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1. Introduction 

Monocytes and macrophages are myeloid cells which originate in the bone marrow and are 

essential in the primary defence against infection by bacteria, viruses and other pathogens. 

These cells circulate as monocytes in the bloodstream before undergoing extravasation and 

migration into adjacent tissues, where they differentiate into resident macrophages. 

Considerable monocyte extravasation occurs at the initial stages of inflammation, wound 

healing, tumour onset and various other diseases in response to chemotactic signals. In 

many instances these inflamed and/or diseased tissues have been shown to include areas of 

extremely low oxygen tension, termed hypoxia, by the measurement of oxygen 

concentrations using microelectrodes, use of hypoxic cell markers and/or expression of 

specific hypoxia-upregulated proteins. Such hypoxic areas are evident in the majority of 

malignant human cancers, including those of the breast, brain, cervix, head/neck, and soft 

tissue sarcomas (Raleigh et al., 2001; Vaupel et al., 1989), and are caused by an inability of 

the supporting vasculature to keep up with the oxygen demands of the rapidly increasing 

tumour mass (Shannon et al., 2003; Vaupel et al., 2005).  

As with inflammation, extensive monocyte extravasation is also an early event in cancer 

development. Infiltrated monocytes differentiate into tumour-associated macrophages 

(TAMs), a process which is driven by tumour-secreted chemoattractants (Murdoch et al., 

2004). Moreover, TAMs accumulate in high numbers within hypoxic areas, which drives a 

change in their gene expression through the modulation of such transcription factors as 

hypoxia-inducible factors (HIFs) 1 and 2 (Burke et al., 2003; Talks et al., 2000), activating 

transcription factor-4 (ATF-4), and early growth response-1 (egr-1) (Elbarghati et al., 2008). 

Subsequently, a wide panel of protumour genes are upregulated by hypoxic macrophages 

which could support tumour growth, survival and metastasis (Fang et al., 2009). This is 

thought to explain the correlation between high numbers of TAMs and poor patient 

prognosis in many types of human tumours (Fujimoto et al., 2000; Hamada et al., 2002; 

Hanada et al., 2000; Heidl et al., 1987; Leek et al., 1996; Lissbrant et al., 2000; Salvesen and 

Akslen, 1999). 
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2. Hypoxia as an important microenvironmental signal for ‘educating’ 
macrophages in tumours 

2.1 Monocyte infiltration into tumours 

The mechanisms by which immune cells are recruited into tumours have been well studied, 

revealing crucial roles for several chemokines and cytokines in the extravasation and 

infiltration of these cells, including monocytes, from the blood vessels and into the tumour. 

The chemokine-driven migration of leukocytes is followed by regulation of tumour growth, 

angiogenesis and metastasis, through alterations in the tumour environment (Balkwill, 2003; 

Strieter et al., 2004; Vicari and Caux, 2002). 

Perhaps the most important monocyte chemoattractants upregulated by tumours are the 

chemokines, CCL2 and CCL5 (also known as MCP-1 and RANTES, respectively), which are 

synthesised by several cell types including tumour cells, fibroblasts, endothelial cells and 

TAMs themselves. Correlation between the expression of CCL2 and the accumulation of 

TAMs within breast (Ueno et al., 2000), ovarian (Negus et al., 1997), esophageal and 

squamous cell (Ohta et al., 2002), non-small cell lung cancer (Arenberg et al., 2000), and also 

glioblastoma (Leung et al., 1997), underscore the importance of this chemokine in monocyte 

recruitment into tumours. In addition, Bottazzi et al. (1992) demonstrated that when the 

CCL2 gene was transferred to a murine melanoma and subsequently grown in vivo, 

infiltration of monocytes increased, as evidenced by a doubling of TAM numbers. However, 

the phenotype of these TAMs may have been anti-tumoural since these CCL2-producing 

tumours exhibited reduced tumour growth and increased overall survival. 

The effects of CCL2 and CCL5 on human monocytes are not just limited to their direct 

chemotactic capabilities; both ligands are also known to support monocytes in the 

production of additional chemoattractants and tumour-promoting molecules – for example, 

analysis of CCL5-induced monocyte gene expression by oligonucleotide array revealed that 

CCL2, CCL3, CCL4, CXCL8, and CCR1 were consistently induced, suggesting a role for 

CCL5 in leukocyte recruitment into the tumour. This correlates with the finding that CCL3 

and CCL4 are expressed in certain human tumours (Scotton et al., 2001), and that CXCL8 

drives adhesion of monocytes to vascular endothelium as part of monocyte recruitment 

(Gerszten et al., 1999). 

The cytokines CSF-1 (colony-stimulating factor-1) and VEGF (vascular endothelial growth 

factor) are also known to be monocyte chemotactic proteins, and are produced by a variety 

of cell types, including monocytes and macrophages. By crossing CSF-1 knock-out mice 

with mice which form spontaneous mammary tumours, Lin et al. (2001) demonstrated the 

importance of this cytokine in the recruitment of monocytes into tumours, since tumours in 

the daughter mice showed reduced TAM numbers and slower tumour progression. These 

features could be reversed by the introduction of CSF-1 by targeted gene expression, 

confirming that this cytokine is important for TAM infiltration and tumour progression. 

The growth factor, VEGF, is best characterised as an angiogenic factor which functions as a 

potent and specific mitogen for endothelial cells. In the majority of tumour types tested, 

VEGF mRNA expression is upregulated within the tumour (Ferrara and Davis-Smyth, 1997), 

primarily by tumour cells and TAMs (Lewis et al., 2000), rather than endothelial cells. The 
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inverse is true for mRNA expression of VEGF receptors, VEGF-R1 and -R2 (Brown et al., 

1993; Plate et al., 1994; Plate et al., 1992), consistent with the hypothesis that VEGF 

predominantly acts as a paracrine factor to induce angiogenesis. Further studies suggested 

the expression of this growth factor by infiltrating lymphocytes (Freeman et al., 1995), and 

its role as a chemoattractant for monocytes and macrophages through VEGF-R1 was 

discovered (Barleon et al., 1996; Sawano et al., 2001), verified by the fact that murine 

macrophages lacking VEGF-R1 (from a model of embryonic angiogenesis) exhibited 

reduced migration in Boyden chambers in response to VEGF (Hiratsuka et al., 1998). 

Immunohistochemistry in surgically resected breast tumour samples showed that increased 

VEGF within tumours was associated with higher numbers of TAMs (Leek et al., 2000). 

These findings suggest that VEGF is not only important for angiogenesis, but also for the 

recruitment of monocytes (Figure 1a) (Toi et al., 1994). 
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Fig. 1. Tumour hypoxia drives monocyte infiltration, polarization and transcription of 
hypoxia-regulated genes. a. Tumours and infiltrated macrophages secrete chemoattractants, 
resulting in the recruitment of monocytes from the blood. Hypoxic conditions commonly 
found within tumours enhance the polarisation of macrophages toward a protumour 
phenotype, which leads to the upregulation of a wide array of tumour-supporting genes 
(such as those shown in the figure) and the downregulation of MHC II. Almost all murine 
TAMs derive from a population of monocytes defined by Ly6ChiCX3CR1lo expression, which 
continuously seed tumours. Two types of murine TAMs, MHC IIhi and MHC IIlo, have been 
shown to be located in normoxic and hypoxic areas of tumours, displaying M1 and M2 
characteristics, respectively. TIE2-expressing macrophages (TEM) are recruited in response 
to release of Ang2 (as well as upregulation of Tie-2) by the hypoxic core. TEMs associate 
with blood vessels and promote tumour angiogenesis. Monocyte/macrophage-derived 
factors in black, tumour-derived factors in blue. b. Hypoxic conditions result in the 
stabilisation of HIF-1ǂ and -2ǂ in macrophages, which are then able to bind to a 
constitutively expressed common ǃ subunit, located in the nucleus. The active transcription 
factors then bind to HREs in a variety of genes (shown at bottom left) which regulate the 
immunosuppressive and protumoural functions of macrophages.  

www.intechopen.com



 
Tumor Microenvironment and Myelomonocytic Cells 

 

92

2.2 Monocyte infiltration into areas of hypoxia  

Following their infiltration into tumours, macrophages have been shown to accumulate 

specifically in hypoxic areas, a phenomenon which is thought to be guided by hypoxia-

induced chemoattractants and maintained by the suppression of TAM motility in these 

areas by hypoxia (reviewed by Murdoch et al. (2004)). As would be expected, these 

oxygen-deprived regions of tumours have been found to have elevated levels of VEGF, 

produced by both tumour cells and macrophages (Brown et al., 1995; Lee et al., 1998; 

Lewis et al., 2000). In addition, VEGF expression in a murine model of Lewis lung 

carcinoma was shown by immunohistochemistry to correlate with pimonidazole stained 

areas, a marker for hypoxia (Kim et al., 2001). As mentioned previously, this factor is a 

chemoattractant for monocytes and macrophages and therefore is likely to play a major 

role in the accumulation of TAM at these sites (Lewis et al., 2000). However, it is worth 

noting that there is not always a correlation between hypoxia and VEGF expression in 

human tumours (Janssen et al., 2002; Raleigh et al., 1998). Matschurat and colleagues 

(2003) found that another monocyte chemotactic, EMAP II, is expressed at high levels in 

perinecrotic areas of methylcholanthrene fibrosarcomas and B16 murine melanomas in an 

inactive form, pro-EMAP II. Additionally, they showed that hypoxic tumour cell 

supernatants in vitro demonstrated an increase in EMAP II at the protein level, which was 

not supported by an induction at the mRNA level. This suggests that the active protein 

can be induced under hypoxia without the need for transcription, possibly through 

cleavage of pre-EMAP II to its active form by proteases released from necrotic cells 

(Zhang and Schwarz, 2002), providing a rapid mechanism for EMAP II upregulation and 

subsequent macrophage infiltration. This effect explains why macrophages are found at 

sites positive for EMAP II expression in uveal melanoma (Clarijs et al., 2003). 

Also known to be regulated by hypoxia are endothelins, a family of secretory vasoactive 

peptides involved in vasoconstriction. They also have co-mitogenic functions, enhancing the 

effects of other such growth factors as PDGF by initiating intracellular signalling through 

endothelin receptors, ET-RA and ET-RB. Studies of endothelin regulation under hypoxic 

conditions demonstrated a co-localisation of hypoxia and endothelin ET-2 expression in 

murine mammary tumours (Grimshaw et al., 2002a). This is significant since ET-2 is thought 

to bind to ET-RB on macrophages and act as a chemoattractant, explaining the correlation 

seen between ET-2 expression and ET-RB-positive macrophages in breast tumours 

(Grimshaw et al., 2004; Grimshaw et al., 2002b). Furthermore, ET-1 (which acts through 

endothelin-1 receptor A) was recently shown to enhance the invasion and migration of both 

tumour cells and macrophages. The contribution of these factors to metastasis was 

supported by the finding that tumour expression of ET-1 and activity of its receptor are 

required for the development of lung metastases, through a process which is dependent on 

macrophage infiltration of the lung (Said et al., 2011). 

More recently, Wang et al. (2012) identified stromal-derived factor-1 (SDF-1/CXCL12) as a 

tumour-derived chemoattractant and survival factor for TAMs. In a murine glioma model 

they showed that SDF-1kd tumours have a different association of TAMs with hypoxia, 

implying that the secretion of this factor by tumour cells is critical for the accumulation of 

TAM in hypoxic areas of murine glioma. This factor is known to bind to its receptor, CXC 

receptor 4 (CXCR4), which is upregulated through a HIF-1-dependent mechanism in 
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monocytes and macrophages (as well as endothelial cells and tumour cells). Therefore, SDF-

1 and its receptor, CXCR4, are very important for the chemotaxis of TAMs to hypoxic 

tumour sites (Schioppa et al., 2003). 

It has been suggested that the accumulation of infiltrating macrophages in tumours, 

primarily in hypoxic regions, is not just due to chemoattraction, but also to their retention in 

these areas. Downregulation of chemokine release by tumour cells, and of chemokine 

receptors by TAMs in hypoxia, effectively dampens TAM motility, thus causing large 

numbers of macrophages to be trapped in these sites. For example, the expression of CCR2 

(the receptor for CCL2/MCP-1) and chemotactic responses to CCL2 in vitro were markedly 

higher for TAMs isolated from ovarian carcinomas than monocyte-derived macrophages in 

culture (Negus et al., 1998; Sica et al., 2000).  

When cultured with human tumour ascites, the chemotactic response of fresh monocytes to 
CCL2 was greatly diminished, accompanied by a reduction in CCR2 mRNA levels. 
Furthermore, inhibition of TNF-ǂ restored CCR2 mRNA expression in monocytes cultured 
in the presence of ascitic fluid, demonstrating that defective CCR2 expression in TAM may 
be regulated, at least in part, by this cytokine in tumours (Sica et al., 2000). Therefore, it is 
possible that macrophage TNF-ǂ production within hypoxic areas of tumours (Guida and 
Stewart, 1998; Hempel et al., 1996; Scannell et al., 1993) may lead to a downregulation of 
CCR2 expression on TAMs, decreasing their responsiveness to chemotactic ligands. 

An increase in TNF-ǂ expression is also believed to induce mitogen-activated protein kinase 
phosphatase 1 (MKP-1) (Grimshaw and Balkwill, 2001), a molecule which dephosphorylates 
extracellular signal-regulated kinase (ERK) 1/2, and p38 mitogen activated protein kinase 
(p38 MAPK) (Franklin and Kraft, 1997; Sun et al., 1993). Intracellular signalling via p38 
MAPK and ERK1/2 is required for the chemotactic response of monocytes and monocytic 
cell lines to hypoxia-regulated chemokines (Ashida et al., 2001; Wain et al., 2002). Therefore, 
TNF-ǂ may be an important factor in the hypoxic tumour environment for the suppression 
of macrophage migration, via a downregulation of CCR2 and an upregulation of MKP-1 
(Figure 1a).  

3. Hypoxia and its impact on macrophage function 

For a long time it has been known that macrophages can be stimulated by environmental 
signals to exhibit a wide array of phenotypes (Nibbering et al., 1987; Ogle et al., 1994; van 
Furth, 1980). Two main polarization phenotypes of macrophages have been recognized. 
These include the classically activated (M1) and alternatively activated (M2) macrophage 
phenotypes. M1 macrophages are induced by interferon gamma (IFN-Ǆ) and 
lipopolysaccharide (LPS). These macrophages upregulate pro-inflammatory cytokines (e.g. 
IL-12, IL-23, TNF, CXCL10), co-stimulatory molecules, produce reactive nitrogen and 
oxygen intermediates (RNI/ROI), and very little anti-inflammatory cytokines (e.g. IL-10). 
These cells promote inflammation, apoptosis, and microbicidal activity. Conversely, M2 
macrophages are induced by IL-4 and IL-13,  promote angiogenesis, cell proliferation and 
other tissue remodelling and protumoral functions. These cells are characterized in general 
by an IL-12loIL-10hi phenotype, upregulate chemokines like CCL17, CCL18 and CCL22, 
various scavenging receptors and the production of Arginase I. Although the M1-M2 
nomenclature is a useful one when assessing the phenotype of macrophages, it is however, 
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an over-simplification. Not all macrophage fit into these two distinct populations, and so 
further sub-populations have been defined (Mantovani et al., 2004).  

Recently, subsets of differentially polarized TAMs with distinct functions were described by 

Movahedi et al. (2010) in murine mammary tumours. Their findings showed that almost all 

TAMs from these tumours were derived from Ly6ChiCX3CR1lo monocytes, where Ly6C is a 

monocyte/macrophage differentiation antigen regulated by IFN-Ǆ, and CX3CR1 is a 

receptor for CX3CL1, a chemokine involved in the adhesion and migration of leukocytes. 

Notably, they found that hypoxic areas had higher numbers of M2-like TAMs, which 

increased as the tumour progressed (in certain tumours), and were shown to have potent 

proangiogenic effects in vivo. This also correlated with the expression of major 

histocompatibility complex II (MHC II), whereby MHC IIhi macrophages resided in 

normoxic areas and displayed an M1-like phenotype, and MHC IIlo macrophages resided in 

hypoxic areas and displayed a more M2-like phenotype (Figure 1a). Expression of  M1 

molecules like Nos2 (iNOS), interleukin (Il)-1ǃ, Il-6, Il-12ǃ and Ptgs2 (or cycloxygenase 2, 

COX2) were reported in MHC IIhi monocytes at the RNA or protein level. By comparison, 

MHC IIlo monocytes expressed such M2-related molecules such as macrophage mannose 

receptor (MR), scavenger receptor 1 (SR-A), arginase-1 (ARG-1), CD163, stabilin-1 (STAB-1), 

and interleukin-4Rǂ (IL-4Rǂ) (Movahedi et al., 2010). Fitting with their M2-like phenotype 

and localisation in areas of hypoxia, MHC IIlo TAMs were found to have significantly 

elevated proangiogenic activity in vivo. The phenotypic similarity between MHC IIhi TAMs 

and IKKǃ-deficient macrophages implies that differences in these MHC IIhi and MHC IIlo 

TAM subsets may be driven by NF-κǃ activity (Movahedi et al., 2010). 

Another monocyte population, thought to be distinct from MHC IIlo TAMs, are the Tie2-

expressing monocytes (TEMs) (Figure 1a). Originally identified in tumour-bearing mice, 

these monocytes circulate in the mouse blood as Tie2+CD11b+CD45+ cells. They comprise a 

small monocyte subset which migrate towards angiopoietin-2 (Ang-2), a TIE2 ligand that is 

primarily released by vascular endothelial cells; this is thought to be a possible mechanism 

by which TEMs are recruited to tumours (Venneri et al., 2007), and more specifically, to 

highly vascularised areas (De Palma et al., 2003) (Figure 1a). Their role in the promotion of 

angiogenesis was confirmed by De Palma et al. (2005), who found that selective depletion of 

TEMs in a murine cancer model resulted in the inhibition of tumour angiogenesis and 

growth. Furthermore, TEM depletion was found to increase the efficacy of vascular-

disrupting agent (VDA) therapy of tumours, suggesting that the action of these cells 

counteracts the antitumour effects of VDAs (Welford et al., 2011). Understanding more 

about monocyte subsets uncovers new possibilities for targeting specific subpopulations, 

which could alter the overall balance of TAM phenotypes. Repolarisation of TAM from an 

M2- to an M1-like phenotype could restore their antitumour effects, leading to a better 

patient prognosis. 

The implications of macrophage plasticity in cancer biology have gathered increasing 

interest, both in terms of the phenotypes driven by the tumour microenvironment, and more 

specifically, by the hypoxic tumour environment. Biswas and colleagues (2008) reviewed the 

experimental evidence demonstrating that TAMs initially have an M1-like phenotype in 

areas of chronic inflammation where tumours commonly develop. These, however, respond 

to secreted cytokines, chemokines, growth factors and stress signals in the (hypoxic) tumour 
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microenvironment, to express more of an M2-like phenotype in established tumours. This 

suggests a “re-education” of macrophages, which are recruited by the tumour, initially 

expressing an M1-like phenotype (thus promoting an inflammatory response); however, 

their residency within tumours leads to their polarisation and differentiation into M2-

skewed TAMs, where their re-educated phenotype is one which promotes angiogenesis, 

tissue remodelling, immunosuppression and cell proliferation (Biswas et al., 2008).  

One important feature of the tumour environment which brings about this phenotypic 

change in macrophages is hypoxia. Hypoxic regions of tumours commonly form due to the 

leaky and disorganised nature of tumour blood vessels, meaning that the rapid tumour cell 

proliferation often surpasses the ability of the poorly-formed vasculature to deliver required 

oxygen and nutrients (Shannon et al., 2003; Vaupel et al., 2001). Studies with human breast 

carcinomas (Leek et al., 1999) or animal tumours (Collingridge et al., 2001) have shown that 

hypoxic tumours contain higher numbers of TAMs. A positive correlation that is also seen 

between hypoxia and TAM numbers in secondary liver tumours that form as metastases 

from breast and colorectal tumours (Stessels et al., 2004). There is an inverse relationship 

between TAM infiltration and patient prognosis seen in many human cancers (Fujimoto et 

al., 2000; Hamada et al., 2002; Hanada et al., 2000; Heidl et al., 1987; Leek et al., 1996; 

Lissbrant et al., 2000; Salvesen and Akslen, 1999), which implies that these macrophages 

adopt a pro-tumoural phenotype, contrasting with their more classic role as pathogen and 

tumour killing cells and with their ability to initiate an immune response.  

4. Molecular pathways mediating the effects of hypoxia on macrophages 

4.1 Transcription factors HIFs 1 and 2 

The best understood transcription factors mediating the response of macrophages to 
hypoxia are the hypoxia-inducible factors (HIFs) 1 and 2 (Burke et al., 2003; Fang et al., 2009; 
Talks et al., 2000) (Figure 1b). Both HIFs are heterodimers consisting of an individual ǂ 
subunit and a common ǃ subunit which is constitutively expressed. HIF-1ǂ and HIF-2ǂ are 
tightly controlled, such that, in the presence of oxygen they are quickly degraded by the 
ubiquitin-proteasome pathway within the cytoplasm. However, hypoxic stress causes an 
increase in production and stabilisation of these subunits, which are then able to complex 
with the ǃ subunit within the nucleus and bind to hypoxic response elements (HREs) of 
certain oxygen-sensitive genes to drive transcription (Jiang et al., 1996; Semenza, 2002). The 
hypoxia-responsive genes regulated by HIFs are known to be involved in tumour 
proliferation, metabolism, angiogenesis, apoptosis and metastasis (reviewed by (Harris, 
2002)). The data supporting the expression of HIFs by macrophages, especially TAMs, is 
currently unclear. Talks et al. (2000) showed that hypoxia predominantly upregulates HIF-
2ǂ in the pro-monocytic cell line, U937, and the HIF over-expression studies by White et al. 
(2004), suggested that HIF-2 might be more important for macrophage pro-angiogenic 
responses to hypoxia. In contrast, human macrophages exposed to tumour-specific levels of 
hypoxia in vitro, as well as those in hypoxic areas of several human tumours in vivo, were 
shown to be capable of inducing high levels of HIF-1 as well as HIF-2 (Burke et al., 2002). 
Recently, Fang et al. (2009) demonstrated that 18 hour exposure of human macrophages to 
hypoxia induces expression of VEGF, IL-1ǃ, IL-8, adrenomedullin, CXCR4, and 
angiopoietin-2. Induction of these genes suggests a potent, pro-tumoural macrophage 
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phenotype. Using small interfering RNA (siRNA), this gene expression was shown to be 
mediated via HIF-1 and 2 signalling, thus implicating these transcription factors in the 
generation of the hypoxia-driven, tumour-promoting macrophage phenotype.  

Both HIF-1 and 2 bind to the HRE sequence contained in the promoter region of the VEGF 
gene and cause its upregulation (Ema et al., 1997; Flamme et al., 1997; Tian et al., 1997). 
Evidence that TAMs themselves upregulate VEGF in poorly vascularised tumour areas 
(Lewis et al., 2000) suggests that hypoxia, at least in part, causes TAMs to align with 
tumour cells in their pro-angiogenic function to increase the supply of oxygen to these 
areas. Interestingly, the binding of HIF-1 and 2 to the promoter region of VEGF in GM-
CSF-cultured macrophages is thought to have antagonistic effects on angiogenesis, 
whereby HIF-1 induces VEGF production and HIF-2 induces the production of the soluble 
VEGF receptor, sVEGFR-1, in low oxygen conditions. The secretion of sVEGFR-1 is able to 
neutralise VEGF biologic activity, inhibiting its angiogenic effect; this indicates that the 
binding of these two transcription factors may have opposing effects on the regulation of 
angiogenesis (Eubank et al., 2011). 

Less is known about the third member of the HIF family, HIF-3ǂ, which shows high 

similarity to HIFs 1 and 2 and also forms heterodimers with the same ǃ subunit. However, 

experiments so far show that this factor lacks the C-terminal transactivation domain (CTAD) 

(Gu et al., 1998), and acts as a dominant-negative regulator of the HIF pathway by 

antagonising the effects of HIFs 1 and 2 (Makino et al., 2001). HIF-3 was found to be 

constitutively expressed in monocyte-derived macrophages (MDMs), and was not 

responsive to hypoxic conditions in either monocytes or MDMs (Elbarghati et al., 2008). 

However, it was found to be hypoxia-responsive in lung epithelial cells (A549) at both the 

mRNA and protein level (Li et al., 2006), and so it is clear that further investigation into this 

transcription factor, with regards to its expression and importance, is needed. 

HIFs are not the only hypoxia-responsive transcription factors. Both activating transcription 

factor-4 (ATF-4) and early growth response-1 (Egr-1) are upregulated in response to hypoxia 

in several murine and human tumour cell types (Ameri et al., 2004; Yan et al., 1999) and 

macrophages (Elbarghati et al., 2008), respectively. Both ATF-4 and Egr-1 proteins were 

found to be transiently upregulated in macrophages following a short hypoxic incubation, 

but there was no induction seen in monocytes. Interestingly, hypoxic treatment caused Egr-1 

protein accumulation in macrophages in both the nucleus and the cytoplasm, in contrast to 

HIFs 1 and 2, and ATF-4 (Elbarghati et al., 2008), and is thought to play a role in monocyte 

differentiation into macrophages. Kharbanda et al. (1991) showed that M-CSF-stimulated 

monocytes demonstrate a dose-dependent increase in EGR-1 mRNA levels, and that 

inhibition of monocyte differentiation with dexamethasone also abolishes this EGR-1 

induction. Therefore, since hypoxia increases the levels of Egr-1 protein, it is possible that 

hypoxia accelerates the differentiation of monocytes into TAMs (Elbarghati et al., 2008). This 

is also supported by the work of Oda and colleagues (2006), who demonstrated an increase 

in the expression of HIF-1ǂ and HIF-1ǃ in differentiating THP-1 cells and human monocytes 

from peripheral blood. RNA interference studies determined that, although HIF-1ǂ is not 

essential for macrophage differentiation, it is, however, required for macrophage functional 

maturation. These findings further suggest that macrophage differentiation may be 

facilitated by hypoxia.  
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Various experimental methods have been used to identify HIF targets, including loss of 

expression in HIF-null cells (Fang et al., 2009; Semenza, 2003), targeting transcribed HIF 

using siRNA treatment (Fang et al., 2009; Kamlah et al., 2009; Krishnamachary et al., 2003), 

overexpression of HIFs using expression vectors or induced gene expression in von Hippel-

Lindau (VHL)-null cells (Wykoff et al., 2000), or by the identification of HREs and HIF 

binding sites within gene promoter regions (Benita et al., 2009; Hirani et al., 2001; Semenza 

and Wang, 1992; Zhang et al., 2006). Both HIF1 and 2 were shown to regulate hypoxic MDM 

induction of VEGFA, GLUT-1, CXCR4, IL-1ǃ, IL-8, and ADM (Fang et al., 2009) (Figure 1b), 

validating other reports of these as HIF target genes (Benita et al., 2009; Hirani et al., 2001; 

Semenza, 2003; Zhang et al., 2006). 

Evidence that hypoxia induces a protumour phenotype in TAMs is not just limited to 

observed changes in RNA and protein expression; functional studies with hypoxic or HIF-

expressing TAMs have also confirmed this phenotypic shift in macrophages. TAM-induced 

endothelial cell migration and tubule formation, reported by Chen et al. (2011), confirms the 

angiogenesis-promoting actions of TAM suggested by RNA and protein expression. More 

specifically, HIF-1ǂ has been implicated in these protumour functional effects of TAMs. 

Doedens et al. (2010) report a dose-dependent suppression of T-cell proliferation by 

macrophages, demonstrating this immunosuppressive effect to be enhanced under hypoxia 

in a HIF-1ǂ-dependent manner.  

4.2 HIF relation with other pathways 

It is clear that hypoxia drives a tumour-promoting phenotype in macrophages – it does this 

through the activation of hypoxia-responsive transcription factors, predominantly HIF-1 

and 2, and their crosstalk with other signalling pathways. One such example is Toll-like 

receptor (TLR) signalling; TLR receptors are known to activate the innate immune system 

upon recognition of various pathogen-associated molecular patterns (PAMPs), including 

Lipopolysaccharide (LPS), bacterial DNA, and double-stranded RNA (Kaisho and Akira, 

2006). In humans there are 10 functional members of the TLR family (TLR1-TLR10), of 

which, TLR4 is possibly the most involved in macrophage hypoxic response. This particular 

receptor recognises LPS, but has more recently been shown to be a receptor for certain 

endogenous molecules associated with damaged cells and tissues (Zhang and Mosser, 2008). 

In their study of the relationship between hypoxic stress and TLR activity of macrophages, 

Kim et al. (2010) showed that hypoxia (and the hypoxia mimetic, CoCl2) increased TLR4 

messenger RNA and protein expression in the murine macrophage cell line, RAW264.7. This 

was unique to TLR4 and not seen with any of the other TLRs. Through the manipulation of 

macrophage HIF-1ǂ gene expression, they demonstrated that hypoxic upregulation of TLR4 

was dependent upon HIF-1 signalling, as well as showing that overexpression of HIF-1ǂ 

enhanced TLR4 expression. Using chromatin immunoprecipitation (ChIP) they discovered 

that HIF-1ǂ binds to the TLR4 promoter under hypoxic conditions, and the resultant 

induction of TLR4 in these macrophages increased the expression of interleukin-6 (IL-6), 

cyclooxygenase-2 (COX-2) and interferon-inducible protein-10 (IP-10) (Kim et al., 2010). 

Therefore, it is likely that, at sites which are challenged by hypoxic stress, macrophages 

upregulate TLR4 and become more sensitive to infection and inflammatory signals. 
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In addition to HIF-1ǂ regulating TLR4, Sumbayev (2008) demonstrated that the inverse is 
also true. In human myeloid cells, TLR4 signalling (induced by the gram-negative bacterial 
ligand, LPS), activates crosstalk of HIF-1ǂ and apoptosis signal-regulating kinase 1 (ASK1) 
pathways. Through the activation of p38 mitogen-activated protein kinase (p38 MAPK), 
ASK1 was found to stabilise HIF-1ǂ, and knockdown of HIF-1ǂ led to a reduced TLR4-
dependent induction of pro-inflammatory cytokines. Similarly, TLR7 and 8 (involved in the 
recognition of viral single-stranded RNA) were also found to induce HIF-1ǂ, although ASK1 
was not found to be involved (Nicholas and Sumbayev, 2009). 

Evidence has been given for the role of HIFs 1 and 2 in these pro-tumour actions of TAM in 
hypoxic areas, but more recently it has emerged that HIF-1 may also be responsive under 
normoxic conditions. Such stimuli as LPS, cytokines (e.g. TNFǂ), growth factors, insulin, 
thrombin and vasoactive peptides cause HIF-1ǂ stabilisation in normoxia, via nuclear factor-
kappa B (NF-κB) signalling. This key transcription factor was shown by Rius et al. (2008) to 
be upregulated following a 2-4h exposure of murine bone marrow-derived macrophages 
(BMDMs) to low oxygen. They also demonstrated that basal levels of NF-κB were required 
for the accumulation of HIF-1ǂ protein in hypoxic cells, using macrophages from an IKK-
beta knock-out (IKKǃ-/-) mouse. This implies that IKKǃ, an important activator of NF-κB 
through phosphorylation-induced degradation of IkB inhibitors, has important 
contributions to macrophage response to hypoxia. Since NF-κB has a crucial and well 
characterised role in inflammation, IKKǃ represents a significant molecule which may link 
the hypoxic response to innate immunity and infection (Rius et al., 2008). 

5. Hypoxia, macrophage function and tumour progression 

By contributing to angiogenesis, metastasis, invasion, immunosuppression, chemo- and 

radio-resistance, and altering metabolism, macrophages are known to greatly influence the 

survival and progression of cancer (see Biswas et al. (2008)). This phenotype of TAMs is also 

known to be influenced by hypoxia, which induces a distinct protumour phenotype. 

Expression of various growth factors, including fibroblast growth factor 2 (FGF2), platelet-

derived growth factor (PDGF), placental growth factor (PGF), and hepatocyte growth factor 

(HGF), have been found to be upregulated in vitro by macrophages under hypoxia (White et 

al., 2004). These factors, in addition to VEGF, function as tumour cell mitogens and support 

tumour growth in hypoxic regions (Fang et al., 2009; Lewis et al., 2000). 

Another key process in tumour progression is angiogenesis. The expression of VEGF (a 
potent mitogen and well characterised pro-angiogenic factor) by hypoxic macrophages has 
been discussed previously. However, other key proteins reported by White and colleagues 
(2004) include CXCL8, angiopoietin, cyclooxygenase-2 (COX-2) and inducible nitric oxide 
synthase (iNOS), all of which were identified in cDNA arrays as genes that are 
transcriptionally upregulated in primary macrophages under hypoxia. Induction of these 
genes by macrophages is likely to be crucial for tumour angiogenesis. 

Additionally, hypoxic TAMs also release tissue factor (CD142) (Compeau et al., 1994) and 

macrophage inhibitory factor (MIF) (Schmeisser et al., 2005), which are thought to be 

involved in invasion and metastasis. Tissue factor expression by hypoxic TAMs (as well as 

tumour cells, endothelial cells and fibroblasts), induces the production of thrombin, which 

in turn promotes tumour cell metastasis (Versteeg et al., 2004). Furthermore, MIF has been 
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shown to promote tumour cell motility in a murine colon cancer cell line in vitro and in vivo 

(Sun et al., 2005). These factors may act indirectly through matrix metalloproteases (MMPs), 

such as MMP-9, which is stimulated by MIF and degrades the basement membrane and 

extracellular matrix (ECM) (Hagemann et al., 2004). This weakens the attachment of tumour 

cells to these structural supports and enables their subsequent invasion and metastasis. 

Further evidence of MMP induction comes from a co-culture of macrophages with tumour 

cells in hypoxia, which revealed an upregulation of macrophage MMP-7 production in low 

oxygen conditions in vitro and human tumours (Burke et al., 2003). 

Finally, the hypoxic phenotype of TAMs also includes various immunosuppressive 
functions which are achieved through several mechanisms; these include the expression of 
immunosuppressive factors prostaglandin E2 (PGE2) and IL-10 (Ertel et al., 1993; Murata et 
al., 2002), whose presence within the tumour microenvironment can downregulate the 
tumouricidal abilities of TAMs. In addition, PGE2 and IL-10 inhibit the functions of T cells 
and other effector cells of the immune system (Elgert et al., 1998), which combined with 
hypoxic inhibition of macrophage phagocytosis and presentation of antigens (Leeper-
Woodford and Mills, 1992; Murata et al., 2002), suppresses the triggering of an adaptive 
immune response directed toward the tumour. Doedens et al. (2010) recently reported 
hypoxia- and HIF-1ǂ-dependent suppression of T-cell proliferation by macrophages. 
Hypoxia, therefore, drives the macrophage towards a protumour phenotype which 
regulates tumour growth, angiogenesis, invasion, metastasis and immunosuppression.  

6. Targeting tumour hypoxia for therapy 

Under the stresses associated with hypoxia in areas of tumour ischemia (predominantly low 

oxygen and low glucose concentrations), tumour cells are forced to respire anaerobically 

and reduce their proliferation. This challenges many conventional cancer therapies such as 

chemotherapy, since their mechanism of action relies on the rapidly replication of tumour 

cells. In addition to this, the poorly developed tumour vasculature, which contributes to the 

development of hypoxia in the first place, also impedes the delivery of drugs to these areas 

of the tumour.  

In light of this, antiangiogenic “vessel normalizing” strategies are being developed which 

aim to improve tumour vasculature for better anticancer treatment and reduced metastasis. 

Rolny and colleagues (2011) demonstrated that histidine-rich glycoprotein (HRG), a host-

derived factor, is able to significantly reduce hypoxia and to polarise TAMs away from a 

protumour phenotype. 

The concept of delivering a prodrug systemically - for subsequent activation in specific areas 
of the body - has been applied to cancer biology, but is most often limited by the level of 
expression of the activating enzyme at the target site. Rather than hypoxia inhibiting cancer 
therapy, some recent therapeutic strategies have focussed on utilising cellular responses to 
these harsh conditions, twinned with the prodrug therapeutic design, to creatively activate 
cytotoxic agents within the hypoxic tumour microenvironment. Griffiths et al. (2000) made 
use of macrophage accumulation in areas of low oxygen to deliver gene therapy to 
pathological hypoxia. They genetically modified macrophages to express the enzyme 
cytochrome p450 under hypoxic conditions, which when expressed, converts the 
systemically administered pro-drug cyclophosphamide into its active form exclusively in 
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these areas and causes tumour cell death. This system was then adapted further to deliver 
an oncolytic adenovirus to these areas by co-transducing macrophages with a hypoxia-
regulated E1A/B construct, as well as an E1A-dependent virus which can only proliferate 
within a prostate-tumour (using a prostate-specific promoter) (Muthana et al., 2011). E1A/B 
proteins were only synthesised once the host cell (the macrophage) had infiltrated into areas 
of extreme hypoxia in tumours. This then subsequently activated the proliferation of the 
oncolytic adenovirus and its release. The virus then infected and killed surrounding prostate 
tumour cells – in both hypoxic and non-hypoxic areas of tumours. This three-step process 
(the homing of macrophages to hypoxic sites, hypoxia-responsive proliferation of the 
adenovirus, and the limiting of viral replication to within prostate tumour cells), makes this 
system very specific for killing tumour cells within the hypoxic areas prostate tumours 
(Muthana et al., 2011). This hypoxia-based therapy was seen to eradicate both primary and 
secondary tumours in mice. 

It has been suggested that the best use of this therapy would be in combination with 
conventional therapies, since this could potentially eliminate both the slower proliferating 
(hypoxic) and the highly proliferating areas of the tumour. Using a mathematical model, 
Owen et al. (2011) predict that the use of a macrophage-based, hypoxia-responsive therapy 
immediately before or during conventional chemotherapy would produce significant 
antitumour effects. 

7. Concluding remarks 

Macrophage accumulation in tumours is known to correlate with poor patient prognosis in 
the majority of cancer types (Fujimoto et al., 2000; Hamada et al., 2002; Hanada et al., 2000; 
Heidl et al., 1987; Leek et al., 1996; Lissbrant et al., 2000; Salvesen and Akslen, 1999). This can 
be explained by the tumour-promoting phenotype of TAMs, induced by the tumour 
microenvironment. Here we have reviewed how hypoxia, a key component of many 
malignant tumours (Raleigh et al., 2001; Vaupel et al., 1989), is centrally involved in the 
polarisation of TAMs. The shift in TAM phenotype under hypoxia has been shown not just 
at the expression level, but also at a functional level as well. In many of these reports, the 
HIF-1 transcription factor was found to be crucially important. Studies with HIF-1ǂ 
knockout mice have revealed its role, not just in regulating responses to pathological 
hypoxia, but also to physiological low oxygen conditions as part of normal oxygen 
homeostasis. It is possible that HIF-1 signalling (including its activation of other pathways), 
is a major factor in determining the polarisation and function of macrophages in different 
environments (Dehne and Brune, 2009). 

With considerable assistance from hypoxic, M2-like TAMs, tumour cells in hypoxic areas 
have the necessary support and drive to migrate and invade into adjacent tissues, evade the 
immune system and prevent a targeted adaptive immune response, and travel through the 
vasculature to form metastases at secondary sites. This has large implications in cancer 
therapy, especially since hypoxic tumour cells are less affected by most conventional 
therapeutic strategies. Inefficient targeting of such tumour cells is likely to contribute to the 
well-documented relapse in many chemotherapy- and radiotherapy-treated cancer patients; 
therefore, more creative and innovative therapeutic methodologies need to be developed 
based on our continually growing understanding of tumour hypoxia, to enhance patient 
long-term survival. 
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