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1. Introduction 

Obstacle avoidance and robot path planning problems have gained sufficient research 
attention due to its indispensable application demand in manufacturing vis-à-vis material 
handling sector, such as picking-and- placing an object, loading / unloading a component to 
/from a machine or storage bins. Visibility map in the configuration space (c-space) has 
become reasonably instrumental towards solving robot path planning problems and it 
certainly edges out other techniques widely used in the field of motion planning of robots 
(e.g. Voronoi Diagram, Potential Field, Cellular Automata) for unstructured environment. The 
c-space mapping algorithms, referred in the paper, are discussed with logic behind their 
formulation and their effectiveness in solving path planning problems under various 
conditions imposed a-priori. The visibility graph (v-graph) based path planning algorithm 
generates the equations to obtain the desired joint parameter values of the robot 
corresponding to the ith intermediate location of the end - effector in the collision - free path. 
The developed c-space models have been verified by considering first a congested 
workspace in 2D and subsequently with the real spatial manifolds, cluttered with different 
objects. New lemma has been proposed for generating c-space maps for higher dimensional 
robots, e.g. having degrees-of-freedom more than three. A test case has been analyzed 
wherein a seven degrees-of-freedom revolute robot is used for articulation, followed by a 
case-study with a five degrees-of-freedom articulated manipulator (RHINO XR-3) amidst an 
in-door environment. Both the studies essentially involve new c-space mapping thematic in 
higher dimensions. 
Tomas Lozano Perez’ postulated the fundamentals of Configuration Space approach and 
proved those successfully in spatial path planning of robotic manipulators in an 
environment congested with polyhedral obstacles using an explicit representation of the 
manipulator configurations that would bring about a collision eventually [Perez’, 1983]. 
However, his method suffers problem when applied to manipulators with revolute joints. In 
contrast to rectilinear objects, as tried by Perez’, collision-avoidance algorithm in 2D for an 
articulated two-link planar manipulator with circular obstacles have been reported also 
[Keerthi & Selvaraj, 1989]. The paradigm of automatic transformation of obstacles in the c-
space and thereby path planning is examined with finer details [De Pedro & Rosa, 1992], 
such as friction between the obstacles [Erdmann, 1994]. Novel c-space computation 
algorithm for convex planar algebraic objects has been reported [Kohler & Spreng, 1995], 
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while slicing approach for the same is tried for curvilinear objects [Sacks & Bajaj, 1998] & 
[Sacks, 1999]. Nonetheless, various intricacies of the global c-space mapping techniques for a 
robot under static environment have been surveyed to a good extent [Wise & Bowyer, 2000]. 
Although the theoretical paradigms of c-space technique for solving find-path problem have 
been largely addressed in the above literature vis-à-vis a few more [Brooks, 1983], [Red & 
Truong-Cao, 1985], [Perez’, 1987], [Hasegawa & Terasaki, 1988], [Curto & Monero, 1997], the 
bulging question of tackling collision detection under a typical manufacturing scenario, 
cluttered with real-life multi-featured obstacles remains largely unattended.  
Survey reports on motion planning of robots in general, have been presented, with special 
reference to path planning problems of lower dimensionality [Schwartz & Sharir, 1988] & 
[Hwang & Ahuja, 1992]. The find-path problem under sufficiently cluttered environment 
has been studied with several customized models, such as using distance function [Gilbert 
& Johnson, 1985], probabilistic function [Jun & Shin, 1988], time-optimized function [Slotine 
& Yang, 1989], shape alteration paradigms [Lumelsky & Sun, 1990a] and sensorized 
stochastic method [Acar et al, 2003]. Even, novel path transform function for guiding the 
search for find-path in 2D is reported [Zelinsky, 1994], while the same for manipulators with 
higher degrees-of-freedom is also described [Ralli & Hirzinger, 1996]. All these treatises are 
appreciated from the context of theoretical estimation, but lacks in simulating all kinds of 
polyhedral obstacles. 
Based on the c-space mapping, algorithmic path planning in 2D using visibility principle is 
studied [Fu & Liu, 1990], followed by exhaustive theoretical analysis on visibility maps 
[Campbell & Higgins, 1991]. However, issues regarding computational complexity involved 
in developing a typical visibility graph, which is O (n2), ‘n’ being the total number of 
vertices in the map, is analyzed earlier [Welzl, 1985]. The concept of M-line1 and its 
uniqueness in generating near-optimal solutions against heuristic-based search algorithms 
has also been examined [Lumelsky & Sun, 1990b].  
Several researchers have reviewed the facets of path planning problem in a typical spatial 
manifold. A majority of these models are nothing but extrapolation of proven 2D techniques 
in 3D space [Khouri & Stelson, 1989], [Yu & Gupta, 2004] & [Sachs et al, 2004]. However, 
new methods for the generation of c-space in such cases (i.e. spatial) have been exploited too 
[Brost, 1989], [Bajaj & Kim, 1990] & [Verwer, 1990]. Customized solution for rapid 
computation of c-space obstacles has been addressed [Branicky & Newman, 1990], using 
geometric properties of collision detection between known static obstacles and the 
manipulator body, while sub-space method is being utilized in this regard [Red et al, 1987]. 
The usefulness of several new algorithms using v-graph technique has been demonstrated 
in spatial robotic workspace [Roy, 2005]. 
It may be mentioned at this juncture with reference to the citations above, that, although 
celebrated, a distinct methodology of using c-space mapping for higher dimensional robots 
as well as in spatial workspace is yet to be tuned. Our approach essentially calls on this 
lacuna of the earlier researches. We proclaim our novelty in adding new facets to the 
problem in a generic way, like: a] rationalizing configuration space mapping for higher 
dimensional (e.g. 7 or 8 degrees-of-freedom) robots; b] preferential selection of joint-variables for 
configuration space plots in 2D; c] extension of 2D path planning algorithm in 3D through 
slicing technique (creation, validation & assimilation of c-space slices) and d] searching 
collision-free path in 3D, using novel visibility map-based algorithm.  

                                                 
1 Mean Line, as referred in the literature concerning the visibility graph-based path planning of robots. 
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The paper has been organized in six sections. The facets of our proposition towards 
configuration space maps in 3D are discussed in the next section. Section 3 delineates the 
c-space mapping algorithms, with the logistics and analytical models. The features of the 
path planning metrics and the algorithm in particular, using the concept of visibility 
graph, have been reported in section 4. Both 2D and spatial workspaces have been 
postulated, with an insight towards the analytical modeling, in respective cases alongwith 
test results. Section 5 presents the case study of robot path planning. Finally section 6 
concludes the paper.  

2. Configuration space map in 3D space: Our proposition 

2.1 Modeling of robot workspace 
The robotic environment is modeled through discretization of the 3D space into a number of 
2D planes (Cartesian workspace), corresponding to a finite range of waist /base rotation of 
the robot2. Thus, modeling has been attempted with the sectional view of the obstacles in 2D 
plane.  
The obstacles are considered to be regular, i.e. having finite shape and size with standard 
geometrical features with known vertices in Cartesian co-ordinates. For example, obstacles 
with shapes such as cube, rectangular paralleopiped, trapezoid, sphere, right circular 
cylinder, right pyramid etc. have been selected (as primitives) for modeling the 
environment. A complex obstacle has been modeled as a Boolean combination of these 
primitives, to have polygonal convex shape preferably. However, concave obstacles can also 
be used in the algorithms by approximating those to the nearest convex shapes, after 
considering their ‘convex hulls’ (polytones). Irregular-shaped obstacles have also been 
modeled by considering their envelopes to be of convex shapes. Circular obstacles have 
been approximated to the nearest squares circumscribing the original circles, thereby 
possessing pseudo-vertices.  
Features of the developed technique, namely, “Slicing Method”, are: i] alongwith shoulder, 
elbow and wrist (pitch only) rotations, waist rotation of the robot is considered, which is 
guided by a finite range vis-à-vis a finite resolution; ii] the entire 3D workspace is divided 
into a number of 2D planes, according to the number of ‘segments’ of the waist rotation; iii] 

for every fixedangle of rotation of the waist, a 2D plane is to be constructed, where all other 
variables like shoulder, elbow and wrist pitch movements are possible; iv] corresponding to 
each of the 2D slices of the workspace, either one obstacle entirely or a part of it will be 
generated, depending on the value of the resolution chosen for waist rotation.  
Corresponding to each slice, one c-space map (considering only two joint variables at a time) 
is to be developed and likewise, several maps will be obtained for all the remaining slices. 
The final combination of the colliding joint variable values will be the union of all those sets 
of the values for each slice. Nevertheless, the process of computation can be simplified by 
taking some finite number of slices, e.g. four to five planes. Figure 1 pictorially illustrates the 
above-mentioned postulation, wherein the robotic workspace consists of various categories 
of obstacles, like regular geometry (e.g. obstacle ‘A’, ‘B’ & ‘C’) and integrated geometry3 (e.g. 
obstacle ‘D’ & ‘E’). 

                                                 
2 Base rotation is earmarked for articulated robots, whereas suitable angular divisions of the entire 
planar area, i.e. 3600 are considered for robots with non-revolute joints (e.g. prismatic).  
3 Boolean combination of regular geometries is considered. 

www.intechopen.com



 
Serial and Parallel Robot Manipulators – Kinematics, Dynamics, Control and Optimization 

 

420 

 

Fig. 1. Schematic view of ‘Slicing Model’ for a congested spatial robotic environment 

By knowing the intercept co-ordinates for each slice, an equivalent 2D slice workspace is 
developed; simply by projecting those intercept lines. Obviously the height of the obstacle 
will now play a vital role and the projecting length will be equal to the height of the 
obstacle. In a similar manner, obstacles with varying height (say, slant-top type) can also be 
considered, with differential length of projection. As before, irregular-shaped obstacles can 
be approximated by means of some standard regular shape, either uniform or varying 
height, using the same model. 
The total number of configuration space plots for the entire cluttered environment will 
depend on the number of slices each obstacle has and also thereby the average number of 
slices obtained. Since each of those sliced c-space will represent obstacle geometries, fully 
or partially, it is important to label the nodes of the obstacle-slices so produced. In 
general, if a particular obstacle has got ‘k’ slices, having ‘n’ nodes each, then a generalized 
node of that obstacle will be labeled as, ‘nk’. However, to avoid ambiguity, ‘k’ is 
considered alphabetic only. Figure 2 shows a representative obstacle with slices, where 
node ‘3b’ signifies the third node of the bth. slice, which is incidentally the second slice of 
the obstacle. 
 

 

Fig. 2. Node numbering thematic for sliced obstacles  
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2.2 Paradigms of the C-space mapping algorithms in 2D sliced workspace 
In the present work, sliced c-space maps have been generated considering a two degrees-of-

freedom revolute type manipulator having finite dimensions (refer fig. 3) and an 

environment cluttered with polygonal obstacles. Both manipulator links and obstacles are 

represented as convex or concave polygons4.  

 

 

Fig. 3. Representative schematics of a two-link manipulator with revolute joints 

The obstacles are considered to be regular in shape with fixed dimensions, having a well-
defined shape (sectional view) in 2D, preferably convex, for easier calculations. This has been 
made purposefully as in most of the manufacturing and/or shop-floor activities geometric 
objects are being handled by the robot, for example, loading and unloading of components 
to/from the machine, handling of semi-finished components between machines, storage and 
retrieval of finished components into bins etc. The philosophy behind these mapping 
algorithms is to consider each complex obstacle as a boolean combination of various 
primitives, viz,. ‘Point’, ‘Line’ and ‘Circle’. That is to say, if the obstacle is theoretically 
considered as a ‘point’, ‘line’ or ‘circle’ in shape in 2D, then colliding angle of the robot link(s) 
with those will be obtained and C-space maps can be drawn there from. These algorithms can 
also be applied for concave objects by considering the ‘convex hull’ of those and proceeding in 
the same manner taking that as the new obstacle. Similarly, irregular shaped objects can also be 
tackled with these models, in which envelope of the object is to be considered to get the nearest 
convex shape. Obviously accuracy of the results will suffer to some extent by this 
approximation, but it would be a reasonable solution for practical situations. 

3. Details of the C-space mapping algorithms developed 

3.1 Overview of the mapping algorithms 
3.1.1 C-space transformation of “POINT” 
This algorithm gives the C-space data for an obstacle, considered theoretically as a point in 
Cartesian space. The robot with line representation is being considered here. (refer fig.3). 

                                                 
4 Concave obstacles are modeled as a combination of several convex polygons. 
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Algorithm: 

1. Input robot base co-ordinates, link lengths, the specified point, range of joint-angles & 

angular resolution. 
2. Calculate the distance of the point from robot base. 

3. Initialize the loop with iteration i=1. 
4. Check whether the first link is colliding. 

5. Calculate the positional details of the first link (i.e. under colliding conditions), if step 4 
is true. 

6. Check the collision with the second link, if step 4 is false. 
7. Calculate the colliding details of the second link, if step 6 is true. 

8. Output the colliding angles for suitable cases. 
9. i=i +1. 

10. Continue till all combinations of joint - angles are checked. 

3.1.2 C-space transformation of “LINE” 
Here the obstacle has been considered as a regular polygon, bounded by several straight 
line-segments, as ‘edges’. The algorithm is valid for obstacles having rectangle, square, 
triangle, trapezium etc. shaped cross-section in the vertical plane.  

3.1.3 C-space transformation of “CIRCLE” 
This algorithm for collision detection tackles the spherical obstacles with circular cross-
section in the vertical plane. Various possible colliding conditions of the circular obstacle 
with the robot link(s) are depicted in fig. 4. It depends entirely on the location of the 
obstacle(s) with respect to the location of the robot in the workspace.  
 

 

Fig. 4. Various possible colliding combinations of a two-link robot with circular obstacle 
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Figure 4 shows five different cases of collision, considering only the first link. However, the 

paradigm is valid for subsequent links also. These cases are: 

Case I: Obstacle is fully within the range of the first link. 

Case II: Obstacle is within the first link’s range, touching the range circle internally. 

Case III: Obstacle is collidable by the first link, with its centre inside the range of the first 

link. 

Case IV: Same as before, but centre is outside the range of the first link. 

Case V: Obstacle is touching the range circle of the first link externally. 

3.1.4 C-space transformation with finite dimensions of the robot 
Modifications of the previous algorithms for POINT, LINE and CIRCLE obstacles have been 

considered with finite dimensions of the robot arms (refer fig. 3). Also, planar 3-link 

manipulator is considered now, where the third link is nothing but the end-effector. Since 

planar movements are taken into account, only pitch motion of the wrist is considered along 

with shoulder and elbow rotations. The exhaustive list of input parameters for these cases 

will be as follows, viz. (i) Robot base co-ordinates (xb, yb); (ii) Length of the upper arm or 

shoulder (l1); (iii) Length of the fore arm or elbow (l2); (iv) Length of the end-effector or wrist 

(lw); (v) Width of the upper arm (d1); (vi) Width of the fore arm (d2); (vii) Width of the end-

effector (dw); (viii) Radii of curvature for upper and fore arm (r1 & r2 respectively); (ix) The 

co-ordinates of the Point: (x1, y1) or Line: [(x1, y1) & (x2, y2) as end - points ] or Circle: [centre 

at (xc, yc) & radius : ‘r’]. 

3.2 Analytical model of the mapping algorithms 
The analytical models of various C-space mapping algorithms, described earlier, have been 
grouped into two categories, viz. (a) Model for LINE obstacles and (b) Model for CIRCLE 
obstacles. These are being described below. 

3.2.1 Model for LINE obstacles 
The ideation of collision detection phenomena for Line obstacle is based on the intersection 
of the line- segments in 2D considering only the kinematic chain of the manipulator. The 
positional information, i.e. co -ordinates (xk, yk) of the manipulator joints can be generalized 
as, 

[xk, yk ]T = [ xb, yb ]T + [ 
1

k n

k




 lk Cos ( 

1

j k

j




 j ), 

1

k n

k




 lk Sin ( 

1

j k

j




 j )]T  

  k = 1,2,3,..............,n &  j= 1,2,.........., k (1) 

where,  
[ xb, yb ]T : Robot base co - ordinate vector in Newtonian frame of reference; 
lk  : k th. link - length of the manipulator; 

j : j th. joint - angle of the manipulator. 
The slope of the line (i.e. the edge of the obstacle) with (x1, y1) & (x2, y2) as end-points is 
given by, 

 m0 = | (y2 - y1 ) | / ( x2 - x1 ) | = |  y /  x |  (2) 
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Hence, the co - ordinates of the intersection point between the obstacle edge(s) and the robot 
link(s) are, 

 xint_k = ( yk - y1 - mk xk + m0 x1 ) / (m0 - mk ) (3a) 

 yint_k = [ m0 mk ( xk - x1 ) - m0 yk + mk y1 ] / ( mk - m0 )  (3b) 

where, 
[xint_k , yint_k ]T : The intersection point vector for the k th. robot link with the Line and 
mk : The slope of the k th. robot link. 
For a 3-link planar revolute manipulator, we have, therefore, 

m1 = tan 1i ,where 1i  [ 1_min , 1_max ] 

and 

m2 = tan (1i + 2j ), where 2j  [2_min , 2_max ]  

with 1i as defined earlier. 

The above model can be extended likewise, considering finite dimension of the manipulator, 

i.e. having widths of the arms, viz. { dk }. 

Nonetheless, considering finite dimensions, the generalized co-ordinates of the manipulator 

joints can be evaluated from, 

[ xAk, yAk ] T = [ xb, yb ]T + [ 
1

k n

k




 lk Cos ( 

1

j k

j




 j ) , 

1

k n

k




  lk Sin ( 

1

j k

j




 j ) ] T  

+ [dk/2 Sin ( 
1

j k

j




 j ) , - dk/2 Cos ( 

1

j k

j




 j ) ] T 

  k = 1,2,3,..............,n &  j= 1,2,..........,k (4) 

and, 

[ xBk, yBk ] T = [ xb, yb ]T + [ 
1

k n

k




 lk Cos ( 

1

j k

j




 j ) , 

1

k n

k




  lk Sin ( 

1

j k

j




 j ) ] T  

+[- dk/2 Sin ( 
1

j k

j




 j ) , dk/2 Cos ( 

1

j k

j




 j ) ] T 

 k = 1,2,3,..............,n &  j= 1,2,..........,k (5) 

Hence, the co-ordinates of the intersecting point(s) between the robot arm(s) and the edges of 

the obstacle(s) become, 

 xintA_k = ( yAk - y1 - mk xAk + m0 x1 ) / ( m0 - mk ); (6a) 

 yintA_k = [ m0 mk ( xAk - x1 ) - m0 yAk + mk y1 ] / ( mk - m0 ); (6b) 

 xintB_k = (yBk - y1 - mk xBk + m0 x1 ) / ( m0 - mk ); (6c) 
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 yintB_k = [ m0 mk ( xBk - x1 ) - m0 yBk + mk y1 ] / ( mk - m0 ); (6d) 

considering two possible collisions per arm at the most. 

3.2.2 Model for CIRCLE obstacles 
With reference to fig. 4, let the following nomenclatures be defined, 
( xb , yb ) : Robot base co-ordinates in Newtonian frame; 
l1 & l2 : Lengths of the first and second link of the robot respectively; 
( xc , yc ) : Co-ordinates of the centre of the ‘circle’ obstacle and 
r : Radius of the ‘circle’. 
Let,  

 d = [ ( xc - xb )2 + ( yc - yb )2 ] 1/2  (7) 

If collision is detected with the first link of the robot, then the range of colliding angles for 

case I & II (i.e. 1 & 2 ) and for case III & IV (i.e. 3 & 4 ) will be evaluated as shown below, 

 2 ,1 = tan -1 [( yc - yb ) / ( xc - xb ) ]  tan -1 [ r / ( d2 - r2 )1/2 ] (8) 

 4 ,3 = tan -1 [( yc - yb ) / ( xc - xb ) ]  2 tan -1 [ ( s - l1 ) ( s - d ) / s ( s - r ) ]1/2 (9) 

where, 

 2 s = ( l1 + d + r )  (10) 

Obviously, only one colliding angle, viz. 5 will be obtained with case V, i.e. 

 5 = tan -1 [( yc - yb ) / ( xc - xb ) ] (11) 

When the collision occurs with the second link, i.e. all the values of the first joint-angle are 

collidable, the ranges for collision will be obtained as given below. 

The co-ordinates of the start point of the second link, which serves as the instantaneous base 

of the robot, are given by, 

 [ xb’ , yb’ ] T = [ xb , yb ] T + [ l1 Cos 1 , l1 Sin 1 ] T  (12) 

The colliding range for the second link is between 2S and 2f against case I & II, where, 

 2S = 1 - 1i and 2f = 2 - 1i ,  1i , where 1_min  1i  1_max (13) 

and, 

 2 .1 = tan -1 [( yc - yb ) / ( xc - xb ) ]  tan -1 ( r / p )  (14) 

where, 

  p = ( h2 - r2 ) 1/2  (15) 

and, 

 h = [ (xc - xb’ )2 + ( yc - yb’ )2 ] 1/2  (16) 

For case III & IV, the colliding range will be 3S to 3f , which can be evaluated as, 
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 3S = 3 - 1i and 3f = 4 - 1i ,  1i , where 1i  [ 1_min , 1_max ]  (17) 

and, 

 4 , 3 = tan -1 [( yc - yb’ ) / ( xc - xb’ ) ]  2 tan -1 [ ( s’ - l2 ) ( s’ - h ) / s’ ( s’ - r) ]1/2 (18) 

where, 

 2 s’ = ( l2 + h + r ) (19) 

For case V, the particular formidable value of the joint-angle is, 

 4 = tan -1 [( yc - yb’ ) / ( xc - xb’ ) - 1i  (20) 

The above equations need to be altered for collision checking with finite link dimensions of 
the manipulator, considering r1 and r2 as the radii of curvature of the upper arm and fore 
arm respectively (refer fig. 3). The modifications required are: i] ‘l1’ is to be replaced by lu (= 

l1 + r1 ); ii] ‘l2’ is to be replaced by lf (= l2 + r2 ) and iii] ‘r’ is to be replaced by rnj = r + dj /2,  j 
= 1,2, 3 corresponding to collision with upper arm, fore arm and the end-effector.  

3.3 Illustrations using the developed algorithms 
The c-space mapping algorithms have been tested with two different robot workspaces in 
2D, as detailed below. Technical details of the robot under consideration for these 
workspaces are highlighted in Table 1. 
 

Type of Robot Considered Revolute 

No. of Links 2 

No. of Degrees -of- Freedom 2 

Length of the Links First Link: 5 units; Second Link: 4 units 

Co-ordinates of the Robot Base  xb = 5; yb = 5 

Ranges of Rotation of the Joints 
(Anticlockwise) 

Case I: For Non-circular Polyhedral Obstacles 
Joint-angle 1: 0 to 360 deg. Joint-angle 2: 0 to 260 deg. 
Case II: For Circular Obstacles 
Joint-angle 1: -40 to 240 deg. Joint-angle 2: -180 to 180 deg. 

Resolution of Joint Rotation 5 deg. (for both joints) 

Table 1. Technical Features of the Robot Under Consideration 

Figure 5 presents a 2D environment with non-circular polygonal obstacles with a revolute 
type robot located in-between.  
After obtaining the relevant c-space data, various plots of joint-angle 1 vs. joint-angle 2 are 
made. It is to be noted that the final data-points are those, which are common values of 
formidable angles for the entire obstacle. Obviously, the points, which are inside or on the 
closed boundary of the curves, are ‘collidable’ combinations, and, hence, those should not be 
attempted for robot path planning. 
Another case is studied, as shown in fig. 6, with circular obstacles only. There is a distinct 
difference in the appearance in the C-space maps between obstacles when collision occurs 
with the first as constrained with the same for the second link.  
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Fig. 5. A representative 2D environment congested with non-circular polygonal obstacles 

 

 

 
 

Fig. 6. A representative 2-D environment filled with circular obstacles  
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Figures 7 and 8 show the final c-space for the above two environments. 
 

 

Fig. 7. Final c-space mapping for the environment filled with non-circular polygonal 
obstacles 

 

 

Fig. 8. Final c-space mapping for the environment congested with circular obstacles 

www.intechopen.com



 
Spatial Path Planning of Static Robots Using Configuration Space Metrics 

 

429 

3.4 C-space maps for higher dimensionality 
The development of c-space is relatively simpler while we have two degrees-of-freedom 

robotic manipulators. As described in earlier sections, irrespective of the nature of the 

environment, we can generate simple planar maps, corresponding to the variations in the 

joint-angles (in case of revolute robots). Thus the mapping between task space and c-space is 

truly mathematical and involves computationable solutions for inverse kinematics routines. 

The procedure of generating c-space can be extrapolated to three degrees-of-freedom robots 

at most, wherein we get 3D plot, i.e. mathematically speaking, c-space surface. However, this 

procedure can’t be applied to higher dimensional robots, having degrees-of-freedom more 

than three. In fact, c-space surface of dimensions greater than three is unrealizable, although 

it is quite common to have such robots in practice amidst cluttered environment. For 

example, let us take the case of a workspace for a seven degrees-of-freedom articulated 

robot, as depicted in fig. 9. Here we need to consider variations in each of the seven joint-

angles, viz. 1, 2,……, 7 (the last two degrees-of-freedoms are attributed to the wrist 

rotations) towards avoiding collision with the obstacles.  

 

 

Fig. 9. A representative cluttered environment with seven degrees-of-freedom revolute 
robot 

So, the question arises as how can we tackle this problem of realizing higher dimensionality 
of c-space mapping. Hence it is a clear case of building composite c-space map, with proper 
characterization of null space. We propose a model for this mapping in higher 
dimensionality as detailed below. 

3.4.1 Lemma 
1. Identify the degrees-of-freedom of the robot [‘n’] and notify those.  
2. The robot is conceptualized as a serial chain of micro-robots of two degrees-of-freedom 

each. 
3. We will consider a total of ‘k’ planar c-space plots, where k = n/2 if ‘n’ is even and k = 

(n+1)/2 if ‘n’ is odd. 
4. If ‘n’ is even, then the pairs for the planar c-space plots will be: [q1 – q2], [q3 – 

q4],……[qn-1 – qn], where ‘q’ denotes the generalized joint-variable of the manipulator. 
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5. If ‘n’ is odd, then the pairs for the planar c-space plots will be: [q1 – q2], [q3 – q4],……[qn-

2 – qn-1], [qn-1 – qn]. 
6. In a way, we are considering several virtual 2-link mini manipulators, located at the 

respective joints of the original manipulator. 
7. Out of the plots so generated, select the most significant c-space map. 
8. One way of accessing the most significant c-space map is to consider finite 

measurement of the planar area of the c-space. A larger area automatically indicates 
more complex dynamics of the joint-variables so far as the collision avoidance is 
concerned. 

9. Alternatively, significant c-space plots will be those having multiple disjointed loops, 
i.e. regions of formidable area. Individually the regions may be of smaller area, but the 
multiplicity of their occurrence adds complexity to the scenario. 

10. Once the most significant c-space map is selected, the locations corresponding to ‘S’ and 
‘G’ are to be affixed in that plot. This will be achieved using inverse kinematics routine 
from ‘S’(x,y) and ‘G’ (x,y). 

11. For the most significant plot so obtained, all joint-variables, except the two used in the 
plot will be constant. For example, if [q3 – q4] plot is the most significant one, then q1, 
q2,……qn-1, qn are constant except q3 and q4. 

12. In general, if [qi –qj] plot be the most significant, then the set {q1, q2,……qn-1, qn}, except 
[qi –qj] , will be constant. And, the value of the set {q1, q2,……, qi-1} will be ascertained 
by the inverse kinematic solution of ‘S’ while the other set, {qj+1, qj+2,…..,qn} will be 
determined by the inverse kinematic solution of ‘G’. 

3.4.2 Schematic of the model 
Let us take an example of a seven degrees-of-freedom articulated robot, similar to one 
illustrated in fig. 9. According to the lemma proposed in 3.4.1, there will be four planar c-

space plots, namely, [1 -- 2], [3 -- 4], [5 -- 6] and [6 -- 7]. Figure 10 shows a sample view 
of these segmental c-space maps. 
 

 

Fig. 10. Sample view of the composite C-space map for a seven degrees-of-freedom robot 
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As it may be apparent from fig. 10, either [1 -- 2] or [3 -- 4] plot can be significant, 
considering larger area or presence of multiple loops criterion (refer serial no. 8 & 9 of 3.4.1).  

3.4.3 Generation of C-space plots: Concept of equivalent circle 
In order to compute c-space data points for any particular combination of consecutive joint-
variable pair for the higher dimensional robot, we would use a new concept, viz. the 
formulation of Equivalent Circle at the end of amidst the pair of links. Since we are 
considering virtual two-link mini-manipulators for the generation of c-space maps in pair, we 
would theoretically divide the links in two groups. The links, directly related to the 
generation of the specific c-space map, are termed as active links, while the others are known 
as dummy links. The philosophy of this equivalent circle is to re-represent the higher 
dimensional manipulator with only the active links and the joints therein, interfaced with 
circular zone(s) either at the bottom of the first active link or at the tip of the second active 
link. In general, the equivalent circles are constructed considering full rotational freedom of 
all the dummy links, located before /after the active links. 

For example, if we wish to generate [1 -- 2] plot for the seven d.o.f. manipulator, then the 
equivalent circle alias equivalent formidable zone is to be constructed adjacent to the end the 
second link and circumscribing the remaining links. Figure 11 schematically presents the 
concept of equivalent formidable zone, with first two links as active links for a seven d.o.f. 
manipulator. 
 

 
 

Fig. 11. Schematic view of equivalent formidable zone for a seven d.o.f. manipulator 

However it is possible to have two equivalent formidable zones in cases where some 
intermediate links are considered for c-space plots. For example, if the third & fourth links 
of the manipulator become active links, then there will be two formidable zones, as 
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illustrated in fig. 12. Of course, as per this proposition, there can’t be more than two 
formidable zones for any higher dimensional manipulator. 
 

 

Fig. 12. Occurrence of two equivalent formidable zones for a seven d.o.f. manipulator 

It is essential to locate the center of the equivalent circle vis-à-vis its radius (equivalent 
radius, Req.), in order to start computing for colliding combinations. However, the 
formulations for equivalent radii are not same in the two cases, as cited in figs. 11 & 12. In 
fact, the center of the equivalent circle, for cases wherein active links are followed by 
dummy links, will be at the base of the manipulator and its radius will be the summation 
of the lengths of the dummy links till we reach the first active link. For example, Req. 1 in 
fig. 12 will be the added sum of L1 & L2. Figure 13 shows the computational backup for the 
evaluation of the radius of the equivalent formidable zone /circle in this case, nomenclated 
as equivalent radius [type I].  
Although finding center and calculating equivalent radius [type I] is straight -forward, 
evaluation of the new base for the virtual two-link robot is critical. For example, as shown in 
fig. 12, we need to find out the possible location of the base for the virtual robot, comprising 
of L3 & L4. This has been explained in fig. 14, wherein we adopt a methodology, called Least 
Path. The least path(s) is/are the straight line-segment(s) joining the centers of equivalent 
circle [type I] and the obstacles in the vicinity of the virtual robot. The respective locations 
for the base of the virtual robot will be the point of intersection of the least path and the 
equivalent circle. Thus, as per fig. 14, there will be three base-points, viz. ‘Cp’, ‘Cq’ & ‘Cr’ 
corresponding to three obstacles, vide ‘p’, ‘q’ & ‘r’, which are situated within the limit-zone 
of the virtual robot with links Lk & Lk+1. However, this location of the base can range 
between two extreme points, as detailed in the inset of fig. 14. Two cases may appear here,  
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Fig. 13. Schematic showing the analytical layout for the evaluation of equivalent radius 
[type I] 

 

 

Fig. 14. Locations of the base for the two link virtual robot with respect to equivalent circle 
[type I] 

viz. when the obstacle is a] within the range of both Lk & Lk+1 and b] outside the range of Lk. 
Now, considering the first link of the virtual robot is just able to touch the obstacle we can 
get two extreme positions for the base, e.g. ‘C1’ & ‘C2’. As explained earlier, the point ‘C’ is 
the other location for the base, situated on the least path. From geometry, we can assign ‘D’, 
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which is numerically equal to either Lk or Lk+1, depending upon which link is colliding with 

that obstacle. The collidable range of joint-angles, corresponding to ‘C’, ‘C1’ & ‘C2’ will be (-

), (1-1) & (2-2) respectively. Thus, in general a formidable range from 2 to 1 should be 

selected for c-space mapping in (k --k+1) plot. 
In contrary to this situation, the other one, namely where dummy links are followed by 
active links, is more intricate so far the thematic is concerned. Figure 15 explains this case of 
evaluating equivalent radius [type II], the corresponding circular zone being optimized between 
two extremes, viz. maximum and minimum formidable zones. The minimum formidable 
zone is a circular space, tangent to the work-zone limit circle at ‘A’ while the maximum 
formidable zone is a semi-circular area, with two opposite extremities as ‘Z1’ & ‘Z2’. Several 
feasible formidable zones are theoretically possible in-between, with pair of chordal end-
points as [B1 – B1*] or [B2 – B2*] etc. It may be noted that all the three formidable zones, 
namely the minimum, maximum & optimum, share the common vertex ‘V’.  

 

 
 

Fig. 15. Schematic showing the disposition of the equivalent formidable circle [type II] 

The equivalent radius [type II] is evaluated using geometrical attributes, as detailed in fig. 16. 
Here, the points ‘A’, ‘C’ & ‘Cm’ represent the locations of the centers of the maximum, 
equivalent & minimum formidable zones respectively. As evident from the figure, the ratio 
between the two line-segments, viz. the semi-chordal length of the equivalent circle and the 
radius of the maximum formidable zone is ‘k’, where 0<k<1. In-line with the numerical 
evaluation of ‘Req.’, the location of the center, ‘C’ can be determined also.5  

                                                 
5 The location of the center is determined by evaluating the length of the line-segment, AC, which is 

numerically equal to [(1-k2)/2]Lj and it is also at a distance of (k2/2)Lj from the center of the 
minimum formidable zone, i.e. ‘Cm’. 
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Fig. 16. Schematic showing the analytical layout for the evaluation of equivalent radius 
[type II] 

3.5 Evaluation of C-space plots for higher dimensional robot: Example 
Here we will study a specific case for a seven degrees-of-freedom robot, amidst a 2D 
cluttered environment as shown in fig. 17. The technical parameters of the robot, comprising 

link-lengths, {li, i = 1,2,…7}and joint limits {i, i = 1,2,…7), are highlighted in Table 2. 
Circular obstacles are considered for simplicity in computations. The locations of the 
respective centers and diameters of the obstacles (expressed in suitable units) are presented 
in Table 3.  
 

Type of Robot Considered Revolute 

No. of Links 7 

No. of Degrees -of- Freedom 7 

Length of the Links [in suitable 
units] 

l1=15.52; l2=14.87; l3=13.04; l4=12.54; l5=9.0; l6=5.22 & l7=8.0 

Co-ordinates of the Robot Base  xb = 10; yb = 10 

Ranges of Rotation of the Joints 
(Anticlockwise) 

1: -200 to 1400; 2: 00 to 1200; 3: 00 to 800; 4: -50 to 900;  

5: 100 to 500; 6: -50 to 550; 7: 50 to 350  

Resolution of Joint Rotation 3 deg. (for all joints) 

Table 2. Technical Facets of the Higher Dimensional Robot Under Consideration 
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Fig. 17. Workspace layout of the seven degrees-of-freedom articulated robot 

 

Obstacle No. Diameter Location of Centre 

1 15.88 (x =15, y = 30) 

2 13 (x = 12.5, y = 37.5) 

3 12.7 (x = 27.5, y = 42.5) 

4 19 (x = 35, y = 30) 

5 14 (x = 60, y = 15) 

6 9.53 (x = 65, y = 50) 

Table 3. Obstacle Signature, as per Workspace Layout of Figure 16 

Now, in this case of seven degrees-of-freedom revolute robot, we will have four different 

c-space plots, namely, [1 -- 2], [3 -- 4], [5 -- 6] & [6 -- 7]. All of these plots use 
collision-detection algorithms, described earlier, for each of the obstacles separately, 
taking into account the concepts of equivalent circles. These c-space plots are illustrated in 

figure 18. A gross estimate reveal that [1 -- 2], [3 -- 4], [5 -- 6] & [6 -- 7] plots occupy 
a planar area measuring (160x120), (80x95), (40,60) & (60x30) sq. units respectively. It is 

evident from fig. 18 that although complexity-wise both [1 -- 2] and [3 -- 4] plots are 
roughly at par, but the former is to be selected as the most significant c-space plot as it is 
also the largest in size. 
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Fig. 18. Four c-space plots for the seven joint revolute robot amidst cluttered workspace of fig. 17 

It may be noted that while c-space plot for a 2 d.o.f. robot (working in 2D or 3D task-space) 

can be composed of irregular non-geometric shapes (refer fig. 7), the same for higher d.o.f. 

robots are perfectly geometric (refer fig. 18). This is happening because of the incorporation 

of the concept of ‘formidable zones’ for higher dimensional robots, wherein we are 

deliberately allowing the collidable zone to engulf more regions in the c-space. In fact, in 

most of cases for higher d.o.f. robots, the c-space zones are perfect rectangular in shapes, 

between the minimum & maximum limits of the participating joint-angles. For example, in 

fig. 18, (1 vs. 2) c-space slice plot the final rectangle is constituted between 4 vertices, viz. 

1_min, 1_max, 2_min & 2_max. 

4. Safe path in configuration space: Logistics & algorithm 

4.1 Perspective 
Based on the formation of c-space maps, collision-free paths are to be ascertained in 2D as 

well as in 3D. We will analyze the gamut in four functional quadrants, which have been 
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conceptualized from the point of view of a] disposition of the obstacles (i.e. planar or 

spatial) and b] kinematics of the manipulator (i.e. its degrees-of-freedom). Following 

checker-box illustrates the situation pictorially (refer fig. 19). 

 

 

 
 

Fig. 19. Schematic of the robotic path planning scenario using Configuration Space approach 

In fact, the methodologies to be adopted for different situations of robot path planning vary 
significantly and those depend on the task-space nature (i.e. planar or spatial) and the robot 
kinematics (i.e degrees-of-freedom). Besides, the 3D path planning is also dependent upon 
the nature of the slices produced from the task-space. Those can be identical in nature or 
non-identical. Table 4 presents the scenario, highlighting the methods used for the collision-
free path planning,  
 

Parameter COLLISION-FREE PATH PLANNING 

Task-space 2 D [Planar] 3 D [Spatial] 

Robot Type D.O.F. = 2 D.O.F. > 2 D.O.F. = 2 D.O.F. > 2 

Method 
Used for 
Path 
Planning 

a] C-
space 
Map & b] 
V-graph 

a] (Multiple) 
C-space 

Maps  b] 
Most 
Significant 
C-space 
Map & c] V-
graph 

Identical 
Slice 

Non-identical 
Slice 

Identical 
Slice 

Non-
identical 
Slice 

a] Sliced 
C-space 

Maps  
b] V-graph 
based 
Paths & c] 
Final Path 

a] Sliced C-
space Maps 

 b] V-graph 
based Paths 
&c] 
Intersection of 
the Feasible 
Paths 

a] (Multiple) 
C-space 

Maps b] 
Most 
Significant 
C-space Map 
& c] V-graph 
for each slice 
& d] Final 
Path 

a] (Multiple) 
C-space 

Maps b] 
Most 
Significant 
C-space Map 
& c] V-graph 
for each slice 
& d] Union 
of the 
Feasible 
Paths 

Table 4. Illustrative Summary of the Methods Used for Collision-free Path Planning of 
Robots 
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4.2 Logistics of visibility graph formulation: Our model 
The workspace of the robot has been modeled by formulating the Visibility Matrix of the 
visibility graph6 of the cluttered environment. This matrix has been conceived as a kind of 
‘adjacency’ relationship and framed by knowing the necessary visibility information about 
the nodes of the graph. Figure 21 illustrates the visibility matrix, [Vij], as developed from the 
environment shown in fig. 20, which depicts a typical sub-visibility graph, generated out of 
several polygonal obstacles known a-priori (i.e. with pre-fixed locations).  

 

 
 

Fig. 20. A representative sub-visibility graph in two dimensions 

The matrix is of the order (N + 2) x (N + 2), ‘N’ being the total number of intermediate nodes 
of the graph. The full matrix is formed by adding the ‘start’ (S) and ‘goal’ (G) nodes, making 
[V ij] a square matrix. Each row of [Vij] gives the visibility information of that very node. For 
example, the fifth row of the matrix signifies that the node no. 4 (considering ‘S’ as the first 
node) can ‘see’ nodes 5, 6, 8, 16 & 21 only.  

                                                 
6 In order to reduce computational burden, ‘Sub-visibility Graph’ technique has been adopted in the 
present study. It considers only those obstacles in the robot workspace, which collide directly with the 
M-line. 
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1 2 3 4 5 6 7 8 16 17 18 19 20 21 22 23 24

0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 3 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0

3 0 0 0 0 4 0 6 7 0 0 17 18 0 0 0 0 0 0 0

4 0 0 0 0 0 5 6 0 8 16 0 0 0 0 21 0 0 0 0

5 0 0 0 0 0 0 6 0 8 16 0 0 0 0 21 0 0 0 0

6 0 0 0 0 0 0 0 7 0 0 17 18 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 8 16 17 1

S G

S 






 8 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 16 17 0 0 0 21 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 17 0 0 0 21 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 23 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 22 23 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 22 23 24 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 23 24 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23








 24 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G

G

G



  

Fig. 21. The visibility matrix developed from the environment shown in fig. 20 

Features of the visibility matrix are listed below: 
i. Nodes are numbered in ascending order from ‘S’ to ‘G’ maintaining counter-clockwise 

sense for each obstacle. Backtracking of the nodes is not allowed. Symbolically, if ‘nr’ is 
the particular node under consideration which can see nodes nj1, nj2,..........., njp,...., njk 

then: 

nj1 > nr  

and 

 nr-1  njp  N (21) 

where ‘njp’ is any general node of the graph, visible by the node ‘nr’ and ‘N’ is the goal 
node of the nodal series, namely 1,2,3,........,N. 

ii. Numbering of nodes is exhaustive and independent of the obstacle nomenclature. In 
other words, ‘njp’ is invariant to obstacle number and also does not have any correlation 
with any specific obstacle geometry in any form. 

iii. The entire matrix has got two parts symmetrically disposed off by the diagonal. Because 
of the reason stated earlier, the generalized element, ‘aij’ of [Vij], which signifies the 
visibility information of the jth. node as viewable with the ith. node as viewer, and can be 
expressed mathematically as: 

aij = 0 or j ,  j  i 
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aij = 0  j i 

ai1 = 0  i 

 aNj = 0  j (22) 

iv. For simplicity in computation, the original square matrix [Vij] of order (N+2) has been 
truncated to a square matrix of order (N+1), by deleting the first column and the last 
row. Since all the elements of these row and column are zero as per proposition, this 
modification will not alter the final result. Obviously, structure of this reduced matrix 
depends on the modeling of the robot environment and the total number of nodes 
present. 

v. It has been found from the composite evaluations that the total number of computations 
required for the path planning algorithms is slightly less than O (N2), ‘N’ being the total 
number of nodes in the visibility graph, corresponding to the workspace under 
investigation. 

vi. Essentially the visibility matrix reduces to the following structure in its most practical 
form, viz.: 

[Vij ] = 

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

d d d

d d

d

d

d

 
 
 
 
 
 
 
 
  

 

where, ‘d’ signifies the locations for non-zero entry. The left triangular matrix will be 

zero in a majority of cases, alongwith the diagonal elements. However, the visibility 

matrix may include some non-zero entries too corresponding to ‘sculptured obstacles’ 

with multiple vertices. With this structure of [Vij], which is time-optimized, the nodal 

lines can be computed as:  

 {Lij} = 
1

i N

i




 Ci (aij *) (23) 

where, {Lij} is the nodal line vector, (aij *) is the non-zero [aij ] and Ci (aij *) is the 

cardinality of aij *. For example, Ci (aij *) for the ‘S’ node (i.e. the first row of [Vij] with i = 

1) becomes 2. 

In addition, the total number of imaginary lines in the visibility graph can be computed 

as: 

 {Lij*} = {Lij} - 
1

k N

k




  dk  (24) 

where, ‘dk’ is the number of edges of the kth. obstacle. 

vii. A quick estimation of the computational time for the algorithmic path planning using a 

finalized visibility graph of the robot workspace reveals the following: 
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   {Lij } or {Lij*} (25) 

where, ‘’ is a factor representing the computational time and the memory requirement 

factor, say , will be as follows: 

  {Lij *} (26) 

Also the range of ‘’ may be estimated for all practical computational situations as, 

 O (N) <  (27) 

It is to be noted that the lower bound of ‘’ is certainly beyond O (N), while the upper 

bound can marginally reach O as ‘N’ tends to some larger value. 
Regarding circular obstacles in 2D plane, a trade-off has been attained between the 
approximation to the nearest polygonal shape and the computational burden. For example, 
a perfectly circular-shaped object can be approximated with a circumscribing square-shaped 
object, but it will be about 80 % less efficient in comparison to an approximation with an 
octagonal shape. Hence, the decision for the optimal selection for approximation for a 
circular obstacle remains with the overall complexity of the visibility graph, i.e. essentially 
the value of ‘N’ generated thereby. 

4.3 Development of the path planning algorithm in 2D plane 
The new heuristic algorithm, namely, Angular Deviation Algorithm, has been developed to 
obtain near-optimal path for the manipulator amidst obstacles in a planar workspace. The 
formulation of the heuristics and subsequently the solution phase are based on A* search 
technique, in general. Following legends have been used in formulating the algorithm. 
S: The ‘start’ location of the robot end-effector (in Cartesian or C-Space); 
G: The ‘goal’ location of the robot end-effector (in Cartesian or C-Space); 

SG  : The imaginary line joining ‘S’ and ‘G’; 

LM-Line: The geometric length of the imaginary line joining ‘S’ & ‘G’, i.e. the ‘M-Line’; 
x : An intermediate level in the graph search process; 
Vx_j : jth. visible node from xth. node in the visibility graph; 
x  Vx_j : The nodal line, joining the xth. node and the jth. visible node (from xth. node); 

i : Iteration number of the graph search process. 
This algorithm relies on angular deviation as the necessary computing heuristic, which is in-

built in nature. It considers each line-segment, { lij }, where, lij  { l }, joining the nodes, say, ni 

and nj, where (ni , nj )  { n },  i , j  I, of the sub-visibility graph and computes the angular 
deviation of that { lij } with respect to the M-line. The logic of this algorithm is to minimize 
the Angular Heuristic Function, as generated from the angular deviations, at each level of 
searching. Hence, in a cluttered environment the near-optimal path can be chosen by 
considering only those line-segments, which are comparatively closer to the M-line. 
Steps: 
1. Initialize the search with i=1. 
2. For i=1, loop starts with ‘S’: note VS_1, VS_2, ................, VS_p. 

3. Compute: S_1 = Ang ( SG, SVS_1); S_2 = Ang (SG, SVS_2 ),.......... S_p = Ang (SG, SVS_p.).  

4. Check: min. ( S_1 , S_2 ,............, S_p ). 
5. If VS_p. = ‘G’, then stop. 
Else, 
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6. i = i + 1. 

7. Begin the next level of search from the xth. node with min.( S_x ). 

8. Compute: { x_j } = { Ang ( SG, XVx_j ) }, where x < j  N, ‘N’ being the total number of 
nodes in the graph. 

9. Go on searching likewise till ‘G’ occurs and finally note the nodes of the optimal path, 
so achieved. 

4.4 Paradigms of path planning in 3D space for two degrees-of-freedom robots 
4.4.1 Model for C-space slices and path generation 
The concept of discretization of robot workspace in preferential 2D slices has been applied 
for generating safe path in a spatial manifold. As a result, multiple c-space slices are 

generated depending upon the features of the individual slices. Safe paths are then 
determined, using the Angular deviation algorithm, separately for each such c-space slice 

produced. Thus, if a spatial workspace is segregated in ‘k’ slices, then there will be ‘k’ c-
space slices also. Figure 22 schematically presents the view of the sliced c-space maps for a 

known environment. 
 

 

Fig. 22. Schematic view of the sliced c-space maps for a two degrees-of-freedom robot 
workspace 

It may be noted that we need to generate c-space slices, as shown in fig. 22, for all the slices 

equally since our c-space mapping algorithms are in 2D and those are based on planar 

collision avoidance principles concerning Point, Line & Circle obstacles. Since the total 

number of slices for a specific environment is fixed a-priori, it may so happen that a 

particular slice of an object is not falling under the obstruction zone of the robot. In that case, 

that particular slice of that object will not appear in the corresponding c-space slice (e.g. 

refer jth. slice c-space map of fig. 22, wherein the slice for obstacle 3 is absent). Nonetheless, 

the axiom followed is if the last slice of any obstacle is collidable, then all its previous slices ought 
to be. But the vice-versa is not true.  

Once the requisite c-space slice maps are generated, we need to evaluate the safe paths in 
each of these sliced c-space maps using the visibility-based Angular deviation algorithm. 
Thus a set of paths will be obtained and the cardinality of the set will be equal to the number 
of slices. Finally we will take the intersection of the possible paths, as only intersection set 
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will represent the optimal path in true sense. However, intersection won’t be the solution for 
situations where slice(s) for obstacle(s) is/are absent in a particular c-space slice. For 
example, with reference to fig. 22, considering two c-space slices in total, we have to follow 
the path shown in the first map, i.e. the ith. slice map. 
On the other hand, in situations where all the object-slices are present in all the c-space 
slices, then intersection can be advantageous, as we can omit longer routes via nodes in 
certain instances. A typical case is exemplified in fig. 23. Here a particular object is shown to 
have slightly different geometries and the path between ‘S’ & ‘G’ also varies accordingly as 
shown. In case (a), we are unable to consider 2’ as ‘node’, because of the proposition of 

visibility graph and the path (viz. S ……123G) is bound to pass through the 
stipulated node 2 only. However, node 2’ lies very much inside the boundary of the c-space 
obstacle and in fact, it is closer to ‘G’ as compared to node 2. Thus the path shown in case (b) 

is the optimal solution (viz. S ……..12’G) and in fact, it is also the intersection of the 
two alternatives.  
 

 

Fig. 23. Selection of path using intersection of alternatives (paths) 

4.4.2 Quantitative evaluation of C-space slice points 
In order to evaluate the c-space points mathematically, the relevant algorithm generates the 
intercept co-ordinates (X & Y) corresponding to each ‘slice’, which are governed by the 
rotational range of the robot waist and the finite resolution of the waist rotation. The 
program is applicable only to rectangular 3D solid obstacles, e.g. cube, rectangular 
parallelopiped, pyramid etc., either directly or after duly transformed from spherical or 
semi-spherical obstacles. The model is being illustrated schematically through fig. 24. 
The relevant formulation vis-à-vis algorithm of the concerned model is described in detail 
below. Consider figure 24, let: 
w : Width of the obstacle; 
d : Distance between the robot and the obstacle ; 
( xb , yb ) : Co-ordinates of the robot base; 
( x1 , y1 ) & ( x2 , y2 ) : Co-ordinates of the edge of the obstacle in consideration in 2D 
elevation; 

b_max. & b_min. : Maximum and minimum values of the base rotational edge ; 

S : Slicing value of the base rotational angle. 
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Fig. 24. Schematic representation of the dimensional metrics of a 2D ‘Slice’ 

The range of base rotation is computed as, 

 rbase = (b_max. - b_min.) (28) 

Length of the ‘edge’ of the obstacle is, 

 l = [ ( x2 - x1 )2 + ( y2 - y1 )2 ]1/2  (29) 

Now, only one slice is possible, if, 

 d (  S / 180 ) > w  (30) 

In situations where more than one slice is possible for a particular obstacle, two cases can 
appear. 

Case I: Robot base is in-line with the obstacle 

In this case, let S = d (i / 180) , where S  i  rbase . 

If S  w, then ‘slice’ is possible and co-ordinates of the intercept of the slices are given by, 

 xint_1 = x1 + [ l tan i / ( l/d) ] [ 1 + ( l/d )] (31) 

 yint_1 = y1 + [l tan i / ( l/d) ] [ 1 + ( l/d )] (32) 

 xint_2 = x2 + [l tan i / ( l/d) ] (33) 

 yint_2 = y2 + [l tan i / ( l/d) ] (34) 

where, (xint_1, yint_1 ) and (xint_2 , yint_2 ) are one set of co-ordinates corresponding to one slice. 

With i varying within its range with an increment of S, the other set of slice co-ordinates 
will be obtained. 

Case II: Robot base is not in-line with the obstacle 

In this case, 

 in = tan-1 [ | ( y2 - yb ) / ( x2 - xb ) | ]  (35) 
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Also, 

 S’ = d [j - in ) / 180 ],  j , where in  j  rbase.  (36) 

If S’  0 and S’  w, then slice is possible and co-ordinates of the intercept of the slices are 
given by, 

 xint_1n = x1 + [ l tan (j - in) / ( l/d ) ] [ 1 + ( l/d )] (37) 

 yint_1n = y1 + [ l tan (j - in) / ( l/d ) ] [ 1 + ( l/d )] (38) 

 xint_2n = x2 + [ l tan (j - in) / ( l/d ) ] (39) 

 yint_2n = y2 + [ l tan (j - in) / ( l/d ) ] (40) 

As before, (xint_1n , yint_1n ) and (xint_2n , yint_2n ) are one set of co-ordinates corresponding to 

one slice. With j varying within its range with an increment of S, the other set of slice co-
ordinates will be obtained. Selection of ‘safe’ nodes of the robot end-effector in the 3D space 
depends on the elemental results, as obtained from the corresponding planar analysis. 
Symbolically, if the collision-free path for one particular ‘slice’ is represented as, 

 { PS_k } = { S, X1, X2, ..............., G }S_k (41) 

where, X1, X2, ..............., represent the serial number of the ‘safe’ nodes (may not be in the 
same order as the node nos., viz, 1,2,3,........) and ‘s_k’ is the kth. slice, then the final path will 
be the union of all such feasible combinations, viz., 

 { P } = 
1

k n

k




 { PS_k } (42) 

where, ‘n’ is the total number of slices generated. 

4.5 Evaluation of path in 3D for higher dimensional robot 
As depicted in fig. 19, evaluation of the collision-free path in 3D will depend on the degrees-
of-freedom of the robot (i.e. whether d.o.f. =2 or >2). Nonetheless, in both the cases we need 
to fragment the 3D task-space in multiple slices, which may or may not be identical to one 
another. Thus, we will arrive at a situation wherein we have to deploy different strategies to 
evaluate a safe path. These models are described below. 

4.5.1 Model for obtaining safe path for identical slices 
The first and foremost pre-requisite of evaluating a collision-free path in this case is to have 
the most significant 2D c-space slice map for the robotic workspace under consideration, as 
described in 3.4.2. Once the critical c-space slice map is earmarked, the next task is to pin-
point the corresponding locations for ‘S’ & ‘G’ in that map. This can be achieved by using 
the inverse kinematic solution for ‘S’ & ‘G’ and subsequent mapping from task space to joint 
space. For example, consider again the case of a seven degrees-of-freedom robot shown in 

fig. 9, wherein say the [3 -- 4] map is the most significant. Thus, the corresponding 

visibility graph of the environment will have non-identical ‘S’ & ‘G’ signatured as, S: (3 =0, 

4=0) and G: (3=0, 4=0). We will assume that the set of other joint-angles, i.e. {1, 2, 5, 

www.intechopen.com



 
Spatial Path Planning of Static Robots Using Configuration Space Metrics 

 

447 

6, 7} to be constant throughout the process of path generation. Now, by using the 
developed path planning algorithm, we will finally get a collision-free optimal path between 

S: (,) and G: (,). The generalized representation of co-ordinates of any two nodes (say Ni 
& Nj) of the said path will be as follows, 

Ni {(1= c1, 2 = c2), 3 = xi, 4= yi, (5 = c5, 6 = c6, 7 = c7)} 

and 

Nj {(1= c1, 2 = c2), 3 = xj, 4= yj, (5 = c5, 6 = c6, 7 = c7)} 

Where [c1 & c2] and [c5, c6 & c7] are two non-identical group of constants to be evaluated 
using inverse kinematics solution for ‘S’ and ‘G’ respectively. 
The general lemma in this regard is stated as below, 

Ni {(1= c1, 2 = c2,..…,p-1= cp-1), p= xi, q=yi, (q+1 = cq+1, q+2 = cq+2,…,k = ck)} 

and 

Nj {(1= c1, 2 = c2,……,p-1= cp-1), p = xj, q= yj, (q+1 = cq+1, q+2 = cq+2,…,k = ck)} 

where, k: the degrees-of-freedom of the articulated robot; 1, 2,…… p, q,….. ,k: joint-

angles of the robot of which ‘p’ & ‘q’ represent any two consequtive pair; [p -- q]: the most 
significant c-space slice map; [c1, c2,..…,cp-1] & [cq+1, cq+2,…,ck]: two non-identical group of 
constants to be evaluated using inverse kinematics solution for ‘S’ and ‘G’ respectively.  
Once this path is obtained for a particular slice, say the first one, the same procedure can be 
repeated for other slices too, because all the slices are identical. And, obviously the same path 
will be obtained in all slices, which will be designated as the final path for that robot in 3D. The 
kinematic inversion for ‘S’ & ‘G’ is another important facet in this regard and analytically, 
there can be multiple feasible positions of ‘S’ as well as ‘G’ in the c-space plot (refer fig. 25). 

One each from the two clusters of feasible locations can be selected for S: (,) and G: (,).  
 

 

Fig. 25. Multiple feasible locations for ‘S’ & ‘G’ inside a specific c-space plot 
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4.5.2 Model for obtaining safe path for non-identical slices 
In this case, we will get different sets of nodal points, corresponding to safe paths, for each 
slice. The procedure for obtaining a particular set of nodal points (nodes) for a specific slice 
is same as described in 4.5.1. But the challenge involved here is the most significant c-space 
slice is not fixed for the slices, rather in worst case it will differ. For example, let us take the 
case of seven d.o.f. manipulator and we assume there are five slices in the workspace. After 

c-space slice mapping, we find that while [3 -- 4] is the most significant map for the first 

slice, [1 -- 2] is the same for second slice. And likewise, the maps of [3 -- 4], [5 -- 6] &  

[1 -- 2] are the significant ones for third, fourth and fifth slice respectively. Thus the hurdle 
becomes in unifying these varying sets of maps into one final path. This is solved 
considering the union of the available sets of nodal points.  
In general, if there are ‘k’ non-identical slices and the sets of nodal points for each safe path 
are represented by, {Sk} = {N1k, N2k,……….,Nqk}, where ‘q’ is the cardinality of the set and 
the value of ‘q’ may vary for different ‘k’, then the final path will be defined as, 

   
1

p k

Final p
p

S S




   

In other words, statistical union of nodes will proceed slice-wise; i.e. to get the safe path 
complete posting all the nodes under one slice, then move on to the next slice and so on, till 
all the slices are exhausted. Nonetheless, the co-ordinates of the nodes in the path will be 
evaluated as per the lemma described in 4.5.1. 

4.6 Illustrative examples 
The developed path planning algorithm has been tested with two sample environments, the 
first one is contains a two degrees-of-freedom robot while the second one includes a seven 
degrees-of-freedom robot. 

4.6.1 Sample workspace for two degrees-of-freedom robot 
This example has a reference to the robot workspace with circular obstacles, as shown in  
fig. 6 and subsequently, the c-space map, vide fig. 8. Figure 26 presents the final c-space 
obstacles7 with nodes numbered sequentially and the visibility graph generated there from.  
Table 5 shows the output of the graph search process using our algorithm, developed with 

‘S’ & ‘G’ configurations as (600, -1200) and (2220, 1900) respectively. For comparison, the 

result obtained through A* search algorithm is also included. 

It may be mentioned here that we can very well benchmark the result obtained by the 

Angular Deviation Algorithm, as it is representative amongst the AI-based heuristic 

algorithms. In fact, due to its logistics, the developed algorithm is having an edge over the 

other possible metrics of path planning, e.g. Generalized Voronoi Diagram (GVD), Cellular 

Automata and Potential Field. All of these three methods rely on diversification in search, 

which eventually leads to more computational time and complexity. Besides, the important 

attribute, namely, “closeness to desired path” is compromised in most of the non-AI based 

techniques. In comparison, AI-based searches are much robust and coherent; like the case  

                                                 
7 Only obstacle 3,5 & 6, referred in figures 6 & 8, have been considered for the creation of visibility 
graph in order to reduce computational complexity. 
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Fig. 26. Visibility graph generated out of the 2D environment, vide fig. 6 

 

Algorithms Used Path With Nodes 
Joint-angle Combination 

(in degrees) 

Angular Deviation Algorithm S  2  3  G (60,-120); (240,-166); (240,-139); 
(222,190) 

A* Algorithm S 1 9  7  

13 12  G 

(60,-120); (0,66); (0,86); (67,240); 
(129,240); (187,240); (222,190) 

Table 5. Collision-free Near-optimal Path between ‘S’ & ‘G’ with reference to Example in  
fig. 26 

with Angular Deviation Algorithm. The other group of search algorithms, based on 
mathematical programming, such as Variational Methods, Hierarchical Dynamic 
Programming and Tangent Graph Method, are although relatively better focused, but those 
are highly memory-extensive. Thus, in all counts, Angular Deviation Algorithm scores high 
amongst the various alternatives in graph-search methods. 

4.6.2 Sample workspace with seven degrees-of-freedom robot 
This example is in reference to the robotic environment shown in fig. 17 and subsequently 
the various c-space slice maps, as detailed in fig. 18. As we have declared in section 3.5 that 

[1 -- 2] plot is the most significant out of the four plots, we need to obtain the v-graph for 
this plot. Figure 27 shows the developed v-graph for this c-space slice plot. Here the 
generated v-graph is relatively simpler by default as it has only four nodes, which is due to 

the fact that both the joint-angles in consideration, viz. 1 & 2 are plotted in their full ranges. 
Thus ‘S’ & ‘G’ are also located on the boundary lines, because other locations will be 
infeasible.  
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However, it is to be noted that the exact shape of the v-graph (generated out of the most 
significant c-space slice plot) will depend upon the joint-angle ranges of the joint-pair under 
consideration and we will have distinct locations for ‘S’ & ‘G’, outside the c-space zone. It is 

evident from fig. 27 that S23G is the optimal path as ‘’ is the smaller angle, which 
guides this path as per Angular deviation algorithm.  
The generalized formulation for evaluating the angular position of ‘S’ & ‘G’ in the v-graph 
(using inverse kinematics routine for the manipulator) is as follows, 

 
7

1 1

j k j
m

mj k
j k

Cosl X
 

 

 
  

 
   (43a) 

 
7

1 1

j k j
m

mj k
j k

Sinl Y
 

 

 
  

 
   (43b) 

where. ‘m’ : positional attribute of the end-point, i.e. either ‘S’ or ‘G’; {lj}: link-lengths; {km}: 
joint-angles for ‘S’ or ‘G’ and (Xm, Ym): planar Cartesian co-ordinates for ‘S’ or ‘G’. 
Now considering the Cartesian co-ordinates for ‘S’ as (20, 72.5) and the constant values for 

{3 4 5 6 7} as [100 50 150 60 100] we can solve for 1 & 2 using eqns. (43), which gives us 

1S  600 and 2S  00. Similarly considering ‘G’ as (-30, -40) with the constant values for {3 4 

5 6 7} as [50 80 180 40 130] we can solve for 1 & 2, which gives us 1G  1080 and 2G  

1200.Thus, as proposed in section 4.5.1, the nodes, {Nk, k=1,2,3,4} of the final collision-free 

path of the manipulator between ‘S’ & ‘G’ will be: N1  ‘S’ = (600, 00, 50, 80, 180, 40, 130); N2 = 

(1400, 00, 50, 80, 180, 40, 130); N3 = (1400, 1200, 50, 80, 180, 40, 130) and N4  ‘G’ = (1080, 1200, 50, 
80, 180, 40, 130). 
 

 
 

Fig. 27. Visibility graph obtained as per the most significant c-space slice plot of fig. 18 
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5. Case study 

We have studied one real-life case of robot path planning in 3D, based on c-space modeling 
and v-graph searching, as delineated in the paper so far. The study was made with a five 

degrees-of-freedom articulated robot, RHINO-XR 3, during its traverse between two pre-
defined spatial locations through a collision-free path. The main focus was to maneuver this 
robot between 3D obstacles in reaching a goal location in a cluttered (laboratory) 
environment. Since RHINO is a low-payload robot, instead of standard pick-and-place tests, 
we designed our experiment such that it had to only touch the start (‘S’) and goal (‘G’) 
locations by the gripper end-point. The safe path in 3D, between the start and goal locations, 
was arrived using c-space slice mapping and Angular Deviation Algorithm (refer section 4.3). 
Figure 28 presents the photographic view of the experimental set-up, emphasizing the 
combined obstacle zone.  
 
 
 
 

 
 
 
 

Fig. 28. Photographic view of the test set-up for spatial path planning with RHINO robot 

Based on the obstacle zone map vis-à-vis waist rotation of the RHINO robot, we have 
discretized the workspace into three non-identical slices. The task-spaces, corresponding to 
these slices, are schematically shown in fig. 29. In all the sliced maps, the vertices of the 
combined obstacles are labeled alphabetically, with a numeric indication for the slice-
number. For example, the vertex “A1” signifies the vertex number “A” in slice number1. It is 
to be noted that the vertex numbers are not obstacle-specific, rather those are serially 
numbered depending on the shape of the obstacle-zone in that very slice. 
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Fig. 29. Schematics of the Cartesian task-space slices for the case-study with RHINO robot 

The co-ordinates of the vertices under each of the three slices were obtained by physical 
measurement of the task-space in 3D. In other words, first we took the measurements of the 
Boolean obstacle(s) in (x,y,z) form and then the planar co-ordinates of the slice-vertices were 
evaluated using the method of projection geometry. The co-ordinates of the vertices, so 
evaluated, under each slice, are tabulated in the matrix below. 
 

1 { 1 : (10,20) 1 : (190,20) 1 : (190,68) 1 : (145,68) 1 : (145,98) 1 : (85,98) 1 : (85,80) 1 : (95,80)

1 : (95,68) 1 : (45,68) 1 : (45,78) 1 : (10,78) 1 : (15,128) 1 : (45,128) 1 : (40,135) 1 : (40,155) 1 : (20,155)

1 : (20,135) 1

Slice A B C D E F G H

I J K L M N O P Q

R S



: (210,128) 1 : (240,128) 1 : (235,135) 1 : (235,155) 1 : (215,155) 1 : (215,135)}

2 { 2 : (15,25) 2 : (195,35) 2 : (192,54) 2 : (170,58) 2 : (160,88) 2 : (142,68) 2 : (140,58) 2 : (45,68)

2 : (15,68) 2 : (18,130) 2 : (52,132) 2 :

T U V W X

Slice A B C D E F G I

J K L M


(47,138) 2 : (48,142) 2 : (22,150) 2 : (22,132) 2 : (212,138) 2 : (242,140)

2 : (236,136) 2 : (236,156) 2 : (222,154) 2 : (220,134)}

3 { 3 : (18,28) 3 : (198,38) 3 : (193,56) 3 : (172,58) 3 : (168,88) 3 : (142,88) 3 : (18,134) 3

N O P Q R

S T U V

Slice A B C D E F G H : (52,134)

3 : (46,138) 3 : (48,144) 3 : (24,148) 3 : (24,128)}I J K L

 

 
The co-ordinates of the ‘S’ and ‘G’ are measured prior to the experiment and those are 
(30,145,40) & (225,145,42) respectively. It may be mentioned that ‘S’ & ‘G’ will not appear in 
the sliced task-space(s); rather, those will be only in 3D task-space as well as in c-spaces 
(sliced). Now, considering the kinematics of the RHINO robot, we get a feasible set of joint-
angle combinations for ‘S’ & ‘G’ though inverse kinematics as, 

‘S’: {1=500, 2 = -100, 3 =150, 4=500, 5=150} 

and 

 ‘G’: {1=600, 2 = 1200, 3 =580, 4=980, 5=200}.  

As evident by now, we will have three non-identical c-space slice maps for this 
environment and for the clarity in comparison between these three maps, we have 

selected common scale for the joint-angles. For example, the scale of ‘1’ in slice1 map will 
be same as that of in slices 2 & 3 and likewise, for other joint-angles. This universality in 
scaling is helpful in judging the most critical map of a particular slice. We will now present 
the details of the three c-space slice maps, in their final form, alongwith the demarcation 
of the most critical map(s). 
Figures 30,31 & 32 illustrate the conjugate maps corresponding to slice#1, slice#2 & slice#3 
respectively. 
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Fig. 30. C-space map for the first slice pertaining to the case- study 

 

 
 

Fig. 31. C-space map for the second slice pertaining to the case – study 
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Fig. 32. C-space map for the third slice pertaining to the case – study 

It is to be noted that some of the c-space slice maps in the above figures bear similarity; in 
fact, those maps are bounded by rectangular regions, occupying the full rotational ranges8 of 
the participating joint-angles. That means, the full region is formidable, so far as the 
selection of safe nodes are concerned. This property is unique in the developed method, and 
it is helpful for obtaining the safe path in the final go. Now, assimilating all the three critical 
c-space slice maps as per figs. 30,31 & 32, we get the final safe path for the environment as 

the statistical union of the slice maps and it is represented as, S  “2”[1]  “3”[1]  “4”[2]  

“4”[3]G, where the legend “N”[k] symbolizes node ‘N’ of the k th. slice (refer section 4.5.2 for 
the formulation). Thus, the final path has got four Intermediate Points (IP), besides ‘S’ & ‘G’. 

The joint-angle combinations for these ‘IPx’, x=1,..,4 (as labeled from ‘S’ onwards) are 

evaluated as, IP1 “2”[1] {1=1200, 2 =-100, 3=580, 4=980 5=200}; IP2 “3”[1] {1=1200, 2 

=1200, 3=580, 4=980 5=200}; IP3 “4”[2] {1=500, 2 =-100, 3=200, 4=970 5=200} and IP4 

“4”[3] {1=500, 2 =-100, 3=300, 4=970 5=200}. 
Table 6 presents a summary of the various important outputs pertaining to the case study, 
with details of the computational time (for PC-based evaluation). Here, Elapsed Time has 
been divided into elemental time-periods (computational) against 4 sub-heads, viz. “A”: 
Generation of slices in task-space with co-ordinates (x,y) & node numbering; “B”: Generation of c-
space maps, including the critical-most; “C”: Development of the v-graph and “D”: Graph searching 
& output of the Angular Deviation Algorithm.  

                                                 
8 The effective rotational ranges of the five joint-angles of the RHINO robot are, 1: (-400 to 1200), 2: (-100 

to 1200), 3: (100 to 900), 4: (100 to 1000) and 5: (50 to 650), as selected on the basis of our task-space 
layout & experiments. 
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Slice Task Space Critical C-space 
& V-graph path 

Elapsed Time (for computation) [sec.] 

A B C D Total 

1 4.5869 32.3878 16.8239 3.7116 57.5102 

2 4.3758 30.9764 16.7132 3.7208 55.7862 

3 3.8916 30.3358 16.4581 3.7211 54.4066 

Final (Combined Computation)  4.7938 32.8832 16.8423 3.7428 58.2621 

Table 6. Summary Data for the Case Study with Details of the Computational Time [PC-
based] 

It may be noted that elemental timings for module A, B, C & D against individual slices give 
an apprehension regarding the relative toughness of the corresponding task-space and later 
on c-space & v-graphing. On the contrary, the final combined timings indicate the actual 
processing time (using multi-session processing of the operating system of the PC) of the 
problem, with usual co-processor actuations. Similar timings were observed while using A* 
algorithm for graph search. 

6. Conclusions 

The details of the visibility graph-based heuristic algorithm for safe path planning in 2D 
plane as well as 3D space have been discussed in the paper, backed up by the theoretical 
paradigms of the generation of c-space obstacles from their respective task-spaces. The 
outcome of the c-space and v-graph algorithms have been found effective in programming 
the robot in order to perform certain pre-specified tasks or a series of tasks, such as in 
somewhat off-the-track industrial applications. The best path needs to be selected out of the 
possible alternatives by considering the most feasible criteria, which is essentially 
application specific. The novelty of the developed method lies with the ease of 
computational burden as 2D c-space slices are being joined statistically (union). Also by not 
incorporating all obstacles in one c-space slice we are improving upon computational 
efficiency and thereby reducing undue technical details regarding the obstacles. However, 
the safe path obtained by the developed method may overrule some nearer nodes, because 
the corresponding c-space slices are based on maximum safety margins, as per the 
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propositions of the model. In fact, the concept of formidable zones is introduced in our model 
to avert potentially dangerous joint-angle configurations and thus, at times, the entire joint-
angle range-space gets selected for the c-space map. The reason for taking this lemma is to 
safeguard the robot’s motion between ‘S’ & ‘G’ to the best extent. Thus we may end up in 
some joint-angle (nodal) combinations, which might have been omitted, but it is always 
better to select a safe & secured path, rather than risking the robot motion for potential 
grazing and/or full collision with the obstacle(s). As per the proposed method, c-space slices 
often look trivial (e.g. regular geometrical shaped obstacles), although those are quite 
computationally intensive. Nonetheless, the geometrical simplification in appearance makes 
the v-graph map easy and subsequently the graph-search process too.  
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