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1. Introduction 

Since proteins exert their functions through interaction with other proteins rather than in 

isolation, networks of protein interactions are inevitable for understanding protein 

functions, disease mechanisms, and discovering novel targets of therapeutic drugs (Hase et 

al. 2009, Barabasi et al. 2011, Vidal et al. 2011). With the recent influx of genome-wide data of 

protein interactions, many researchers have studied on the structures and statistics of 

protein-protein interaction networks (PINs). To discover novel drug target genes, it is 

informative to understand topological and statistical characteristics of PINs, and how 

disease and drug target genes are distributed over the networks. Moreover, because those 

statistical properties of PINs are the results of long-term evolution, analysis of the PIN 

architecture from the viewpoint of comparative genomics and molecular evolution is of 

particular importance. 

In this chapter, we will first summarize our current knowledge of the statistical properties of 

PINs. We then argue on possible evolutionary mechanisms generating those properties and 

review the studies related to drug discovery and diseases as an application of the analyses 

of PIN structure. Finally, we briefly discuss the possibilities of medical studies as an 

integration of network and evolutionary biology. 

2. Genome-wide data of protein-protein interactions 

Genome-wide protein-protein interaction data have been obtained from several organisms, 

including Escherichia coli (Arifuzzaman et al. 2006), Saccharomyces cerevisiae (Uetz et al. 2000, 

Ito et al. 2001, Guldener et al. 2006, Reguly et al. 2006, Yu et al. 2008), Plasmodium falciparum 

(LaCount et al. 2005), Arabidopsis thaliana (Arabidopsis Interactome Mapping Consortium 

2011), Caenorhabditis elegance (Li et al. 2004, Simonis et al. 2009), Drosophila melanogaster (Giot 

et al. 2003), and Homo sapiens (Rual et al. 2005, Stelzl et al. 2005). Table 1 summarizes the PIN 
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datasets that are currently available. These data were mainly obtained by high-throughput 

experimental techniques such as yeast two-hybrid (Y2H) screens and tandem affinity 

purification followed by mass spectrometry (APMS) screens (Deane et al. 2002, Parrish et al. 

2006, Lavallee-Adam et al. 2011), as well as extensive literature curation by experts. 

 

Species 
Number of 

proteins 
Number of 
interactions 

Data type References 

Mycoplasma 
pneumoniae 

410 1,058 APMS Kuhner et al. (2009) 

MRSA 252 608 13,219 APMS Cherkasov et al. (2011) 

Treponema 
pallidum 

726 3,649 Y2H Titz et al. (2008) 

Mesorhizobium loti 1,804 3,121 Y2H Shimoda et al. (2008) 

Escherichia coli 2,448 8,625 APMS Arifuzzaman et al. (2006) 

Campylobacter 
jejuni 

1,301 11,557 Y2H Parrish et al. (2007) 

Yeast 1,647 2,518 Y2H Yu et al. (2008) 

 3,224 11,291 
Literature 

curated 
Reguly et al. (2006) 

 3,891 7,270 
Manually 
curated 

MIPS 

 3,278 4,549 Y2H Ito et al. (2001) 

 1,004 957 Y2H Uetz et al. (2000) 

Malaria parasite 1,267 2,726 Y2H LaCount et al. (2005) 

Arabidopsis 
thaliana 

2,661 5,664 Y2H 
Arabidopsis Interactome 

Mapping Consortium 
(2011) 

Worm 2,898 5,240 Y2H Li et al. (2004) 

 2,528 3,864 Y2H Simonis et al. (2009) 

Fly 4,679 4,780 Y2H Giot et al. (2003) 

 2,477 3,546 Y2H Pacifico et al. (2006) 

Human 2,783 6,007 
Y2H, Literature 

curated 
Rual et al. (2005) 

 1,613 3,101 Y2H Stelzl et al. (2005) 

Table 1. PIN datasets. Y2H, Yeast two-hybrid screens; APMS, tandem affinity purification 
followed by mass spectrometry screens. “Manually curated” indicates that interactions 
obtained from high-throughput screens and literatures are manually integrated by experts. 

Y2H screens examine an interaction between two proteins, by expressing these genes in yeast 
nucleus as fusion proteins (Parrish et al. 2006). One protein is fused to a DNA-binding domain 
of a transcription factor (e.g., Gal4 and LexA), and the other protein is fused to a transcription 
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activation domain of the transcription factor. When two proteins interact with each other, 
DNA-binding domain and activation domain are indirectly connected. The activation domain 
can then interact with the transcription start site of the reporter genes (e.g., LacZ). From the 
expression of the reporter gene, the interaction between two proteins can be detected. In 
APMS screens, affinity purification selectively purifies a protein complex that includes a 
protein of interest (bait protein) (Lavallee-Adam et al. 2011). Then, from the purified complex, 
mass spectrometry identifies possible interacting partners of the bait protein. 

It has been pointed out that genome-wide PIN data identified by high-throughput 
experiments contains a large number of false positive interactions (Hakes et al. 2008). Y2H 
screens may detect possible interactions between two proteins that actually reside in 
different subcellular localizations (Deane et al. 2002). APMS studies identify many false 
positive interactions caused by inadequate purification (Lavallee-Adam et al. 2011).  

Literature-curated PIN datasets are likely to be more reliable, because interactions included 
in such datasets were obtained from small-scale experiments. However, those data are 
derived from hypothesis-driven researches focusing on several proteins that are supposed 
to be biologically important, and thus the datasets can be highly biased (Arabidopsis 
Interactome Mapping Consortium 2011). Therefore, to study the global structure of PINs, 
researchers should use several datasets obtained by various methods. 

3. Statistical properties of PINs 

In PINs, a protein and a physical interaction between two proteins are represented as a node 
and a link, respectively. A series of studies have revealed that PINs have several interesting 
properties from the viewpoint of network architecture. 

3.1 Scale-freeness 

The number of links for a given node is called a degree. The degree distribution P(k), the 
fraction of nodes with k degrees in a network, has been used to characterize the global 
structure of a network. 

Erdös and Renyi (1960) investigated a random network with N nodes, in which links are 
attached between each pair of nodes with a uniform probability p. This network contains 
approximately pN(N-1)/2 randomly placed links. Erdös and Renyi (1960) showed that, in a 
random network, the distribution P(k) follows the Poisson distribution (Fig 1A, left). 
Therefore, most nodes have degrees that are nearly equal to the mean degree <k> among all 
nodes in the network. 

On the other hand, the distribution P(k) of various technological, social, and biological 

networks including PINs is known to follow the power law, i.e., P(k) ~k-γ (Albert et al. 1999; 
Fig 1A, right). These networks are highly heterogeneous; they have a large number of low-
degree nodes and a small but significant number of high-degree nodes that are called hubs. 
A network following the power law does not have a typical degree characterizing most 
nodes in the network (e.g., the mean degree <k> in a random network), and thus it is called a 
“scale-free” network. It was shown that scale-free networks are very robust against random 
removal of nodes, although selective removal of hubs drastically changes their structures 
(Jeong et al. 2001, Han et al. 2004). 
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3.2 Small-worldness 

The cluster coefficient of nodes i is defined as Ci = 2ei/ki(ki-1), where ki is the degree of node 
i, and ei is the number of links among ki neighbors of node i (Watts & Strogatz 1998) (see Fig. 
1B). In other words, ei is the number of triangles that pass through node i. Ci is equal to one 
when all neighbors of node i fully interact with one another, while Ci is 0 when there are no 
links among the neighbors of node i. The mean of the cluster coefficient among all nodes, 
<C>, reflects the density of triangles (“cliques”) within a network. 

 

Fig. 1. Measures of a network structure 
(A) A random network (left) and a scale-free network (right). The degree distribution P(k) is 
shown below the networks. (B) Cluster coefficient. Red lines represent links among three 
neighbors of node A. The numbers of links (eA) among nodes B, C, and D (the neighbors of 
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node A) in the left, middle, and right networks are 0, 1, and 3, respectively. The cluster 
coefficient CA of node A is shown for each network. (C) Assortative (left) and disassortative 
(right) networks. The distribution of <Knn(k)> is shown below the networks. Blue and Red 
nodes indicates hubs and non-hubs, respectively. 

The shortest path length between a pair of nodes is the smallest number of links (distance) 

that are necessary for travelling from one node to the other (Barabasi & Oltvai 2004). The 

mean shortest path length among all possible pairs of nodes in a network is denoted by <L>. 

Watts and Strogatz (1998) found that a random network has a much smaller value of <L> 

compared with a regular lattice. Based on this observation, they defined a “small-world” 

network as a network that has a value of <L> as small as a random network but is highly 

clustered like a regular lattice. In a random network, <L> ~ logN/log<k>, and <C> = <k>/N, 

where N is the number of nodes. 

In PINs, the value of <L> is small and the value of <C> is much higher than a random 
network; therefore, PINs are generally considered to be small-world networks. However, 
several studies showed that PINs are actually “ultra-small”, because <L> is considerably 
smaller than that in a random network (Chung & Lu 2002, Cohen & Havlin 2003, Hase et al. 
2008). In a PIN, proteins are located close to each other, suggesting that perturbations given to 
a single protein would affect the behaviour of many other proteins and even the entire PIN. 

3.3 Assortativity 

Another statistic characteristic of a network is the correlation between degrees of nodes that 
are linked to each other (Callaway et al. 2001, Newman 2002, Costa et al. 2007). Pearson 
correlation coefficient r of the degrees at both ends of a link is used to evaluate the degree 
correlation. Networks with r > 0 and r < 0 are called as assortative and disassortative 
networks, respectively. In an assortative network, hubs tend to be connected to each other 
(Fig 1C, left), while in a disassortative network, hubs tend to have links to low-degree nodes 
(Fig 1C, right). 

<Knn(k)>, the mean degree among the neighbors of all k-degree nodes (“nn” in <Knn(k)> 
means “nearest neighbors”), is also used to evaluate the assortativity of a network (Pastor-
Satorras et al. 2001, Maslov & Sneppen 2002, Costa et al. 2007, Hase et al. 2008). In an 
assortative network, <Knn(k)> increases as k increases, while <Knn(k)> in a disassortative 
network follows decreasing functions of k (Fig 1C). If there are no correlations between 
degrees of nodes at both ends of a link (e.g., r = 0), <Knn(k)> is independent from k and is 
equal to <k2>/<k>. 

It has been shown that the yeast PIN is a disassortative network (Maslov & Sneppen 2002). 
Therefore, in the yeast PIN, interactions between high- and low-degree nodes are favoured, 
while those between hubs are suppressed. The biological significance of this structure is 
unclear. Maslov and Sneppen (2002) proposed that, in the yeast PIN, a hub protein forms a 
functional module of a cell together with a large number of low-degree neighbors. They then 
hypothesized that the suppression of links between hubs minimizes unfavourable cross-talks 
among different functional modules and makes networks robust against perturbations. 

If this hypothesis is true, disassortative structure observed in the yeast PIN is under the 
natural selection, and the disassortativity should be commonly found among PINs in any 
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organisms. However, by examining PINs from five eukaryote species, Hase et al. (2010) 
found that the disassortative structure is not a common feature of PINs. The distribution of 

<Knn(k)> in the PIN can be approximated by <Knn(k)> ~ k−ν, and the value of ν is used to 
quantify the extent of disassortative structure of a network. Hase et al. (2010) showed that 

the yeast, worm, fly, and human PINs are disassortative (ν = 0.47, 0.29, 0.35, and 0.26, 

respectively), while the malaria parasite PIN is not disassortative (ν = 0.02). This observation 
indicates that the “selectionist view” by Maslov and Sneppen (2002) is not necessary for 
explaining the disassortative structure of PINs. In section 4, we will see the evolutionary 
mechanisms generating the difference in assortativity among species. 

4. Evolutionary mechanisms generating structures of PINs 

To account for the emergence of PIN architecture mentioned above, researchers developed 
several network growth models and conducted simulation studies using these models. 
Moreover, statistical properties of PINs were analyzed from the viewpoint of comparative 
genomics and molecular evolution. In this section, we review evolutionary studies of PINs. 

4.1 Preferential attachment and gene duplication 

Barabasi and Albert (1999) suggested that the emergence of scale-freeness can be explained 
by two basic mechanisms: network growth and preferential attachment. The process of 
network growth adds a new node into a network (red node in Fig 2A). The process of 
preferential attachment introduces a new link between the new node and each of the other 
nodes with the probability proportional to the degree of the latter node. For example, the 
probability that the red node in Fig. 2A gains a new link connected to a blue node is three 
times higher than that to a black node (Fig 2A). Due to these two processes, a node with a 
higher degree gains a larger number of links, and thus the degrees of high-degree nodes 
increase faster than those of low-degree nodes, generating a scale-free network.  

In fact, Eisenberg and Levanon (2003) demonstrated that the number of interactions that a 
protein gained during its evolution is roughly proportional to the degree of the protein by 
comparing the genomes of E. coli, A. thaliana, Schizosaccharomyces pombe, and S. cerevisiae. 
This observation is consistent with the preferential attachment. 

What is the genetic mechanism of network growth and preferential attachment in the 
evolution of PINs? A plausible mechanism is gene duplication. Let us consider a small PIN 
containing both high- (node A) and low-degree nodes (node B, C, and D) (Fig 2B, middle). 
We assume that the number of nodes in a network increases by gene duplication, and a new 
node has the same interacting partners as the original node. When node B is duplicated, for 
example, node A acquires a new link and thus the degree of node A increases by one. When 
node C or node D is duplicated, the same thing happens. On the other hand, if node A is 
duplicated, each of the degrees of nodes B, C, and D increases by one. Under the assumption 
that gene duplication occurs randomly with an equal probability for all nodes, the 
probability that node A acquires a new link is three times higher than the other node does. 
In general, when we compare a high-degree node (e.g., A) and a low-degree node (e.g., B), a 
given node (e.g, C) is more likely to be a neighbor of a high-degree node than that of a low-
degree node. Therefore, a high-degree node gains new links faster than a low-degree node 
does. For this reason, gene duplication can account for the mechanism of “rich-get-richer”. 
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Fig. 2. Network growth by preferential attachment 
(A) Preferential attachment. A red node is added to the network. The probability that a new 

link is attached between red and blue nodes (3ε) is three times higher than that between red 

and black nodes (ε). (B) Network growth with gene duplication. Red nodes represent 

duplicated nodes. Gene duplication occurs with an equal probability (ε)for all nodes. When 
node A is duplicated, degrees of nodes B, C, and D increase by one (right), whereas when 
either node B, C, or D is duplicated, degree of node A increases by one (left). 

4.2 Duplication and divergence model 

A pair of genes generated by duplication will undergo one of three fates, namely, (i) 
neofunctionalization, (ii) subfunctionalization, and (iii) nonfunctionalization. After gene 
duplication, one of the duplicated genes becomes free from selective pressure because of the 
presence of redundant copies of the gene. Therefore, the gene can tolerate to the 
accumulation of random mutations and in some cases acquire a novel function (Ohno 1970). 
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This process is called neofunctionalization. On the other hand, in subfunctionalization 
process, each of the duplicated genes accumulates mutations, and the functions of the 
ancestral gene are assigned to the two genes (Force et al. 1999). In nonfunctionalization 
process, one of the duplicated genes loses its function and becomes a pseudogene due to 
deleterious mutations. Among the three processes, neofunctionalization and 
subfunctionalization contribute to the evolution of proteins (Lynch et al. 2000, Blanc et al. 
2004, He et al. 2005, Freilich et al. 2006). 

In the duplication-divergence model, neofunctionalization and subfunctionalization are 

modelled as attachment of new links and removal of the links generated by gene 

duplication, respectively. As for subfunctionalization process, there are two different 

models, the symmetric divergence and asymmetric divergence. In the former, links are 

eliminated from both of the duplicated nodes, while in the latter, elimination of links occurs 

only in one of the two nodes generated by duplication (Fig 3A).  

Wagner (2002) reported that one of the duplicated proteins retain a significantly larger 

number of interactions than the other. For this reason, several network growth models 

adopted the asymmetric divergence model (Kim et al. 2002, Wagner 2003, Chung et al. 2003, 

Ispolatov et al. 2005c). However, “complete” asymmetric divergence in which links are 

eliminated from only one of the duplicates is unrealistic, and the actual divergence process 

should be intermediate between symmetric and asymmetric divergence (Hase et al. 2010). 

Sole et al. (2002) proposed a model on the basis of neofunctionalization and asymmetric 

divergence. According to their model, after duplication generates a new node, 

neofunctionalization process attaches a new link between either of the duplicated nodes and 

each of the other nodes with a uniform probability θ, and then asymmetric divergence 

eliminates links to only one of the duplicated nodes with a uniform probability α (Fig 3A). 

Simulation and analytical studies have demonstrated that this model can generate scale-free 

networks with a small-world property (Sole et al. 2002, Kim et al. 2002, Pastor-Satorras et al. 

2003, Chung et al. 2003, Raval 2003).  

However, it has been pointed out that some statistical features of PINs could not be 

regenerated by the model of Sole et al. (2002). The yeast and fly PINs show a much larger 

<C> than the networks by Sole et al. with the same number of nodes and links as the actual 

PINs (Sole et al. 2002, Middendorf et al. 2005, Ispolatov et al. 2005a). To overcome this 

problem, Vazquez et al. (2003) proposed the heterodimerization (HD) model. In their model, 

symmetric divergence eliminates links from both of the duplicated nodes with a uniform 

probability α, and the HD process attaches a new link between two duplicated nodes with 

another uniform probability β, forming a heterodimer (Fig 3A). 

When gene duplication occurs for a self-interacting protein, the duplicated proteins will 

interact to each other. Therefore, β in Vazquez et al. (2003) represents the probability that a 

randomly selected protein is self-interacting and the new HD link between two duplicated 

proteins survives after divergence. Simulation and analytical studies have showed that the 

HD model could reproduce scale-free networks with a similar <C> to the yeast and fly PINs 

(Vazquez et al. 2003, Middendorf et al. 2005, Ispolatov et al. 2005a). This is because an HD 

process creates triangles, and a network containing a large number of triangles shows a high 

value of <C>. A computational study based on machine learning technique showed that the 
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HD model could best reproduce the fly PIN among seven network growth models 

(Middendorf et al. 2005). 

 

Fig. 3. Network growth models based on gene duplication and divergence 
A pair of two red nodes are generated by gene duplication. (A) The HD model with 
asymmetric or symmetric divergence processes. Nodes A and A’ are generated by gene 
duplication. In the symmetric divergence, each of the links to nodes A and A’ is eliminated 

with a uniform probability α. On the other hand, in the asymmetric divergence, each of the 

links to node A’ is eliminated with a uniform probability α. After the divergence process, an 
HD link (a red line) between two duplicated nodes (nodes A and A’) is attached with a 

uniform probability β. (B) The NHD model. An HD link (red link) is attached between 
nodes A and A’ with a probability proportional to the number (nN) of common neighbors 
shared by these nodes. (C) The DDD model. A probability of duplication of a given node is 
dependent on the degree of the node. If a node has k links, the node is duplicated with the 

probability proportional to 1 + kσ, where σ is a parameter of the duplicability of a node. 
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4.3 Non-uniform heterodimerization model 

By conducting simulation studies, Hase et al. (2008) showed that, to reproduce the value of 

<C> in the yeast PIN by the HD model, the number of HD links in the networks by the HD 

model has to be much larger than that in the yeast PIN. Similar observation was made for 

the fly PIN (Ispolatov et al. 2005a and b). This means that the HD model is insufficient for 

explaining the evolution of PINs. 

As shown in Fig. 3B, when two duplicated nodes share one, two, and three common 

neighbors, an HD link between them generates one, two, and three new triangles, 

respectively. The high <C> in a PIN indicates that the network contains many triangles. 

Therefore, if a new HD link is attached more preferentially between duplicated nodes 

sharing a larger number of common neighbors, the value of <C> in a simulation-generated 

network is expected to become higher. By considering in this way, Hase et al. (2008) 

proposed the non-uniform heterodimerization (NHD) model in which a new HD link is 

added between duplicated nodes with a probability proportional to the number of 

neighbors shared by those nodes (Fig 3B). Simulation studies demonstrated that the NHD 

model could indeed reproduce both the high value of <C> and the small number of HD 

links in the yeast PIN. 

 

Fig. 4. HD links in the yeast PIN and in the networks by the HD and NHD models (Hase et 
al. 2008). (A) Distribution of PHD(nN), the probability that an HD link exists between two 
homologous proteins when they share nN common neighbors. Green squares, blue 
diamonds, and red crosses indicate the values for the yeast PIN, the network by the NHD 
model, and that by the HD model, respectively. (B) Distribution of kHP(nN), the mean degree 
of proteins that are connected by an HD link and share nN common neighbors. 

In the evolution of PINs, duplication of a self-interacting protein adds an HD link between 

duplicated proteins. Some HD links were conserved in evolution, while others were 

eliminated because of occurrence of mutations at interacting sites in these duplicated 

proteins. In the HD model, the survival rate of HD links is uniform; on the other hand, the 

NHD model assumes it to be proportional to the number of their common neighbors (Fig. 

4A). In the yeast PIN, the probability that two homologous node retain an HD link increases 
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as the number of neighbors shared by the two nodes increases, which is consistent to the 

NHD model rather than the HD model (Fig. 4A). 

A possible explanation for this observation is as follows. It is expected that, when a given 

pair of proteins share a large number of common neighbors, the degree of these proteins 

should be high. In fact, in the yeast PIN, when two homologous proteins are connected by a 

HD link, there is a positive correlation between the number of common neighbors to the 

homologues and the mean degree of the two proteins (Fig. 4B). Moreover, several studies 

showed that high-degree proteins tend to show low evolutionary rate in the yeast PIN 

(Fraser et al. 2002, 2003, Fraser 2005). Therefore, it is suggested that the survival rates of HD 

links are also positively correlated with the number of common neighbors shared by the two 

homologous proteins. 

4.4 Degree-dependent duplicability and assortativity 

Duplication and divergence models including the NHD model can explain various aspects 

of the architecture of PINs (Pastor-Satrras et al. 2003, Vazquez 2003, Hase et al. 2008). 

However, these models cannot explain the differences in overall structures of PINs among 

species. As mentioned in section 3, the yeast, worm, fly, and human PINs are disassortative, 

while the malaria parasite PIN is non-disassortative. 

A possible evolutionary scenario that can explain the difference in assortativity of PINs 
among different species is as follows (Hase et al. 2010). Let us consider a disassortative 
network containing low- and high-degree nodes (e.g., A and C, respectively), in which the 
low- and high-degree nodes are linked to each other (Fig 5A, middle). Duplication of a low-

degree node (e.g., node A) causes the value of ν in the disassortative network to be higher, 
because the degree of its high-degree neighbor increases (Fig 5A, left). On the other hand, 
duplication of a high-degree node (e.g., node C) makes the degree of its low-degree 

neighbors higher, and thus the value of ν decreases (Fig 5A, right). For this reason, 

duplication of low- and high-degree nodes would make the value of ν in a disassortative 
network larger and smaller, respectively. 

Hase et al. (2010) proposed a novel duplication and divergence model named “degree–
dependent duplication (DDD) model”, in which duplication of nodes occurs depending on 
their degree (see Fig 3C). Simulation studies based on the DDD model revealed that 
preferential duplication of low-degree nodes can successfully reproduce the disassortative 
structure observed in the yeast, worm, and fly PINs, while preferential duplication of high-
degree nodes generate non-disassortative networks similar to the malaria parasite PIN (see 
Fig 5B and 5C). Moreover, Hase et al. (2010) evaluated the dependency of gene duplicability 
on their degrees by analyzing orthologous relationships of genes extracted from 55 
eukaryotic proteomes. The analyses demonstrated that proteins with a lower degree indeed 
have higher duplicability in disassortative PINs (the yeast, worm, and fly PINs) (Fig 5D), 
whereas high-degree proteins tend to have high duplicability in non-disassortative PINs 
(the malaria parasite PIN) (Fig 5E). Therefore, it is suggested that assortativity of a PIN is 
related with the gene duplicability dependent on the degrees of genes. If this is the case, 
disassortative structure of PINs is merely a byproduct of preferential duplication of low-
degree proteins, and we do not need to assume any adaptive meaning for this structure, as 
mentioned in section 3. 
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Fig. 5. The DDD model and the extent of assortativity in networks (Hase et al. 2010). 

(A) Duplication of a node alters the distribution of <Knn(k)> and the value of ν in a network. 

A diagram below a network shows the distribution of <Knn(k)> and the value of ν in the 
network. (B) The distribution of <Knn(k)> in the networks generated by the DDD model for 

yeast. Blue diamonds and red crosses show the results of simulation with σ = -0.05 and 0, 

respectively (as for σ, see Fig. 3C). Black squares represent <Knn(k)> in the yeast PIN. Dashed 
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lines in black, blue, and red represent k-0.47, k-0.51, and k-0.18, respectively. (C) The distribution 
of <Knn(k)> in the networks generated by the DDD model for malaria parasite. Blue 

diamonds and red crosses show the results of simulation with σ = 1.0 and 0, respectively. 
Black squares represent <Knn(k)> in the malaria parasite PIN. Dashed lines in black, blue, 
and red represent k-0.02, k0.01, and k-0.22, respectively. (D) and (E) indicate correlations between 
the degree and the duplicability in the yeast and malaria parasite PINs, respectively. Bars in 
blue, yellow, and red show the mean duplicability among low-, middle-, and high-degree 
proteins, respectively. A species name above each diagram denotes the species of which 
genome was compared with S. cerevisiae or P. falciparum. *, **, and *** represent P < 0.05,  
P < 0.01, and P < 0.001, respectively, by the Wilcoxon rank-sum test with the Bonferroni 
correction. 

5. Structures of PINs and their relationships with disease genes and drug 
targets 

As we have seen above, PINs are characterized by several interesting properties that are 
different from those of a random network. Therefore, understanding diseases and 
mechanisms of drug action in the context of PIN architecture may allow us to address some 
fundamental properties of disease genes and drug target molecules. Indeed, number of 
disease genes and that of drug targets are very small. Only 10% of the human genes are 
known to be disease genes (Amberger et al. 2009), and only 435 genes are target genes of 
therapeutic drugs (Rask-Andersen et al. 2011). Why is the number of drug targets and 
disease genes so small? Are they distributed randomly over the human PIN? Are there any 
quantifiable correlations between drug target genes and their statistical properties in the 
human PIN? To address these questions, drug target and disease genes were mapped onto 
the human PIN and their statistical properties in the PIN were investigated. Moreover, by 
using biological networks including the human PIN data, several studies showed that side 
effects of drugs depend on their statistical features in the network. In this and subsequent 
sections, we review the application of network analyses to medical researches. 

5.1 Statistical properties of disease genes and drug targets in the human PIN 

Elimination of a hub protein affects many proteins in a network (Jeong et al. 2001, Yu et al. 
2008). Therefore, it was previously hypothesized that genes encoding hub proteins are 
associated with diseases (Barabasi et al. 2011). Several studies reported that the mean degree 
among disease genes is in fact significantly higher than that among non-disease genes 
(Wachi et al. 2005, Jonsson & Bates 2006, Xu & Li 2006). 

A human gene is defined to be essential, when knock-out of its orthologous gene causes 
embryonic and postnatal lethality or sterility in mouse (Liang & Li 2007). Liang & Li (2007) 
reported that essential genes tend to encode hub proteins in the human PIN. 

However, Wachi et al. (2005), Jonsson & Bates (2006), and Xu & Li (2006) took no account for 
the fact that there are only a small number of disease genes that are also essential (essential 
disease genes), while vast majority of disease genes are actually non-essential. Because 
essential disease genes encode hub proteins, the mean degree of disease genes became 
apparently high in the three studies. In contrast, non-essential disease genes do not show 
any tendency to encode hub proteins (Goh et al. 2007). Rather, they tend to encode low- and 
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middle-degree proteins (Feldman et al. 2008). Mutations in high-degree proteins cause 
dysfunctionality of many neighbor proteins, leading severe impairment of developmental 
and physiological processes. Individuals having such mutations cannot survive until 
reproductive years and are likely to be removed from population. For this reason, non-
essential disease genes are enriched among low- and middle-degree genes.  

Hase et al. (2009) investigated drug target genes to see whether they have specific statistical 

features in the PIN or not. They found that most drug target genes are middle-degree 

proteins and some are low-degree, while there are almost no drug targets among high-

degree proteins (see Fig 6). The degree distribution is similar to that of disease genes, and, 

not surprisingly, drug target genes significantly overlap with disease genes (Yao & Rzhetsky 

2008). These results indicate that middle-degree proteins are likely to be most advantageous 

targets for therapeutic drugs. 

Oncogenes tend to be high-degree proteins (Jonsson & Bates 2006), and thus they are less 

likely to be targets for drugs, or one must accept major potential side effects. A possible 

strategy for designing anti-cancer therapy with less severe side effects is to develop a novel 

combination of drug compounds that targets several low- and middle-degree proteins, 

because such combination could generate synergetic effects to cancer cure, and low- or 

middle-degree targets are expected to induce less severe side effects compared with high-

degree targets. 

 

Fig. 6. Degree distribution of drug targets (Hase et al. 2009). 
(A)PDT(k) represents the fraction of drug targets to all proteins for the degree of k. The 
dashed line in red represents the probability that a randomly selected protein is a drug 
target. (B) White, yellow, and blue nodes represent low- (k = 1 – 5), middle- (k = 6 – 30) and 
high-degree (k > 30) proteins, respectively. Drug targets (red nodes) are mapped on the 
network. White, yellow, green, and blue links represent interactions between high- and low-
degree proteins, those between middle-degree proteins, those between high- and middle-
degree proteins, and those between high-degree proteins, respectively. Middle-degree 
proteins are extensively connected to each other, while links between high-degree proteins 
are rather suppressed. For clarity, low- and middle-degree proteins that do not have any 
interactions with high-degree proteins are not shown. 
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5.2 Predicting candidate drug targets and their side effects based on biological 
networks 

To develop a new drug, it is critical to accurately predict its side effect, because almost 30% 

of candidate drugs are rejected in clinical stages due to their unexpected toxicity or concerns 

about drug safety (Kola & Landis 2004, Billingsley 2008). Severe adverse reactions may be 

found long after the approval of drugs (e.g., Rosiglitazone), and in such cases, those drugs 

would go out of production (e.g., Rofecoxib) (Moore et al. 2007).  

The chemical structures of drugs have been used to predict their adverse side effects and 

target proteins (Kuhn et al. 2008, Campillos et al. 2008, Yamanishi et al. 2010). Campillos et 

al. (2008) developed a large-scale database of adverse side effects of drugs. By using the 

database with information of chemical structure of drugs, they made a similarity metric 

between two drugs. Under the assumption that drugs with higher similarity in their metric 

more tend to share the same target proteins, they inferred candidate targets for the drugs. 

However, if target proteins of two drugs are close in a molecular network, such drugs may 

cause similar downstream effects in the network and thus have similar side effects. To 

understand the molecular mechanisms of drug action and associated adverse effects in 

greater details, it makes sense to view targets of drugs in the context of biological networks 

including the genome-wide human interactome (Pache et al. 2008, Zanzoni et al. 2009).  

Recently, Brouwers et al. (2011) investigated how side effect similarities of targets depend 
on their closeness in the human PIN. They found that a certain number of pairs of two drugs 
without common targets show similar side effects, when they are close in the human PIN. 
Moreover, Wang et al. (2011) reported that drug side effects are significantly associated with 
network distances between drug target genes and diseases genes, i.e., targets for failure 
drugs that make severe adverse side effects are closer to disease genes than targets for 
approved drugs. Thus, selecting targets that are too close to diseases genes are not always 
the best strategy (Wang et al. 2011), although the pharmaceutical industry tends to select 
targets of new drugs that are close with the corresponding disease genes in the biological 
networks, especially after 1996 (Yildirim et al. 2007). 

With recent influx of information of biological networks, especially the human interactome, 
analyses like Brouwers et al. (2011) or Wang et al. (2011) can be refined and adapted to infer 
still unknown adverse side effects of drugs and to predict possible target genes. Indeed, by 
integrating information of the human PIN with similarities between two genes (e.g., GO 
semantic and sequence similarity) and those between two drugs (e.g., chemical and drug 
therapeutic similarity), several recent researches attempted to develop a method to predict 
possible targets for therapeutic drugs (Zhao & Li 2010, Perlman et al. 2011).  

6. Possibilities of medical studies with integration of PINs and evolutionary 
studies 

The human PIN is still incomplete and there are many proteins without any information of 
protein-protein interactions (Venkatesan et al. 2009). Evolutionary information (e.g., 
evolutionary rate and duplicability) of genes is significantly correlated with their statistical 
properties in PINs (see sections 2 and 3); therefore, such information can be utilized to 
complement to the incompleteness of the human PIN. 
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Rambaldi et al. (2008) reported that most of the cancer genes are singletons and have 

interactions with many genes. This finding indicates that both gene duplicability and 

network information are useful for predicting candidate cancer genes. Modification of 

currently available methods by integrating evolutionary information would improve the 

accuracy of predicting disease and drug target genes. 

Recently, large-scale PINs became available from several prokaryotes, including Methicillin-
resistant Staphylococcus aureus (MRSA) (Cherkasov et al. 2010), Treponema pallidum (Titz et al. 
2008), Campylobacter jejuni (Parrish et al. 2007), Mycoplasma pneumonia (Kuhner et al. 2009), 
and Mesorhizobium loti (Shimoda et al. 2008) (see Table 1). Some of them are pathogenic. By 
investigating the evolution of their PINs, we may be able to understand the process of 
acquiring the pathogenicity and developing drug resistance from the viewpoint of network 
architecture. 

Cherkasov et al. (2010) suggested that, in the MRSA PIN, hubs are essential for network 
stability and may be prospective antimicrobial drug targets. However, almost all known 
antimicrobial targets have relatively few interactions and hubs have largely been overlooked 
as drug targets. If hubs in pathogens have no orthologous genes in human and evolve very 
slowly, by targeting such hubs, we may be able to develop novel antibacterial drugs with 
high efficacy and small side effects, and without development of resistance to the drugs. 
With a recent influx of PINs from pathogenic organisms and genomes from various bacterial 
species, analyses integrating comparative genomics with PINs will become keys to identify 
still unknown disease mechanisms and novel targets for antibacterial drugs. 

7. Conclusion 

In this chapter, we describe various aspects of architecture of PINs, such as scale-freeness, 
small-world properties, and assortativity. Computational studies based on network-growth 
models and comparative genomics revealed how accumulation of local changes in PINs 
affects their overall architecture during evolution. We also discussed possible application of 
PINs and evolutionary studies to medical researches. With expected explosion of OMICs 
data (e.g., PINs and SNPs from human) in the near future, an integration of networks and 
genetics will be among the most powerful strategies to elucidate unknown mechanisms of 
disorders and discover novel targets for efficacious drugs. 
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