Parmn sig + Parmn

Parmx, Parmn

 
 
 
 

 (4)

where, Parmx,Parmn are the maximum and minimum values of the parameter, respectively.

Comparing Eqs. (1) and (3), it is clear that our approach introduces two simple, yet effective,
modifications:

 First, in Eq. (3), whij is taken as a common factor to the bracket containing the input and
bias. Second, there is a bias corresponding to each input (bij). Using these two
modifications, Eq.(3) has a simple direct fuzzy interpretation.

   0 0

 1,2,...

p pc c c c
ij hij ij hiji i

c
jk jk i

SLANCV x > b ifw > ,x < b ifw < then

o = w ,where i = ,N

First Input Second Input IOR Output

0 0 0

0 0.5 0

1 0.5 1

0.5 0.5 0.5

1 0 0.5

0 1 0.5

1 1 1

0.5 1 1

0.5 0 0

Table 1. Truth Table of the IOR- Operator.

This direct interpretation makes it easy for the designer to incorporate available
knowledge through appropriate weight initialization; as will be made clear in the adopted
case study.

 The weights and biases included in Eq. (3) are constrained according to limits defined
by the system designer. This ensures that the deduced rules are logically sound and
consistent.

Furthermore, often, the nature of a problem poses constraints on the ANN output. Two
possible approaches; are possible; to satisfy this requirement:

 Modifying Eq.(2) by replacing the sigmoid with a normalized sigmoid.

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

27

1

1

1 1

Ni
pc c

hij ijiNh i=c
k jk N Nh ij= pc c

hij iji
j= i=

sig w (x b)

o = w

sig w (x b)

 
 
 
 
 
 
 
 




 
 (5)

 Adding a penalty term to the objective function used in the ANN training so as to
impose a maximum limit to its output.

In this research, we adopted the first approach.

To apply the proposed approach to a particular design problem, there are essentially three
phases

1. Initialization and knowledge incorporation: In this phase, the designer defines the
number of rules (hidden neurons) and chooses suitable weights and biases constraints.

2. Training phase.
3. Rule Analysis and Post-Rule-Analysis Processing: The weights are interpreted as fuzzy

rules. A suitable method is used to analyse the rules and improve the system
performance based on the insight gained from this rule analysis.

Fig. 2. Parameters used to describe the path tracking problem.

www.intechopen.com

Recurrent Neural Networks and Soft Computing

28

3. Case study: Robot path tracking

In this example, an ANN is adapted to assist a differential-wheel robot in tracking an

arbitrary path. Fig. 2 illustrates the geometry of the problem. The robot kinematic model,

the need for a closed loop solution, the choice of a suitable representation for the ANN’s

inputs and outputs as well as the initialization, training and interpretation of the weights of

the obtained ANN, are discussed below.

3.1 The robot kinematic model

The kinematic model of the robot is described by the following equations:

cos

sin

R

R

X = v θ

Y = v θ

θ = ω






 (6)

Where

R RX ,Y ,θ,ω

represent the horizontal, vertical components of the robot linear velocity v, its orientation

angle and its angular velocity, respectively. Once a suitable control algorithm determines

andv ω , it is straightforward to determine the corresponding νr , νl values by solving

the following 2 simultaneous equations:

2

r lv + v
v = r lv vω=

l


 (7)

where l is the distance between the right and left wheels to yield:

2v 2v

2 2
r l

+ωl ωl
v = ,v =


 (8)

It is clear from (7) that an average positive (negative) velocity indicates forward (reverse)

motion along the robot current axis orientation. Similarly, it is clear from (8), that a positive

(negative) difference between νr and νl indicates a rotate-left or counter-clockwise (rotate-

right or clockwise) action. In case both wheels speeds are equal in magnitude and opposite

in sign, the robot rotates in-place.

3.2 Open vs closed loop solutions of the path tracking problem

Consider a path with known parametric representation     x t ,y t . In this case, the robot

reference linear and angular velocities (denoted andref refv ω) can be calculated based

on the known desired performance. For the robot to follow the desired path closely, its

velocity should be tangent to the path. Thus the reference velocities can be computed

using:

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

29

   
 

2 2

1sin

ref

ref
ref

v = x t + y t

y td
w =

dt v

 
 
 
 

 

 (9)

Applying the control inputs (and ref refv ω) (or equivalently (vr and vl)) to the robot would

enable it; in the absence of noise and other types of inaccuracies; to follow the required path.

This open loop design will be called the "direct forcing case".

However, to assist the ANN in learning the concept of a path (not an instance of a path) as

well as making it robust against disturbances, we need to find a closed-loop control law.

This is not straightforward because the kinematics model is nonlinear. In what follows, our

objective is to show how the proposed ANN-based framework can provide reliable closed-

loop control; of the form shown in Fig. (3); compared to the direct forcing case. In Fig. (3),

the role of the Robot kinematics simulator is to predict the robot location at the current time

step given its current control inputs.

For the purpose of illustration, we will restrict our case study to the following family of

paths:

    30 1 and 1 1x t = bt; < b < y t = ct ; < c <

where 't' is the time vector= [0 (start time):0.05(time step):1 (final time)].

The ANN is trained on randomly chosen 11 members of this family and tested on different

11 members of the same family. To demonstrate the robustness of the proposed approach an

additive disturbance (of uniform distribution) is added to both andv ω . The value of the

disturbance can reach up to 200% of v value and 100% of ω value.

3.3 Choice of the ANN’s inputs and outputs

Several possible input-output choices exist. The first has been reported in [11]. The time is

the input and the speeds are the output. An alternative choice is to consider the coordinates

(x, y) of each point on the path; as inputs; and the corresponding actions (speeds); as output.

The third choice is to input the path as a whole as a single input vector and the

corresponding sequence of actions (speeds) as a single output vector. All these choices

share two fundamental disadvantages. First, it is impossible to interpret the trained weights

as fuzzy rules. Furthermore, the ANN does not learn the "concept" of path tracking in

general. Instead, it learns to track a single path only. In addition, the first and second choices

do not explicitly capture the relation between consecutive path points. To overcome these

limitations, we investigated different combinations of ANN inputs and outputs.

Only the two input-output combinations, that produced the best results, are discussed:

i. Case “A”:

The inputs to the ANN are chosen to be:

www.intechopen.com

Recurrent Neural Networks and Soft Computing

30

Fig. 3. A typical closed loop Block diagram for the flow of information in the Robot Path
Tracking Problem

 the distance ‘ ρ ’ to the goal point,    2 2
G R G Rρ= X X + Y Y 

 the angle ‘ ’ that the robot needs to rotate to orient itself in the direction of the goal.

Refering to Fig. (2),  is calculated using the following equations:

1tan G R

G R

Y Yǃ =
X X

  
   

, = θ+ ǃ 

 the deviations between the actual and reference robot linear and angular velocities

(vref – vrob) and (ref robω ω)

The outputs are the corrections (increase/ decrease) (inc incv ,ω) needed for (v, ω) to keep

following the required path. Fig. 4 shows the block diagram of this system.

ii. Case “B”

The inputs and outputs are as in case A, with the following two additional inputs:

 the previous control inputs (v, ω).

Fig. 5 shows the block diagram of this system.

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

31

Fig. 4. Block diagram of the system in case study case A

3.4 Initialization and knowledge incorporation phase

Knowledge of the range of each input and output variables helps in the proper initialization

of both the weights and biases. Recall that iN is the number of inputs, oN is the number of

outputs, hN is the number of hidden neurons (which corresponds to the number of rules

used by the ANN in decision making). Biases are stored in a matrix Bc of dimensions iN x

hN : Thus, each column of Bc corresponds to a certain rule. Each entry (row number, column

number), in Bc, contains the threshold to which the corresponding input is compared in a
particular rule (corresponding to that column). The weights connecting the inputs to the

hidden neurons are stored in a matrix Whc of dimensions iN x hN . As before, each column

corresponds to a certain rule. This time, however, the sign of the number in each entry (row
number , column number), in Whc, controls the comparison operator with the corresponding
threshold stored in Bc (negative corresponds to ”less than”, while positive corresponds to
”greater than”). Thus, each column from Bc together with the corresponding column from
Whc determine the antecedent of a 'SLANCV' rule. The weights connecting the hidden

neurons to the output neurons are stored in a matrix Woc of dimensions hN x oN . The

numbers in each row of Woc indicate the outputs (consequents) suggested by a certain rule.
Such an interpretation of the weights/bias matrices as rules antecedents/ consequents helps
in selecting suitable initial values for the ANN's parameters as well as understanding its
decisions after training. For example, at initialization, the values in each row of Bc should be
constrained to lie within the range of possible values for this input. For instance, if the third

www.intechopen.com

Recurrent Neural Networks and Soft Computing

32

input is ρ , then the entries in the third row of Bc should all be positive. Similarly, if the first

output is the velocity correction incv then the first column of Woc can take both negative

/positive small values to allow the ANN to increase or decrease the robot speed while
avoiding instability.

Fig. 5. Block diagram of the system in case study case B

3.5 Training phase

To train the ANN, the following objective function is minimized:

1 1

1
N Kp i

p
i

p p= i=

objg = ρ
N
 (10)

where ‘ p
iρ ’ is the distance between the desired location on the pth path and the

corresponding robot's actual location at the ith time instant, iK is the number of points

along the path to be tracked and pN is the number of paths used in training. Since the

objective function is not a closed form function (in the ANN weights and biases) and can

only be computed through a simulator, a numerical optimization algorithm is used [10],

[11], where gradients are computed using a numerical version of the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) optimization algorithm. The gradients are calculated numerically

using the following formula:

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

33

2ε

i i

i

Objg Objg(Par + ε) Objg(Par ε)
=

Par

  


 (11)

where ε is a very small number, typically 1110ε =  . iPar is the ith element of the vector Par

For case ‘A’, the number of adjustable parameters is 2* (4 (inputs) * 4 (hidden neurons/
rules)) + 4 (hidden neurons)* 2 (outputs), which equals 40 parameters. For case B, the
number of adjustable parameters is 2* (6 (inputs) * 7 (hidden neurons/ rules)) + 7 (hidden
neurons)* 2 (outputs), which equals 98 parameters . Figs. (6 and 7) show the results for cases
'A' and 'B', respectively.

It is clear that case 'B' is more robust to disturbance. However, both cases clearly outperform
the open loop (direct forcing) case.

The fact that case 'B' produced better results is to be expected. Certainly, feedback provides
memory to the system and helps in accumulating knowledge, which is an essential aspect of
learning. We tried two types of feedback; direct feedback in which the ANN learns the link

between its own outputs (inc incv ,ω) and the errors in performance and indirect feedback in

which the ANN learns the link between a certain action (v,ω) and the errors in performance.

The second memory type produced better results. Appendix A compares these results obtained
using our approach with those obtained using conventional ANN [1,6,7] and ANFIS [8].

Fig. 6. Results for case A. It is clear that closed loop ANN-based control is more robust to
disturbances than open-loop direct forcing

www.intechopen.com

Recurrent Neural Networks and Soft Computing

34

Fig. 7. Results for case B. It is clear that closed loop ANN-based control is more robust to

disturbances than open-loop direct forcing. It is evident that adding to the ANN inputs the

control actions at the previous step improved the results compared to those of case A.

3.6 Rule extraction, analysis and post-processing

Following the guidelines given in section 3.4, rule extraction from the trained weights and

biases becomes straightforward.

Fig. (8) illustrates how the rules, for case 'A', have been extracted. The discovered rule-base

is summarized as follows :

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

35

Fig. 8. An illustration of the rules extraction from weights and biases matrices.

0.3354632, 0.0125876, 0.6606180, 0.0061404

0.9311723, 0.8552953

0.485575, 0.6095190, 0.7308372, 0.3436044

ref rob ref rob

inc inc

ref rob ref rob

SLANCV v v > ω ω > ρ > ǂ <

then increase v by v = increase ω by ω =

SLANCV v v < ω ω > ρ > ǂ >

then d

  

   

0.1034854 0.3097751

0.2589412, 0.8426717, 0.5563425, 0.2103250

0.4279759, 0.7131302

0.6266

inc inc

ref rob ref rob

inc inc

ref rob

ecrease v by v = increase ω by ω =

SLANCV v v > ω ω < ρ > ǂ <

then decrease v by v = decrease ω by ω =

SLANCV v v <


   

 
 040, 0.9027552, 0.6558773, 0.1211869

0.5549105, 0.5208952

ref rob

inc inc

ω ω < ρ > ǂ >

then increase v by v = decrease ω by ω =

  



Similarly, the rule-base for case 'B' is summarized as follows:

1.1800783, 0.5797996, 0.3283071, 0.1895662,

1.2352848, 0.3088343

0.6156011 0.8038080

1.258573, 0.817993, 0.4339714,

ref rob ref rob

inc inc

ref rob r

SLANCV v > ω < v v > ω ω >

ρ > ǂ > then

increase v by v = increase ω by ω =

SLANCV v > ω > v v < ω

  



  0.0552364,

1.246724, 0.2514984

0.6117282, 0.4437878

0.2235206, 0.7800814, 0.7777185, 0.7120344,

1.5151515, 0.0003327

ef rob

inc inc

ref rob ref rob

ω >

ρ > ǂ > then

decrease v by v = increase ω by ω =

SLANCV v < ω > v v < ω ω <

ρ > ǂ < then

decr




   


0.4927100, 0.0680181

1.4049258, 0.3766352, 0.0756778, 0.7105109,

0.1169906, 0.2358675

0.2173556, 0.35925

inc inc

ref rob ref rob

inc inc

ease v by v = decrease ω by ω =

SLANCV v > ω < v v < ω ω <

ρ < ǂ < then

decrease v by v = decrease ω by ω =

 
   


  29

0.9930632, 0.8202830, 0.1180958, 0.6506539,

0.1156700, 0.2116636

0.3642978 0.8061992

ref rob ref rob

inc inc

SLANCV v < ω > v v > ω ω <

ρ > ǂ < then

increase v by v = decrease ω by ω =

   



www.intechopen.com

Recurrent Neural Networks and Soft Computing

36

0.7807096, 0.4849204, 0.4796375, 0.5922044,

1.2921157, 0.2758564

0.3424317, 0.8207999

0.5131913, 0.2240559, 0.4493099,

ref rob ref rob

inc inc

ref rob

SLANCV v < > v v > ω ω >

ρ > ǂ > then

increase v by v = increase ω by ω =

SLANCV v < ω > v v < ω

 

   0.7691425,

1.0904348, 0.2174491

0.5255254, 0.8943484

ref rob

inc inc

ω >

ρ < ǂ > then

decrease v by v = increase ω by ω =





In order to improve system performance and remove any inconsistencies, the rules above must
be analysed. The following rule analysis procedure is limited to case 'B'. This procedure is
assisted by a plot of the DOF (Degree-Of-Firing) of each rule (output of sigmoid) versus time.
Such plots help in visualizing which rules the ANN is applying at each time instant and
judging the decision/ performance made at this particular time. In particular, it is highly
useful to identify dominant rules (rules having relatively high outputs) at the time a wrong
decision is made. Correction is then possible by retraining the ANN keeping all rules fixed
except the faulty dominant one. For example, as shown in Fig. 9, at the time the deviation
from the desired path becomes maximum, rule 5 is dominant followed by rule 4. Accordingly,
three different strategies, have been attempted, to retrain the ANN, to improve its
performance. In all three strategies, all rules have been kept fixed except:

- for the first strategy: rule 5 (5th

 column of Whc ,5th column of Bc and the 5th row of Woc),

- for the second strategy: both the degrees of firing of rules 4 and 5 (4th and 5th column of
Whc), and their then part (4th and 5th

row of Woc),

- for the third strategy: the degree of firing of rule 5 and its then part (5th

 column of Whc

and the 5th row of Woc), with the addition of a new rule (rule 8) whose SLANCV part is
the same as that of rule 5 (8th column of Bc is same as its 5th column) but whose DOF (8th
column of Whc) and consequent part (or then part) (8th row of Woc) are to be determined
by the training algorithm. The idea is to insert a new rule that co-fires with the
malfunctioning rule to provide some correcting action. For our case study, this last
strategy gave us the best results. The results after retraining are shown in Fig. 10.

Fig. 9. Preliminary results of case B before post-rule analysis processing. The dashed curves
represent the degree of firing of each rule with time. It is clear that rule 5 is the dominant
rule at the time the deviation from the desired path became maximum.

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

37

Fig. 10. Results of case B after retraining with only the parameters corresponding to rules 5
degree of firing and its “then” part allowed to vary in addition to adding a new rule 8 with
the same SLANCV part as rule 5 to co-fire with it and to provide corrective action. It is clear
that this retraining improved the results.

www.intechopen.com

Recurrent Neural Networks and Soft Computing

38

3.7 Discussion

Although the rule analysis method presented, helped in improving the results, it still needs

improvement. In fact, rule analysis is a rather complex task. Understanding the logic behind

the rules (why each rule recommends a particular consequent given a certain antecedent) is

not simple for the following reasons:

1. Rules operate in parallel and collectively. Each rule recommends a certain consequent

depending on the context of the neighbouring rules. Collectively, the overall decision

helps achieving the desired objective.

2. According to the training algorithm, rules recommend certain consequents in order

to minimize the desired objective function which is a function of the robot

kinematics.

3. Rules are derived through batch (off-line) training. Therefore, the overall objective

function is minimized over time and not at a particular instant (rules are derived

based on a global point of view). Therefore, a rule may not sound reasonable to

employ at a certain moment. This what makes it necessary to train an ANN over a

certain family of curves. Different families of curves are expected to require different

global rules.

4. Rule analysis is a trial and error process. Its complexity is proportional to the

dimensionality (number of independent variables).

4. Directions for future research: Solving general optimization problems

The proposed approach can be applied to general optimization problems and not just path-

tracking. From an abstract point of view, any optimization problem can be mapped to a

goal-tracking problem in which:

 The goal point is the desired performance or desired objective function value.

 The input is the absolute difference between the objective function value at the current

solution and the desired objective function value.

 The output is the correction, to the current solution, recommended by the ANN. This is

fed-back as an input to the ANN at the next iteration.

 Time evolution corresponds to iterations.

Hence, over the different iterations the ANN is expected to suggest a sequence of corrections

that helps in approaching the required objective function value.

This approach to optimization is expected to be less prune to local minima trapping,

provides better insight into the nature of the investigated problem and can easily deal with

multi-objectives/ errors optimization. For example, in the robot path tracking

problem, ref rob ref rob,ρ,v v ,ω ω   were error measures that, ideally are required to be all

zeros. In this case, the robot perfectly tracks the desired path and remains tangent to it at all

times. This property (being tangent at all times) is desirable, from a practical point of view,

because even if the robot path is close to the desired path but with too many frequent

changes of orientation, wear out will occur to the robot parts and it will be questionable

whether the robot can, practically, makes these moves).

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

39

4.1 Illustrative example: Minimizing the camel benchmark function

The camel objective function is defined as follows

   
4

2 2 2 21
1, 2 1 1 1 2 2 2 1 24 2.1 4 4 3 3, 2 2.

3
Sixh

x
f x x = ·x + ·x + x ·x + + ·x ·x ; x x

 
         

 

Fig. 11. Camel function objective function.

The global minimum is        1, 2 1, 21.0316 0.0898,0.7126 0.0898, 0.7126f x x = ; x x = , .  

Fig. 11 shows a plot of the camel objective function.

Fig. 12. Block diagram of the system used to find the global minimum of the camel objective
Function.

www.intechopen.com

Recurrent Neural Networks and Soft Computing

40

To apply the proposed ANN-based approach to find the global minimum of this function, the
closed loop system in Fig. 12 has been adopted. The inputs to the ANN are the values of

1 2andx x at the previous iteration, the absolute difference between the desired value of the

objective function at the current iteration and its current actual value. The outputs of the ANN

are the recommended corrections to 1 2andx x (increase or decrease). The ANN weights and

biases were estimated numerically as before such that the ANN minimize the camel objective
function. The desired value for the objective function at any iteration is chosen to be slightly
less than its current value (For example, for decrratio=0.85, the desired objective function at a
certain iteration =decrratio* the actual objective function value corresponding to the current
solution). This idea is borrowed from [13], where it has been recommended to be adopted with
any optimization method. The ANN has been trained, as before, using a numerical BFGS
algorithm, where the objective function to be minimized is defined as :

 FObjg = ρ (12)

where, Fρ is the absolute difference between the desired objective function value and its actual

value at the last iteration. The rules extracted from the trained ANN are as follows:

1 2

1 1inc 2 2inc

1 2

1 1inc 2 2inc

0.6755704, 1.5209156, 0.0161157,

0.0668506 0.0203858

1.4023561, 0.4688876, 0.1058053,

0.0617143 0.0195689

SLANCV x > x > ρ >

decrease x by x = decrease x by x =

SLANCV x > x > ρ >

increase x by x = decrease x by x =

S

 



1 2

1 1inc 2 2inc

1 2

1 1inc 2 2inc

0.6147782, 0.1270187, 1.504679,

0.0301060 0.0128413

0.0459426, 0.3802873, 0.5840457,

0.0279751 0.0338863

LANCV x > x < ρ <

increase x by x = decrease x by x =

SLANCV x > x > ρ <

decrease x by x = decrease x by x =



 

Fig. 13 shows the results (the objective function value versus iteration number). Clearly, the
ANN-based optimization technique found the global optimal (The initial solution was

1 22.5, 2.5x = x =). When using the BFGS technique to minimize the camel objective

function, with the same learning rate, the algorithm completely diverged. For a lower learning
rate, direct BFGS reached the global optimal. However, ANN-based optimization offers
greater promise for higher dimensions/ multi-objective/ error problems and provides insight
into the solution through the analysis of the derived rules. A key reason for the robustness of
the ANN-based optimization over direct optimization is that it explores the objective function
and derives problem-dependent heuristics (as opposed to meta-heuristics).

An important direction for future investigation is the use of concepts borrowed from
“robust optimization” to enhance the quality of the rules extracted from the ANN. Robust
optimization concepts can be applied at two different levels:

 At the action level, we can include noise during ANN training. The error in path-
tracking can be defined as a function of the difference between the average expected
location and the desired location as well as the variance (or standard deviation of this
error). This will make the ANN develop a decision strategy that is more prudent and is
less likely to cause divergence from the desired path, in case of disturbance.

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

41

Fig. 13. The results of using the proposed approach to find the global minimum of the camel
objective function. The top figure shows the degree of firing of the different rules versus
iteration number. The bottom figure depicts the objective function value versus iteration
number. The approach successfully converged to the global minimum.

www.intechopen.com

Recurrent Neural Networks and Soft Computing

42

 At the weights/biases level, robust optimization can be used to develop robust rules.
Rules are robust when they are reachable from different weight initializations (i.e. they
are not sensitive to a particular initialization) and lead to acceptable performance when
subject to small perturbations.

5. Conclusion

We believe that merging symbolic AI (logic) with non-symbolic AI (ANNs) through our
new proposed framework can achieve the following advantages:

1. The resulting learning system is transparent to the user and its reliability can be easily
assessed. A suitable strategy has been outlined for improving its reliability based on
the analysis of the extracted rules.

2. The system is robust to noisy inputs and disturbances.
3. The logic-based approach to optimization can be less prune to local minima trapping.
4. The approach is applicable to a broad class of engineering problems where the

corresponding correct output to a certain example input is not necessarily available (but
a means of assessing the fitness of the output is available through simulation or
practical measurements).

We do not claim that the proposed approach can outperform existing approaches in all
problems, however, we can certainly claim that we offered researchers, a framework truly
worthy of investigation for complex optimization, control and design problems. The best
approach will always remain problem-dependent which is the charm and challenge of
engineering optimization.

6. Acknowledgement

After thanking Allah almighty for giving the authors the stimulus required to complete this
work, the first author would like to thank her students for their valuable inquiries during a
summer course on ANNs that she gave. Their eagerness to understand, queries and
continuous criticisms helped her a lot to better formulate her thoughts and served as a
valuable encouragement, especially during the early part of this work. It is true that, at
many occasions, we learn from our students even more than we teach them! The second
author acknowledges the support of EJUST.

7. Appendix A

In this appendix, we apply the conventional ANN formulation ([1] ,[6] ,[7]) and ANFIS [8] to
case 'B' of the adopted case study. It is noteworthy that strict application of the conventional
ANN or ANFIS to this case study is not possible because the desired system output is unknown
(it is not possible to evaluate the objective function except by using the robot simulator).
Therefore, the numerical BFGS has been used, as before, in the training phase with the same
objective function defined in Eq. (9). As said earlier, with the conventional ANN formulation
the output of the ANN described in Eq. (1) can be interpreted as fuzzy rules of the form:

 / /

1,2,...

p
j i hij jk jki

i

SLANCV x > b N w then o = w

i = ,N



www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

43

The fact that the antecedent of a rule depends on both the bias of the corresponding hidden

neuron and the weights from inputs-to this hidden neuron makes it difficult the use of

known inputs constraints in weights/biases initialization. Thus, we are forced to use small

random weights and biases initially, train the ANN, extract the rules and then re-train in

case some of the rules yield un-plausible antecedents. For our case study, 3 out of the 7 rules

had un-plausible antecedents. For example, one of the rules stated:

1.1959689, 0.1675315, 0.8878251, 0.1353403,

2.7918388, 0.2060677,

6.6637447, 5.8271221

ref rob ref rob

inc inc

SLANCV v < w > v v > ω ω >

ρ < ǂ <

decrease v by v = decrease ω by ω =

  

 
 

Clearly comparing ρ to a negative threshold is not logical.

Fig. 14 illustrates a typical ANFIS architecture for the case of a 2 inputs  1, 2x x single

output, 2 rules example. ijA is the membership function of the ith input in the jth rule. The

DOF of a rule is computed using the 'Product' operator, i.e. it is the product of the output of

the membership functions of a certain rule (Layer 2). NORM units (Layer 3) divides the

individual DOF of each rule by the sum of DOF of all rules to produce a normalized degree

of firing jw . Layer 4 computes the consequent of each rule j for each output k, jkf as a

function of the inputs
1

Ni

jk ijk jk
i

f = p + r

 . The overall system output is computed as a

weighted sum of the different rules consequents (
1

Nh

jk jk
j=

f = w f , hN is the number of rules

which equals 2 in Fig. 14). Similarly, to be able to compare our approach to ANFIS [8], we

use the same block diagram given in Fig. 5 but replacing the typical feed-forward ANN with

an ANFIS. The ANFIS formulation does not impose restrictions on membership function's

choices. Therefore, sigmoid membership functions have been chosen, for the purpose of

comparison with our approach. In this case, the membership function of the jth rule takes the

form:

  sig ij ij i ijA = a x c

Our approach can be viewed as a modified ANFIS system with the 'Product' operator

replaced by the 'ior' operator and with 0ijkp = . As indicated by the results (Fig. 15), these

modifications enhance the performance considerably. ANFIS training involves the

estimation of the parameters ,ijk jkp r for each rule contributing to the output as well as the

membership functions parameters ij ija ,c of each rule. The extracted rules after training are

as follows:

www.intechopen.com

Recurrent Neural Networks and Soft Computing

44

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

45

It is clear from Fig. 15, that both the conventional ANN and ANFIS produce inferior results
to those obtained using the proposed approach (refer to Fig. 7). Thus, the proposed
modifications to conventional ANNs succeeded in producing an improved ANFIS system
capable of outperforming both conventional ANNs and ANFIS for problems where the
desired ANN output is not known a priori (like in the path tracking case study).

www.intechopen.com

Recurrent Neural Networks and Soft Computing

46

Fig. 14. Architecture of a typical ANFIS system for a 2 inputs single output example

www.intechopen.com

A Framework for Bridging the Gap Between Symbolic and Non-Symbolic AI

47

Fig. 15. Shows the results for using conventional ANNs and ANFIS instead of the proposed
formulation for case B. By comparing these results with those in Fig. 7 , the superiority of
the proposed approach-thanks to Allah- is clear.

8. References

[1] G J. Benitez, J. Castro, I. Requena, “Are Artificial ANNs Black Boxes?”, IEEE Trans. on
ANNs, September, 1997.

[2] J. Espinosa, J. Vandewalle, V. Wertz, Fuzzy Logic, Identification and Predictive Control
(Advances in Industrial Control), Springer-Verlag, London, 2005.

[3] Simon Haykin, ANNs and Learning Machines, Prentice Hall, November 2008.
[4] R. Setiono, "Extracting M-of-N Rules from Trained ANNs", IEEE Trans. on ANNs, Vol. 11,

No.2, January 2000. pp. 510-519.
[5] S. Mitra, S. Pal, "Fuzzy Multi-Layer Perceptron, Inferencing and Rule Generation" , IEEE

Trans. on ANNs, Vol. 6, No.1, January 1995. pp. 51-63.
[6] H. Senousy, M. Abou-El Makarem, “New Reliable Neural-Based Automatic Diesel Fault

Diagnosis Systems”, International Conference on Mechanical Engineering and
Production MDP9, Cairo, Egypt, January 2008.

[7] I. Hamid, H. Senousy, M. Abou-Elmakarem, "An Improved Fuzzy Logic Controller For
Ship Steering Based on Ior Operator and Neural Rule Extraction", ICCES08,

www.intechopen.com

Recurrent Neural Networks and Soft Computing

48

Faculty of Engineering - Ain Shams University, Computer Engineering & Systems
Department Cairo, EGYPT, November 25-27, 2008.

[8] J.S. R. Jang "ANFIS: Adaptive Network based Fuzzy Inference Systems", IEEE
Transactions on Systems, Man, and. Cybernetics, vol. 23, no. 3, (1993) 665–685.

[9] http://sourceforge.indices-masivos.com/projects/forallahfacon/
[10] S. Rao, Optimization, Theory & Applications 2ed, July 1984, John Wiley & Sons (Asia).
[11] R. Gonzalez, ANNs for Variational Problems in Engineering, PhD Thesis, Department of

Computer Languages and Systems, Technical University of Catalonia,21 September
2008.

[12] G. Dudek, Michael Jenkin, Computational Principles of Mobile Robotics, Cambridge
University Press; April 15, 2000.

[13] A. El-Bastawesy , A. El-sayed, M. Abdel-Salam, B. Salah, I. Adel, M. Alaa El-laffy, M.
Tariq, B. Magdi, O. Fathi, A New Intelligent Strategy for Optimal Design of High
Dimensional Systems, 2011 IEEE GCC Conference & Exhibition, Dubai, United
Arab Emirates, 2011

www.intechopen.com

Recurrent Neural Networks and Soft Computing

Edited by Dr. Mahmoud ElHefnawi

ISBN 978-953-51-0409-4

Hard cover, 290 pages

Publisher InTech

Published online 30, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gehan Abouelseoud and Amin Shoukry (2012). A Framework for Bridging the Gap Between Symbolic and

Non-Symbolic AI, Recurrent Neural Networks and Soft Computing, Dr. Mahmoud ElHefnawi (Ed.), ISBN: 978-

953-51-0409-4, InTech, Available from: http://www.intechopen.com/books/recurrent-neural-networks-and-soft-

computing/a-framework-for-bridging-the-gap-between-symbolic-and-non-symbolic-ai

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

