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1. Introduction 

The lung tumor microenvironment consists of tumor cells, stroma, blood vessels, immune 
infiltrates and the extracellular matrix. Genetic alterations in oncogenes and tumor 
suppressor genes or epigenetic changes in the tumor that modulate tumor growth and 
invasion into the surrounding tissue orchestrate the persistence of inflammatory infiltrates. 
These cellular infiltrates modulate tumor development and progression. The infiltrates vary 
by size and composition in diverse tumor types and at different stages of tumor 
development. The lung tumor programs the cellular infiltrates and dysregulates 
inflammation to sustain tumor growth, progression and hypo responsiveness of the tumor. 
Characterization of the complex interactions among the infiltrates and lung cancer will aid 
in defining their role in tumor progression. This understanding will be important for the 
development of novel anticancer therapies. Although this is not a trivial undertaking, the 
information garnered will take us a step closer to personalized medicine. If we know an 
individual’s lung tumor inflammatory infiltrates, we will be able to predict the risk of tumor 
progression and then give specific treatment to reprogram the tumor microenvironment to 
control the disease.  

Contributing to the inflammatory infiltrates are members of the innate system including 
natural killer cells (NK) and the cells of the myelomonocytic lineage consisting of immature 
macrophages, granulocytes, dendritic cells (DC) as well as myeloid cells at earlier stages of 
differentiation (Sica and Bronte 2007; Talmadge 2007; Gabrilovich and Nagaraj 2009; 
Peranzoni et al. 2010). The down regulation of MHC expression by tumors enables them to 
evade T cell immune responses. The presence of NK cells in the infiltrates can contribute to 
antitumor activity because NK effectors recognize tumor targets independent of MHC 
expression (Moretta et al. 2001). However, there is usually a paucity of NK cells in the tumor 
microenvironment suggesting evasion mechanisms preventing their recruitment. 
Macrophages in the tumor microenvironment play an important modulatory role in the 
generation of anti tumor responses. The production of chemotactic factors such as CCL2, 
VEGF and M-CSF (Condeelis and Pollard 2006; Sica et al. 2008) in the tumor 
microenvironment recruits macrophages. The type of macrophages infiltrating the tumor 
correlates with favorable or unfavorable prognoses (Lewis and Pollard 2006). The M1 
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macrophages have potent antigen presentation function and stimulate Type 1 immune 
responses that lead to tumor rejection, tissue destruction, and host defense. M1 macrophage 
density in the tumor islets is positively associated with extended survival of non-small cell 
lung cancer (NSCLC) patients (Ma et al. 2010). The M1 macrophages produce high levels of 
IL-12, CXCL10 and inducible nitric oxide synthase (iNOS) (Mantovani et al. 2007). In 
contrast, M2 macrophages are thought to promote tumor formation by enhancing wound 
healing and tissue remodeling via inhibition of Type1 immune responses by IL-10 and TGFǃ 
secretion. The M2 macrophages express high levels of IL-10 and arginase that suppress 
antitumor immune responses (Mantovani et al. 2002; Mantovani et al. 2005; Mantovani et al. 
2007; Sinha et al. 2007). These macrophages increase metastatic potential by increasing 
tumor cell migration, invasion and angiogenesis. The tumor microenvironment also consists 
of T and B lymphocytes of the adaptive immunity. The phenotypes of the T and B subsets 
evoked in chronic inflammatory state of the tumor microenvironment are regulatory in 
nature and dampen immune responses against the tumor. B cells and antibodies have a key 
role in orchestrating macrophage-driven, tumor-promoting inflammation (Andreu et al. 
2011), suggesting that modulating the pathways involved might be of therapeutic benefit in 
cancers driven by chronic inflammation.  

Lung cancers contain a significant population of tumor infiltrating myeloid cells that 
promote tumor growth by suppressing the immune system. In this review we will focus on 
the interaction between lung cancer and myeloid derived suppressor cells (MDSC) that 
suppress antitumor immune responses and contribute to tumor progression. 

2. Immune modulation in the lung tumor microenvironment by myeloid 
derived suppressor cells 

2.1 Myeloid mediated downregulation of immune responses in the tumor 
microenvironment 

MDSC are a heterogeneous population of immature myeloid cells (IMC) that consists of 
myeloid progenitors and precursors of macrophages, granulocytes and DC. In tumors 
immature myeloid cells are partially blocked at the immature state and do not 
differentiate into mature myeloid cells that results in an expansion of this population. The 
activation of these cells in cancer results in the upregulated expression of immune 
suppressive factors such as arginase and iNOS and an increase in the production of nitric 
oxide (NO) and reactive oxygen species (ROS). These expanded IMC populations with 
immune suppressive activity; are collectively known as MDSC. Investigations on diverse 
tumor types have demonstrated that MDSC accrual in the tumor microenvironment is 
dependent on tumor derived soluble factors including growth factors, cytokines and 
chemokines. Granulocyte macrophage colony stimulating factor (GM-CSF) supports the 
survival and expansion of MDSC in the tumor microenvironment (Serafini et al. 2004). 
The sources of GM-CSF are tumors or activated immune effectors such as T, NK and DC. 
IL-1ǃ has been demonstrated to accumulate MDSC in tumors of mice (Lu et al. 2011). 
Tumor derived PGE2 has also been shown to cause an accumulation of MDSC in lung 
cancer (Zhang et al. 2009). MDSC accumulation and immune suppression, provides one of 
the mechanisms through which inflammation can contribute to lung cancer development 
and progression. 
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Fig. 1. Modulation in the balance of immune effectors and suppressors in the lung tumor 
microenvironment. The lung tumor microenvironment has increased myelomonocytic and T 
regulatory immune suppressors and decreased immune effectors (NK, DC, CD4T, CD8T 
and M1) that promote tumor growth kinetics and progression.  

2.2 Molecular mechanisms of myeloid derived suppressor cell mediated T cell 
inactivation 

MDSC suppress immune responses to newly displayed tumor antigens and promote tumor 
progression and the metastatic potential of the tumor. MDSC suppress T cell activation in 
tumor tissues and draining lymph nodes through several mechanisms. MDSC use two 
enzymes involved in L-arginine metabolism to control T-cell responses: Arginase which 
depletes the milieu of L-arginine and iNOS which generates NO. L-arginine is essential for T-
cell function, including the optimal use of IL-2 and the development of a T-cell memory 
phenotype. MDSC arginase 1 gene (ARG1) is induced by cytokines such as TGFǃ and IL-10 
within the tumor microenvironment. The MDSC mediated depletion of arginine suppresses 
CD4 and CD8 T cell activation. IFNǄ and TNFǂ in the tumor microenvironment induce iNOS 
in MDSC releasing NO which blocks the phosphorylation and activation of several targets in 
the IL-2 receptor signaling pathway and induces T-cell apoptosis (Mazzoni et al. 2002).  

Cysteine another essential amino acid for T cell activation is depleted by MDSC. T cells lack 
the enzyme to convert methionine to cysteine and the membrane transporter to import 
cystine for intracellular reduction to cysteine. T cells obtain their cysteine from extracellular 
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sources. During normal antigen processing and presentation activity, DC and macrophages 
synthesize cysteine from methionine and import extracellular cystine for cysteine 
conversion. Cysteine is then exported by antigen presenting cells (APC) during antigen 
presentation, and imported by T cells. Like T cells, MDSC are unable to convert methionine 
to cysteine and are dependent on importing cystine for conversion to cysteine. In the tumor 
microenvironment MDSC are present in high concentration and import most of the 
available cystine that deprive DC and macrophages. Since MDSC do not export cysteine, 
they deprive T cells of cysteine that is necessary for synthesizing proteins required for T cell 
activation (Srivastava et al. 2010). 

MDSC mediated down regulation of T cell L-selectin (CD62L) further impairs T cell activity. 
CD62L is a plasma membrane molecule necessary for homing of naive T cells to lymph 
nodes for activation by tumor antigens. MDSC down-regulate CD62L on naive T cell that 
reduces T cell capacity to migrate to lymph nodes (Hanson et al. 2009).  

MDSC-produced ROS and peroxynitrite in the tumor microenvironment inhibit CD8+ T 
cells by catalyzing the nitration of the T cell receptor and thereby preventing T cell-peptide-
MHC interactions. MDSC also down-regulate the T cell receptor-associated ζ chain, a 
phenomenon common in cancer patients (Nagaraj et al. 2009). In the absence of the zeta 
chain, T cells are unable to transmit the required signals for activation.  

2.3 Cellular mechanisms of myeloid derived suppressor cell mediated immune 
suppression  

MDSC impair T cell activation by directly inducing T regulatory cells (Treg) through the 
production of IL-10 and TGFǃ, or arginase that is independent of TGFǃ. The Treg cells 
actively down regulate the activation and expansion of antitumor reactive T cells (Boon et al. 
1994; Sakaguchi 2000; Li et al. 2007) and NK cells (Smyth et al. 2006). MDSC affect tumor 
immunity by polarizing T cells towards a tumor-promoting type 2 phenotype by producing 
IL-10 and down-regulating macrophage production of IL-12 (Sinha et al. 2007). The 
suppressive activity of MDSC on T cells can be antigen-specific or non-specific and can vary 
depending on the MDSC subpopulation. MDSC impair NK cells by inhibiting their 
cytotoxicity ability and IFNǄ production (Liu et al. 2007; Li et al. 2009).  

2.4 Lung cancer genetic signatures as drivers of immune suppression  

Our laboratory has been evaluating tumor signatures that maintain tumor growth kinetics 
through the modulation of immune activity (Huang et al. 1996; Huang et al. 1998). Many 
tumors, including lung cancer, have the capacity to promote immune tolerance and escape 
host immune surveillance (Chouaib et al. 1997; Smyth and Trapani 2001). Tumors utilize 
numerous pathways to inhibit immune responses including the elaboration of immune 
inhibitory cytokines. In addition to directly secreting immunosuppressive cytokines, lung 
cancer cells may induce host cells to release immune inhibitors (Huang et al. 1996; Huang et 
al. 1998; Alleva et al. 1994; Maeda et al. 1996; Halak et al. 1999). In previous studies, we 
found an immune suppressive network in non-small cell lung cancer (NSCLC) that is due to 
over expression of tumor cyclooxygenase 2 (COX-2) (Huang et al. 1998; Stolina et al. 2000), 
which is constitutively expressed in a variety of malignancies. We and others have reported 
that COX-2 is constitutively elevated in human NSCLC frequently (Hida et al. 1998; Huang 
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et al. 1998; Hida et al. 2000; Hosomi et al. 2000). Although multiple genetic alterations are 
necessary for lung cancer invasion and metastasis, COX-2 may be a central element in 
orchestrating this process (Hida et al. 1998; Huang et al. 1998; Wolff et al. 1998; Achiwa et al. 
1999; Hosomi et al. 2000; Riedl et al. 2004). Over expression of COX-2 is associated with 
apoptosis resistance (Tsujii and Dubois 1995; Lin et al. 2001), angiogenesis promotion (Tsujii 
et al. 1998; Masferrer et al. 2000), enhanced tumor invasion and metastasis (Tsujii et al. 1998; 
Dohadwala et al. 2001; Dohadwala et al. 2002) and decreased host immunity (Huang et al. 
1998; Stolina et al. 2000; Sharma et al. 2003). In murine lung cancer models, we found that 
specific genetic or pharmacological inhibition of COX-2 reduced tumor growth (Stolina et al. 
2000). In other related studies, we documented that COX-2 inhibition prevented tumor-
induced suppression of DC activities (Sharma et al. 2003). In recent studies, we have 
demonstrated that treatment of mice with a COX-2 inhibitor, promoted a Type 1 cytokine 
response, inducing IFNǄ, IL-12 and CXCL10 and augmented the vaccination response to 
tumor challenge (Sharma et al. 2005).  

Tumor COX-2 can also modulate MDSC activity through ARG1 in lung carcinoma. MDSC 
producing high levels of arginase block T cell function by depleting arginine. Until recently, 
the mechanism that induces ARG1 in MDSC in cancer was unknown. Rodriguez PC et al, 
utilizing the mouse Lewis lung carcinoma (3LL, that spontaneously arose in the C57BL/6 
mice), showed that ARG1 expression was independent of T cell-produced cytokines but 
rather tumor derived PGE2 maintained ARG1 expression in MDSC. 3LL tumor cells 
constitutively express COX-1 and COX-2 and produce high levels of PGE2. Genetic or 
pharmacological inhibition of COX-2 but not COX-1 blocked ARG1 induction in vitro and in 

vivo. Signaling through the PGE2 receptor E-prostanoid 4 expressed in MDSC induced 
ARG1. Furthermore, blocking ARG1 expression using COX-2 inhibitors elicited a 
lymphocyte-mediated antitumor response. These results demonstrate a new pathway of 
prostaglandin-induced immune dysfunction and provide a novel mechanism that can help 
explain the antitumor benefits of COX-2 inhibitors (Rodriguez et al. 2005) that targets the 
major immune suppressive pathways mediated by MDSC.  

The complex nature of interactions between MDSC and Treg cells are yet to be fully defined 
however it is evident that MDSC promote T reg development in vivo. Tumor-reactive T cells 
have been shown to accumulate in lung cancer tissues but fail to respond because of 
suppressive tumor cell-derived factors (Yoshino et al. 1992; Batra et al. 2003) and because 
high proportions of NSCLC tumor infiltrating lymphocytes are CD4+CD25+ T reg cells 
(Woo et al. 2001). CD4+CD25+ T regulatory (Sakaguchi et al. 2001) cells play an important 
role in maintenance of immunological self-tolerance. T regulatory cell activities increase in 
lung cancer, and appear to play a role in suppressing antitumor immune responses. Treg 
cells actively down regulate the activation and expansion of self-reactive lymphocytes 
(Sakaguchi 2000). Given that many tumor–associated antigens recognized by autologous T 
cells are antigenically normal self-constituents, Treg cells engaged in the maintenance of self 
tolerance may impede the generation and activity of antitumor reactive T cells (Boon et al. 
1994; Sakaguchi 2000). Thus, reducing the number of Treg cells or abrogating their activity 
within the tumor environment may induce effective tumor immunity in otherwise non-
responding hosts by activating tumor-specific as well as nonspecific effector cells (Shimizu 
et al. 1989; Onizuka et al. 1999; Sutmuller et al. 2001). In recent studies we have 
demonstrated that tumor COX-2 expression contributes to decreased host antitumor 
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immune responses by impacting the frequency and activity of CD4+CD25+FOXP3+ T reg 
cells (Baratelli et al. 2005; Sharma et al. 2005). Definition of the pathways controlling Treg 
cell activities will enhance our understanding of limitation of the host antitumor immune 
responses. We demonstrated that lung tumor-derived COX-2/PGE2 induced expression of 
the Treg cell-specific transcription factor, Foxp3, and increased Treg cell activity. 
Assessment of E-prostanoid (EP) receptor requirements revealed that PGE2-mediated 
induction of Treg cell Foxp3 gene expression was significantly reduced in the absence of the 
EP4 receptor and ablated in the absence of the EP2 receptor expression. In vivo, COX-2 
inhibition reduced Treg cell frequency and activity, attenuated Foxp3 expression in tumor-
infiltrating lymphocytes, and decreased tumor burden. Transfer of Treg cells or 
administration of PGE2 to mice receiving COX-2 inhibitors reversed these effects. Our 
studies were the first documentation that COX-2 inhibition down regulated tumor induced 
T regulatory cell activity leading to the restoration of antitumor responses.  

2.5 Lung cancer snail knockdown reduces MDSC and increases CD107a activated 
effector T cells in the tumor microenvironment  

We are defining genetic programs in lung cancer that modulate tumor growth and 
metastases. Cancer cells acquire the ability to progress, invade and metastasize by 
undergoing the process of epithelial-mesenchymal transition (EMT), by activating 
transcription factors (for example, Snail, Twist, Zeb, Slug) that repress E-Cadherin, a 
transmembrane glycoprotein essential for epithelial cell-cell adhesion (Bussemakers et al. 
1993; Cano et al. 2000). These transcriptional repressors are normally active during 
embryogenesis where they program EMT to enable various morphogenetic steps. EMT is 
involved in tumor progression (Thiery 2002; Jeanes et al. 2008). Snail expression in primary 
NSCLC has been associated with a shorter overall survival (Yanagawa et al. 2009). Tumor 
Snail expression has recently been demonstrated to be important in EMT induced 
metastases in melanoma (Kudo-Saito et al. 2009). We are evaluating the mechanistic role of 
tumor snail expression that modulates tumor growth and metastases in immune competent 
mice. Our data (AACR Abstract: Frontiers in Basic Cancer Research, September 14-18 2011., 
San Francisco) demonstrates that tumor snail expression alters tumor growth and metastasis 
by impacting MDSC in the tumor microenvironment. 3LL, 3LL Snail knockdown and 3LL 
control vector cells were implanted in C57BL/6 mice. Compared to controls, 3LL Snail 
knockdown mice had (i) decreased MDSC, (ii) reduced MDSC as well as the non MDSC 
populations intracellular expression of ARG1 in the tumors, (iii) increased expression of the 
CD107a cytolytic marker in tumor infiltrating CD8 T cells and (iv) increased tumor 
infiltrates of CD4 and CD8 T lymphocytes that elaborated enhanced IFNbut reduced levels 
of IL-10 and (v) augmented the frequencies of innate NK effectors and DC. Accompanying 
the inflammatory signature, Snail knockdown cells demonstrated reduced subcutaneous 
tumor growth and lung metastases. Current experiments are mechanistically delineating the 
genetic program(s) induced by tumor Snail knockdown that alter the balance and activity of 
immune effectors and suppressors in the tumor and the impact of adoptive transfer of 
MDSC on tumor growth kinetics of Snail knockdown cells. An adequate understanding of 
the genetic signatures in the tumor and tumor-host interactions that induce immune evasion 
and promote tumor growth, invasion and metastases will be crucial for the development of 
effective therapies for lung cancer.  
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Fig. 2. MDSC accumulation in Lung cancer suppresses antitumor activity  MDSC are 
recruited to and expanded in the tumor through the induction/production of COX-2, PGE2, 
and Snail in lung cancer. T cell activation is suppressed by MDSC mediated: (i) deprivation 
of L-arginine and cysteine from the environment, (ii) production of ROS and peroxynitrite, 
(iii) down regulation of CD62L and the T cell receptor-associated  chain and (iv) the 
induction of Tregs through MDSC IL-10 and TGF production. MDSC suppresses NK cell 
cytotoxicity, NK IFNproduction and induces tumor associated macrophages with a type 2 
phenotype. MDSC expansion and IL-10 production inhibits DC antigen presentation.  

2.6 Impact of depleting Gr1 or Ly6G myelomonocytic cells on lung cancer growth 
kinetics 

Increases in MDSC evoke strong natural suppressive activity in cancer patients (Young et al. 
1997; Kusmartsev et al. 1998) or tumor-bearing mice (Kusmartsev and Ogreba 1989; Subiza 
et al. 1989; Young et al. 1997). It has been demonstrated that Gr1+CD11b+ immune 
suppressive cells are capable of inhibiting the T cell proliferative response induced by 
alloantigens (Schmidt-Wolf et al. 1992), CD3 ligation (Young et al. 1996), or various 
mitogens (Sugiura et al. 1988; Angulo et al. 1995), and can also inhibit IL-2 utilization 
(Brooks and Hoskin 1994) as well as NK cell activity (Kusmartsev et al. 1998). These studies 
indicate that progressive tumor growth is associated with the down-regulation of T cell 
responses and that the Gr1+CD11b+ myeloid cells are involved in negative 
immunoregulatory mechanisms in the tumor bearing host. In murine tumor models there is 
an increase in the MDSC populations in the tumors, spleens, bone marrow and blood as the 
tumor progresses. In the 3LL lung cancer model as the tumors progress the frequency and 
activity of immune suppressive cells are enhanced in the tumor microenvironment. We have 
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found that tumors have as much as 45% infiltrates that are predominantly of the Gr1+ 
CD11b+ immature myeloid phenotype. As has been recently reported for glioblastoma 
(Fujita et al. 2011) and colon (Mundy-Bosse et al. 2011) murine cancer models, we evaluated 
the contribution of the Gr1 and Ly6G expressing myelomonocytic cells on 3LL tumor 
growth kinetics in C57BL/6 mice, by depleting cells expressing these markers with anti-Gr1 
(RB6-8C5) or anti-Ly6G (1A8) administered every other day via i.p route starting on day 5 
post tumor inoculation. Compared to isotype matched control antibody, the anti-Gr1 
antibody or anti-Ly6G led to a significant decrease in the Gr1hiCD11b expressing myeloid 
subset and a subsequent increase in the CD107a expressing CD3T lymphocytes and NK cells 
in the tumors respectively. Accompanying the decrease in the Gr1hiCD11b expressing 
myeloid subset was a 8 fold decrease in tumor weight. While the anti-Gr1 antibody reduced 
both Gr1hi and Gr1lo, the anti-Ly6G antibody reduced the Gr1hi subset only. Both these 
antibodies depleted the Ly6G expressing cells. Although these depletion antibodies impact 
other Gr1 or Ly6G expressing monocytes, our data suggests that the broad targeting of 
MDSC along with other myeloid cell types is beneficial in eliciting anticancer effects. This 
data is consistent with studies by several groups (Fujita et al. 2011; Mundy-Bosse et al. 2011). 
It would be interesting to evaluate the impact of MDSC depletion on DC and tumor 
associated macrophages (TAM) functional activity. This may resolve further compensatory 
pathways of immune suppression. Currently we are evaluating strategies that target the 
myeloid suppressor subsets in combination with various immune potentiating strategies to 
increase the antitumor benefit. 

2.7 Critical role of antigen presentation in lung cancer: T-cell tolerance versus T-cell 
priming 

Effective antitumor responses require antigen processing cells (APCs), lymphocyte and NK 
effectors, as well as the elaboration of effector molecules that promote antitumor activity. 
Although lung cancer cells express tumor antigens, the limited expression of MHC antigens, 
defective transporter associated with antigen processing (TAP) and lack of costimulatory 
molecules, make them ineffective APCs (Restifo et al. 1993). Many tumors, including lung 
cancer, have the capacity to promote immune tolerance and escape host immune surveillance 
(Chouaib et al. 1997; Smyth and Trapani 2001). Tumors utilize numerous pathways to inhibit 
immune responses, including reduction in APC activity. The accumulation of MDSC in the 
tumor microenvironment negatively impacts DC and their APC activity. 

The central importance of functional APCs in the immune response against cancer has been 
well defined (Huang et al. 1994). The study revealed that even highly immunogenic tumors 
require host APCs for antigen presentation. Thus, host APCs, rather than tumor cells, 
present tumor antigen. This is consistent with a study indicating that CD8+ T-cell responses 
can be induced in vivo by professional APCs that present exogenous antigens in a MHC I-
restricted manner (Albert et al. 1998). This has been referred to as cross-priming or 
representation and may be critical for effective antitumor responses (Bevan 1995). DCs have 
been demonstrated to be the host APC responsible for cross-priming by presenting epitopes 
obtained from apoptotic cells (Castellino and Germain 2006). 

However, in tumor-bearing hosts, there is a state of T-cell unresponsiveness (Staveley-
O'Carroll et al. 1998; Cuenca et al. 2003; Willimsky and Blankenstein 2005). The dominant 
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mechanism underlying the development of antigen-specific T-cell unresponsiveness is 
thought to be through tumor-antigen processing and presentation by APCs (Sotomayor et 
al. 2001). The intrinsic APC capacity of tumor cells has little influence over T-cell priming 
versus tolerance, an important decision that is regulated by bone marrow-derived APCs. 
DCs, macrophages and B cells are all bone marrow-derived cells that express both MHC and 
the costimulatory molecules CD80 and CD86 and present tumor antigens to antigen-specific 
T cells. 

Several studies have shown that DCs play a critical role leading to T-cell tolerance versus T-
cell priming (Fuchs and Matzinger 1996; Belz et al. 2002; Munn et al. 2002; Steinman et al. 
2003), which is dictated by the environmental context in which the DCs encounter the 
antigen. Antigen capture by DCs in an inflammatory context triggers their maturation to a 
phenotype capable of generating strong immune responses, whereas antigen capture in a 
noninflammatory environment leads instead to the development of T-cell tolerance. The 
tumor microenvironment not only fails to provide the inflammatory signals needed for 
efficient DC activation, but also inhibits DC differentiation and maturation through IL-10 
(Gerlini et al. 2004) and VEGF (Gabrilovich et al. 1996). DCs, which are pivotal for T-cell 
priming, remain immature and become dysfunctional in hosts bearing growing tumors, 
acquiring tolerogenic properties that induce T-cell tolerance to tumor antigens. Immature 
DCs (iDCs) have little or no expression of costimulatory molecules such as CD80, CD86 and 
CD40 on their surface and produce little or no IL-12, which is required to support T-cell 
proliferation. iDCs are unable to induce antitumor immune response but can induce T-cell 
tolerance. If APCs fail to provide an appropriate costimulatory signal for T cells, tolerance or 
anergy can develop. The importance of restoring APCs with immune-stimulating activity in 
the tumor microenvironment is crucial. In a recent study ectopic lymph node or tertiary 
lymphoid structures were retrospectively identified within human non-small-cell lung 
cancer specimens and demonstrated that there is a correlation of cellular content with 
clinical outcome (Dieu-Nosjean et al. 2008). The density of DC-Lamp, indicating mature DCs 
within these structures, is a predictor of long-term survival within their selected lung cancer 
patient population. The authors observed that a low density of tumor-infiltrating CD4+ and 
T-bet+ T lymphocytes present in tumors poorly infiltrated by DC-Lamp+ mature DCs 
appears to provide additional supporting evidence for the prognostic importance of an 
adaptive immune reaction to a solid tumor. 

We have previously demonstrated that elements from the tumor microenvironment can 
suppress DC function. We found that bone marrow derived DCs stimulated with GM-CSF 
and IL-4 in the presence of tumor supernatants (TSNs) failed to generate antitumor 
responses and caused immunosuppressive effects that correlated with enhanced tumor 
growth. Functional analyses indicated that TSNs cause a decrement in DC capacity to 
process and present antigens, induce alloreactivity and secrete IL-12. The TSNs caused a 
reduction in cell surface expression of CD11c, DEC205, MHC I antigen, MHC II antigen, 
CD80 and CD86, as well as a reduction in TAP 1 and 2 proteins (Sharma et al. 2003). 

2.8 IL-7/IL-7R-Fc promotes the M1 macrophage phenotype in lung cancer 

Although tumor growth and invasion leads to inflammatory responses, the immune system 
generally develops tolerance to cancer. One way to induce potent immune responses against 
tumors is to activate key innate and immune effector mechanisms. Toward this end, we are 
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evaluating the utility of chimeric c homeostatic cytokine, IL-7/IL-7R-Fc, to restore host 
APC and T cell activities dysregulated in cancer patients (Almand et al. 2000; Zou 2005). It is 
evident from previous studies that intratumoral infiltration by relatively high numbers of 
activated T lymphocytes (Johnson et al. 2000; Hiraoka et al. 2006) and APC (Dieu-Nosjean et 
al. 2008) leads to better prognosis in lung cancer patients. 

We evaluated the utility of chimeric c homeostatic cytokine, IL-7/IL-7R-Fc, to restore host 
APC and T cell activities in lung cancer (Andersson et al. 2011). Utilizing murine lung cancer 
models we determined the antitumor efficacy of IL-7/IL-7R-Fc. IL-7/IL-7R-Fc 
administration inhibited tumor growth and increased survival in lung cancer. 
Accompanying the tumor growth inhibition were increases in APC and T cell activities. In 
comparison to controls, IL-7/IL-7R-Fc treatment of tumor bearing mice led to increased: i) 
tumor macrophage infiltrates characteristic of M1 phenotype with increased IL-12, iNOS but 
reduced IL-10 and arginase, ii) frequencies of T and NK cells, iii) T cell activation markers 
CXCR3, CD69 and CD127,low and iv) effector memory T cells. IL-7/IL-7R-Fc treatment 
abrogated the tumor induced reduction in splenic functional APC activity to T responder 
cells. Our findings demonstrate that IL-7/IL-7R-Fc promotes the afferent M1 macrophage 
phenotype and the efferent (CXCR3/CXCR3 ligand biological axis) limbs of the immune 
response for sustained antitumor activity in lung cancer. IL-7/IL-7R-Fc provides the cues 
that address the deficits in the lung tumor microenvironment to achieve the requirements for 
the inhibition of tumor growth kinetics by: (i) generating sufficient numbers of T cells 
systemically (ii) increasing the activated T cell infiltrates in the tumor and (iii) activating the 
innate and immune cells in the tumor to manifest antitumor benefit. Although IL-7/IL-7R-Fc 
is potent at reducing tumor growth kinetics, it does not lead to complete tumor eradication. 
This may in part be due to the presence of MDSC in the tumor microenvironment that 
dampens the antitumor activity of IL-7/IL7R-Fc and remains to be resolved.  

2.9 Drug targets impacting myeloid derived suppressor cells 

Several pharmacological approaches that target MDSC are currently being explored in a 
variety of tumor models. The drugs can be divided into classes based on their ability to 
control: (i) MDSC differentiation into mature DC and macrophages capable of APC activity 
(ATRA and Vitamin D3); (ii) MDSC maturation from precursors [(STAT 3 inhibitors, 
Tyrosine Kinase inhibitors (TKI) (Sunitinib and Sorefnib), Bevacizumab, Anti-BV8 mAb, 
Amino-Biphosphonates and MMP9 inhibitors]; (iii) MDSC accumulation (Gemcitabine, 5-
Fluorouracil (5-FU), CXCR2 and CXCR4 antagonists) and (iv) MDSC function [(ROS 
scavengers and ARG and NOX inhibitors (Nitroaspirin, PDE-5, COX-2 inhibitors and 
Cytokines)] (Ugel et al. 2009).  

Gabrilovich et al demonstrated that differentiating MDSC to DC and macrophages by using 
all-trans retinoic acid (ATRA) reduced MDSC numbers and augmented the responses to 
cancer vaccines. ATRA induced differentiation of MDSC primarily via neutralization of high 
ROS production in these cells. The mechanism involves specific up-regulation of glutathione 
synthase and accumulation of glutathione in the MDSC and could be used in developing 
and monitoring therapeutic application of ATRA (Nefedova et al. 2007). 

Recent advances in targeted therapy for cancer have provided small-molecule kinase 
inhibitors that recognize specific targets on the surface or inside cancer cells. These 
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inhibitors have shown efficacy against several hematopoietic malignancies and solid 
tumors. Most drugs generally have inhibitory effects on several kinases, including tyrosine 
kinases (TK) that are critical for the survival, proliferation, migration and invasion of tumor 
cells. With regards to the effects of TKI on tumor immunity, some studies have 
demonstrated the immune stimulatory effects of the TKI (eg imatinib) (Wang et al. 2005) 
whereas others report the immune suppressive effects of the same inhibitor (Seggewiss et al. 
2005).  

Administration of sunitinib, a receptor TKI, has been shown to reduce the frequency of 
MDSC and reversing T cell immune suppression in the peripheral blood of patients with 
metastatic renal cell carcinoma (RCC) and in several murine tumor models. However 
sunitinib has variable impact at reducing MDSC and restoring T cell activity in the tumor 
microenvironment that seems to be tumor dependent. The authors suggest that the 
persistence of MDSC in the tumor following sunitinib treatment in RCC may in part be due 
to increased GM-CSF expression by the tumors that prolong the survival of MDSC and 
protect from sunitinib through pSTAT5 pathway. The authors contend that GM-CSF 
mediated MDSC survival in patient tumors is supported by the observation that GM-CSF 
produced by RCC cultures protect MDSC from sunitinib induced cell death. However, 
tumors transduced with GM-CSF in several tumor models have been shown to lead to 
strong immune dependent rejection. It would be interesting to see in these models the 
activity of MDSC in the tumor microenvironment of the GM-CSF secreting tumors. 
Additionally, an alternate explanation for the persistence of MDSC may be associated with 
increased expression of proangiogenic proteins, such as MMP9, MMP8 and IL-8 produced 
by tumor stromal cells or infiltrating MDSC (Ko et al. 2010; Finke et al. 2011). More studies 
are required to evaluate the role of TKI (sunitinib, sorafenib, imatinib and dasatinib) on 
MDSC activity in the tumor microenvironment and tumor immunity in several tumor 
models and in clinical samples. 

GW2580, a selective molecule kinase inhibitor of colony stimulating factor 1 receptor 
(CSF1R), blocks the recruitment of CSF1R expressing TAMs as well as MDSC in different 
tumor models without having an impact on tumor burden (Priceman et al. 2010). PLX3397, 
another TKI of CSF1R, has also been used to efficiently deplete CD11b+Ly6G-
LY6ClowF4/80+ TAMs (70%) without altering the presence of granulocytic MDSC. The 
treatment of mammary tumor bearing mice with PLX3397 led to a decrease in tumor burden 
(DeNardo et al. 2011).  

Studies by Ping Ying Pan et al have demonstrated that the expression of c-kit ligand [(stem 
cell factor, (SCF)] by tumor cells may be important for MDSC accumulation in tumor-
bearing mice, and that blocking the c-kit ligand/c-kit receptor interaction can reverse MDSC 
mediated immune suppression. Mice bearing tumor cells with SCF siRNA knockdown 
exhibited significantly reduced MDSC expansion and restored proliferative responses of 
tumor-infiltrating T cells. The blockade of SCF receptor (ckit)–SCF interaction by anti-ckit 
prevented tumor-specific T-cell anergy, Treg development, and tumor angiogenesis. The 
authors found that the prevention of MDSC accumulation in conjunction with immune 
activation therapy showed synergistic therapeutic effect when treating mice bearing large 
tumors. Their data suggests that modulation of MDSC development may be essential to 
enhance immune therapy against advanced tumors (Pan et al. 2008). 
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N-acetyl cysteine (NAC) has been proposed as an anti-tumorigenic agent because of its 
ability to reduce the oxidative stress that promotes genetic instability. NAC treatment of 
mice with progressively growing tumors have demonstrated therapeutic efficacy (Gao et al. 
2007). NAC may have the additional benefit of facilitating T cell activation by increasing 
extracellular pools of cysteine in the presence of high levels of MDSC in cancer patients. 
Although NAC targets the cysteine pathway of MDSC mediated T cell suppression, MDSC 
production of arginase and nitric oxide, can still maintain the suppressive effects of MDSC. 
However, administration of NAC, an already FDA-approved drug, in combination with 
other agents that block other MDSC suppressive pathways (ARG1 and NO), maybe more 
effective at inhibiting MDSC and facilitate the treatment of cancers.  

COX-2 is required for PGE2 synthesis; drugs that specifically block COX-2 and reduce PGE2 
delay tumor growth by reducing MDSC accumulation. Therefore, inhibition of PGE2 
biosynthesis in tumor-bearing mice blocks MDSC generation and subsequently retards 
tumor progression (Rodriguez et al. 2005; Sinha et al. 2007). 

Studies have demonstrated that the chemotherapeutic agent, gemcitabine, enhances T cell 
responsiveness by reducing the number of MDSC levels in the spleens of murine lung 
cancer models. In this study, gemcitabine, was administered at a dose similar to the 
equivalent dose used in patients, was able to specifically reduce the number of MDSC found 
in the spleens of animals bearing large tumors without significant reductions in CD4+ T 
cells, CD8+ T cells, NK cells, macrophages, or B cells. The loss of MDSC was accompanied 
by an increase in the antitumor activity of CD8+ T cells and activated NK cells. Since all 
measurements on MDSC frequency and activity in this study was performed from the 
spleens of tumor bearing animals it is not clear from this work as to the extent of depletion 
of MDSC from the lung tumor microenvironment following gemcitabine treatment and 
restoration of immune responses in the tumor microenvironment. The authors did observe 
however, that combining gemcitabine with cytokine immunogene therapy using IFN-ǃ 
markedly enhanced antitumor efficacy leading to a greater reduction in tumor burden than 
when either therapy was administered singly (Suzuki et al. 2005). 

3. Conclusion and future perspectives 

Lung cancer is the most common cause of cancer mortality worldwide for both men and 
women, causing approximately 1.2 million deaths per year (Jemal et al. 2009). With the 
existing therapeutic efforts, the long-term survival for lung cancer patients remains low with 
only 15% surviving for 5 years following diagnosis. Therefore, new therapeutic strategies 
are needed. One such approach is the development of immune therapy for lung cancer. 
Immune approaches for lung cancer remain attractive because although surgery, 
chemotherapy and radiotherapy alone or in combination produce response rates in all 
histological types of lung cancer, relapse is frequent. Immunologic targeting of lung cancer 
has the potential for nontoxic and specific therapy. Strategies that harness the immune 
system to react against tumors can be integrated with existing forms of therapy for optimal 
responses toward this devastating disease. Immune therapy for lung cancer has potential; 
however, there have not been improvements in survival with previous regimens. Tumor-
induced immune suppression may have contributed to the limited efficacy of the 
approaches. 
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Lung cancer growth and invasion into surrounding tissue promotes an inflammatory 
response that is important for tumor development and progression. Dysregulated 
inflammation in cancer leads to hypo responsiveness of the tumor. MDSC play a major role 
of suppressing T cell activation in the lung tumor microenvironment and sustain overall 
tumor growth, proliferation and metastases. Regulating MDSC recruitment, 
differentiation/expansion and inhibiting MDSC suppressive function will serve as a 
multifaceted approach to control lung cancer. Although the broad targeting of MDSC along 
with other myeloid cell types with anti-Gr1 or anti Ly6G mAbs alone is beneficial in eliciting 
anticancer effects, the benefit of chemotherapeutic agents that regulate MDSC are evident 
only when combined with immune therapy and not when administered alone. Cancer 
immune therapy offers an attractive therapeutic addition, delivering treatment of high 
specificity, low toxicity and prolonged activity. Despite the identification of a repertoire of 
tumor antigens, hurdles persist for immune-based therapies. Tumor-induced immune 
suppression may be contributing to the limited efficacy of the current approaches. Effective 
immunotherapeutic strategies for lung cancer will result from a basic understanding of the 
mechanisms that sustain tumor growth kinetics. Strategies that reprogram the tumor niche 
could alter the inflammatory infiltrate in the lung tumor microenvironment making it 
permissive for immune destruction of tumors. It is likely that combination therapies that 
focus on methods to address the immune deficits in the lung cancer microenvironment will 
be required to develop effective therapies for this disease. Targeting MDSC induced 
immune suppression is at the forefront of these therapeutic approaches. The future of 
immune therapy for lung cancer holds promise with novel combined approaches that 
simultaneously downregulate MDSC suppressor pathways, restore APC immune-
stimulating activity, and expand tumor-reactive T cells with c homeostatic cytokines such 
as IL-7, IL-15 and IL-21 to generate effective therapy. The optimal way to integrate novel 
immune targeted combinations will be the major focus of future studies and will require a 
coordinated and cooperative multidisciplinary effort by the international scientific 
community. Objective lung cancer regressions and extensions in survival should be 
correlated with multiple predictive and prognostic molecular and cellular biomarkers of 
response. This information will prove useful in improving therapy. 
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