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1. Introduction 

Recently there have been large advances in high-throughput experimental approaches to 
identifying protein interactions. However, these experimental verified interactions still 
account for a small proportion of the complete interaction network. For example, based on 
current understanding (Stumpf, Thorne et al. 2008), less than 10% of interactions of the 
human protein interaction network (PIN) are identified and collected in the Human 
Protein Reference Database (HPRD) (Peri, Navarro et al. 2003; Stumpf, Thorne et al. 2008). 
The low coverage can be complemented by the computational approaches methods to 
predict protein interaction. This chapter describes approaches based on different 
biological observations and/or different computational techniques. Another focus of this 
chapter is to highlight the importance of creating a benchmark - especially negative 
samples since there are very limited techniques developed to confirm that two proteins do 
not interact (Doerr 2010; Smialowski, Pagel et al. 2010) - in evaluating computational 
approaches. 

Computational methods can be roughly divided into two categories. Methods in the first 
category utilize the observation that functionally related proteins have patterns of co-
occurrence, such as co-evolution or co-expression; while methods in the second category 
compile proteins into features potentially related to protein interaction, such as protein 
surface area, and resort to machine learning (ML) techniques for prediction. Different co-
occurrence-based methods are distinct in where, namely which biological properties, the co-
occurrence is observed and in the implementation details to record the co-occurrence. For 
example, Salgado et al. suggested that some related genes are close in genome to make the 
transcription more efficient (Salgado, Moreno-Hagelsieb et al. 2000). Methods based on this 
observation utilize co-localization in genome and could, for example, use the distance 
between two genes to record the co-occurrence. Section 2 will introduce seven categories of 
co-occurrence as follows. 

1. Genomic location—some genes producing proteins that will interact are close in 
genome to facilitate transcription; 

2. Cellular compartment—interacting proteins should appear in the same area in a cell to 
interact, another co-localization pattern which consider the cellular location; 
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3. Phylogenetic tree—if one protein was mutated in evolution, its cooperating protein 
should have a corresponding mutation to keep their interaction/function and thus the 
species survival, i.e. cooperating proteins should have similar phylogenetic trees; 

4. Existence in close species—if two proteins co-work for a function to a species, then the 
species will have both of them, otherwise the species will have none of them, i.e. some 
related proteins are present in/absent from species together; 

5. Interacting domains—interacting proteins usually have complementary parts of a 
interacting domain pair; 

6. Literature—related proteins, since there must be some papers describing their relations, 
are prone to be mentioned together in literature, as opposed to other proteins existing 
only in articles describing their individual characteristics; 

7. Gene fusion—some interacting proteins whose homologues form a fused protein chain, 
a special biological phenomenon named Rosetta Stone protein. 

Different ML-based (or feature-based) methods, however, may share partial features to 
previous studies but develop new features at the same time. This led to more complicated 
relations than that among co-occurrence-based methods. For example, Shen et al. (Shen, 
Zhang et al. 2007) proposed to use a composition of short sequences as protein features and 
a following work by Chang et al. (Chang, Syu et al. 2010) combined these features with 
protein surface information. In addition to the overlap of features among different ML-
based methods, they may use identical or different ML techniques. Using the two ML-based 
methods as an example, Shen et al. chose the widely used support vector machine (SVM) 
(Vapnik and Vapnik 1998), while Chang et al. used a relaxed variable kernel density 
estimator (RVKDE) (Oyang, Hwang et al. 2005) developed by their group. Thus to keep the 
description structure compact, we will focus on the features in section 3. We will provide 
only a minimum introduction to several well-known ML techniques in section 4 since they 
are beyond the scope of this chapter. Knowing the concepts of these ML techniques may 
help to understand the design of different ML-based PPI predictors and to select 
appropriate features. This chapter roughly divides features into four categories. 

1. Sequence information—many studies extracted features only from protein sequences. 
Methods using only such features are very challenging but provide much applicability. 
Some derived features such as protein polarity (by summing the polarity index of its 
amino acids) are also included in this category. 

2. Evolution information—features involving alignment with other sequences fall into 
this category. Methods using such features usually require a collection of protein 
sequences of many species. 

3. Structure information—methods of this category can perform geometry and even 
energy analyses. Many useful features such as protein surface, secondary structure and 
binding affinity can be derived. These methods are usually time-consuming, where 
researchers will expect to obtain extremely accurate predictions. 

4. Auxiliary information—some studies used auxiliary information such as function 
annotation. These studies usually used such features to analyze rather than to predict 
protein interactions, since some features were manually curated. It was hard to perform 
a fair comparison with other methods not using such features. 

After the features used in recent ML-based methods there is an introduction to three well-
known ML techniques. 
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1. Decision tree—a time-honored tool, which is less accurate than modern ML tools but 
preferred by many biologists because its learning model is more interpretable to 
human; 

2. SVM—a state-of-the-art tool that overwhelmingly prevails in the field of computational 
biology because of its accuracy; 

3. RVKDE—another modern ML tool that solves the most critical problem of SVM, 
unacceptable execution time on large data, by slightly sacrificing accuracy. 

This chapter ends up with the important issue of computational approaches - evaluation. 
Computational approaches of identifying protein interactions have a fateful difference to 
experimental approaches. That is, their results are considered as “prediction” rather than the 
answer. So it is an inevitable step for the studies of computational methods that they must 
test their algorithms and report the prediction accuracy compared to a benchmark with the 
answers already known. 

As a summary, this chapter will first introduce the concept of co-occurrence pattern and the 
implementation details of some co-occurrence-based methods. For the ML-based methods, 
this chapter focuses on the features and a little on the ML techniques. Finally, three 
contradictions are used to describe to readers the importance of evaluating these 
computational methods and explain how to interpret the accuracy they see in literature. 

2. Co-occurrence-based approaches 

This section introduces seven concepts of co-occurrence patterns that have been adopted to 
predict protein interactions. An identical concept, based on the available materials, may 
have different implementation details. In this section, the concept of each co-occurrence 
pattern is first introduced followed by the implementation details of several methods as 
examples of that co-occurrence pattern. 

2.1 Genomic location 

The advance of sequencing leads to the opportunity not only of identifying the genomic 
locations of genes, but also of analyzing genomic context to predict interactions between 
genes (Huynen and Snel 2000). The genomic location, also known as genomic context, co-
occurrence pattern relies on the fact that operons and some adjacent genes are likely to 
encode functionally related proteins (Rogozin, Makarova et al. 2002). Huynen and Snel 
proposed a method to assess the probability that two genes occur as neighbours in a 
genome only by chance (Huynen and Snel 2000). They randomized the genes in each 
genome over the loci in that genome. The expected number of the co-occurrences of two 
genes, namely those that occur as neighbours, in the randomized genomes was less than 
one. A functional interaction between genes was inferred if the observed number of co-
occurrences is significantly higher than the expectation. Rogozin et al. proposed a 
procedure to compare the orders of orthologous genes (Rogozin, Makarova et al. 2002). 
They clustered genes into orthologous groups which were then projected onto genomes to 
identify the neighborhood genes. The results show that the gene neighbours have good 
functional coherence. 
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2.2 Cellular compartment 

Proteins that occur in different cellular compartments are, in principle, considered not to 
interact since they do not have the chance to meet. However, some in vitro experiments 
such as tandem affinity purification-mass spectroscopy (TAP-MS) method (Krogan, 
Cagney et al. 2006), might report such interactions of two proteins in different cellular 
compartments. It is difficult to determine if these in vitro interactions are correct. Thus, 
this co-occurrence pattern is usually used to increase the prediction reliability of another 
method or to generate a reliable benchmark rather than an individual interaction 
predictor. For example, the Eukaryotic Linear Motif (ELM) server used cellular 
compartment information as a filter to double-check gene function (Davey, Van Roey et 
al. 2011). The gene function, represented by its Gene Ontology (GO) terms (Ashburner, 
Ball et al. 2000), was required to be consistent with its cellular compartment. Guo et al. 
used cellular compartment information to build the negative data of protein interaction 
(Guo, Yu et al. 2008). They assumed that proteins that occur in different cellular 
compartments do not interact. They grouped proteins into eight subsets based on the 
eight main types of cellular compartment—cytoplasm, nucleus, mitochondrion, 
endoplasmic reticulum, golgi apparatus, peroxisome, vacuole and cytoplasm and nucleus. 
The negative samples of non-interacting pairs were generated by pairing proteins from 
different subsets. 

2.3 Phylogenetic tree 

The phylogenetic tree was proposed to reflect the evolution information. Thus, the similarity 
between phylogenetic tress provides a good measure of gene co-evolution. Interacting 
proteins usually co-evolve since mutations in one protein led to the loss of function or a 
compensation mutation of the other protein to preserve the interaction (Walhout, Sordella et 
al. 2000). Jothi et al. proposed the MORPH, an algorithm to search the best superimposition 
between evolutionary trees based on the tree automorphism group in 2005 (Jothi, Kann et al. 
2005). The search was done by Monte Carlo algorithm that probes the search space of all 
possible superimpositions, which is computationally intensive. In graph theory, two trees 
are isomorphic if there is a one-to-one mapping between their vertices (genes) and edges 
(interactions). Jothi et al. extended this definition to automorphic whereby a tree is 
isomorphic to itself. The search space was largely reduced to the automorphism group of a 
phylogenetic tree. The same group  proposed another method to assess the degree of co-
evolution of domain pairs in interacting proteins in 2006 (Jothi, Cherukuri et al. 2006). 
Multiple sequence alignments of two proteins/domains to a reference set of genomes were 
used to construct phylogenetic trees and similarity matrices. The degree of co-evolution of 
two domains was then estimated by the correlation coefficient of the two corresponding 
similarity matrices. 

2.4 Existence in close species 

The co-occurrence pattern of the existence in close species, known as phylogenetic profile, is 
based on the fact that functionally related proteins usually co-evolve and have homologues 
in the close genomes (Snitkin, Gustafson et al. 2006). A phylogenetic profile of a gene is a 
vector, representing the presence or absence of homologues to that gene across a collection 
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of reference organisms. There are two major components in a phylogenetic profile-based 
method: i) how to construct a phylogenetic profile of a given gene and ii) how to determine 
the similarity of two phylogenetic profiles. First, the presence or absence of homologues can 
be determined by sequence alignment scores, such as a BLAST (Altschul, Madden et al. 
1997) E-value, with a threshold of presence (Sun, Xu et al. 2005). Such binary vectors were 
improved as real valued vectors of normalized alignment scores without arbitrarily 
determining a score threshold (Enault, Suhre et al. 2003). Second, any similarity or distance 
function between two vectors can be used to define the similarity of two phylogenetic 
profile vectors. Enault et al. have examined two Euclidean-like distance funtions and 
another two correlation coefficient variants (Enault, Suhre et al. 2003). They concluded that 
inner product, shown as follows, is a good indicator in predicting Escherichia coli protein 
interactions. 
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2.5 Interacting domains 

Proteins usually depend on a short sequence of residues to perform interactions with other 
molecules. The functional short sequences between two interacting proteins form the contact 
interfaces, also known as interaction sites (Sheu, Lancia et al. 2005). These interaction sites are 
usually represented by domains/motifs. Li et al. proposed a method to detect interaction sites, 
which required only protein sequences (Li, Li et al. 2006). They developed an efficient itemset 
mining algorithm that can identify the most conserved motifs within two interacting protein 
groups. Here interacting protein groups indicate two groups, A and B, of proteins where all 
proteins in group A interact with all proteins in group B, denoted an all-versus-all interaction 
network. The conserved motifs within group A were considered, in principle, related to the 
conserved motifs within group B. The identified interacting motif pairs can be then used to 
predict novel interacting proteins. Tan et al. proposed a method, D-STAR to find correlated 
motifs that were overrepresented in interacting protein pairs (Tan, Hugo et al. 2006). The basic 
idea of D-STAR is to check all possible (l, d)-motif pairs, where (l, d) indicate an alignment of 
length l with at most d mismatches. Tan et al. speeded up the brute force procedure by 
transforming the problem into a clique-finding problem (Pevzner and Sze 2000). 

2.6 Literature 

Owing to the advance of Internet technologies, the scale of public accessible biomedical 
literature has increased astonishingly in the last decade. Text mining tools are critical to 
maximize the usage of such a large-scale knowledge base. Extracting protein interactions 
from literature is generally categorized as relationship mining, which aims to detect co-
occurrences of a pair of entities of specific types (such as gene, protein, drug or disease) to a 
pre-specified relationship (such as interact, regulate, activate or inhibit) in the same article 
(Cohen and Hersh 2005). Albert et al. proposed a method to retrieve abstracts reporting 
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nuclear receptors (NRs) (Albert, Gaudan et al. 2003). The retrieved data were reviewed 
manually. Albert et al. generated a dictionary focusing on NRs, cofactors and other NR-
binding proteins of human, mouse and rat. The extraction process as follows was performed 
on MEDLINE abstracts: i) identify abstracts with at least one NR in the generated dictionary, 
ii) tag entities (proteins) and relationships (interactions) according to the generated 
dictionary and iii) extract sentences contains two tagged proteins and a tagged interaction. 
In the current genomic era, the text-minded information is widely applied in database 
annotation. Many popular protein interaction databases such the Database of Interacting 
Proteins (DIP) database (Salwinski, Miller et al. 2004) and the Search Tool for the Retrieval 
of Interacting Genes (STRING) database (Szklarczyk, Franceschini et al. 2011) included 
automatically extracted literature information as an additional line of evidence. 

2.7 Gene fusion 

Gene fusion is a special genomic organization whereby some interacting proteins have 
orthologues in the close genomes fused as a single protein (Enright, Iliopoulos et al. 1999). The 
fused protein is usually called a Rosetta Stone protein, thus this method is sometime called the 
Rosetta Stone method. This genomic organization of gene fusion is formed for efficiently 
transcribing related genes together, thus it is preserved evolutionarily. Marcotte et al. applied 
the gene fusion method on Escherichia coli (Marcotte, Pellegrini et al. 1999). They identified 
6,809 protein pairs of which both protein sequences were significantly similar to the same 
protein sequence of at least a genome. More than half of these 6,809 protein pairs have been 
shown to be related. This method, unlike previous co-occurrence patterns, is a very specific 
genomic organization rather than a concept of co-occurrence. Thus, there is very limited space 
for the algorithm development and implementation details. For any new genome, researchers 
can always search for Rosetta Stone proteins first. But other methods are required since many 
interacting proteins are not Rosetta Stone proteins. For example, in the DIP database that 
deposits experimentally confirmed protein interactions, only 6.4% interacting protein pairs 
formed Rosetta Stone proteins (Shoemaker and Panchenko 2007). 

3. Machine learning-based approaches 

This chapter roughly divides features into four categories: sequential, evolutionary, 
structural and other. Note that the power of ML tools allows researchers to submit any 
features, with or without obvious biological glues to protein interaction, into a magical black 
box and wait for the prediction without knowing how the prediction was made. For 
example, amino acid composition (20 features) and number of search results in PubMed can 
be used as features. Namely, each co-occurrence pattern can be used as a feature—the only 
thing to do is designing a rule to record the pattern with one or more real numbers. So in 
this chapter we only demonstrate several features that have been shown to help the 
prediction accuracy in published articles, but cannot list all features in a category. 

3.1 Sequence information 

One of the most widely used data to encode proteins is their primary sequence. Methods 
that only rely on protein sequences have a great advantage of the wide applicability. 
Because such methods do not rely on other information, they are sometime called de novo (ab 
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initio) predictors of protein interaction. Yu et al. proposed a method that encoded protein 
sequences as feature vectors by considering the amino acid triads observed in it (Yu, Chou 
et al. 2010). An amino acid triad regards three continuous residues as a unit. However, 
considering all 203 amino acid triads requires an 8000-dimensional feature vector to 
represent a protein, which is too large for contemporary machine learning tools. Thus, the 20 
amino acid types were clustered into seven groups based on their dipole strength and side 
chain volumes to reduce the dimensions of the feature vector (Shen, Zhang et al. 2007). The 
frequencies of the 73 = 343 triads can be used to encode a protein sequence. However, such a 
frequency is highly correlated to the distribution of amino acids. To overcome this problem, 
Yu et al. proposed a significance calculation by answering the question: how rare is the 
number of observed occurrences considering the amino acid composition of the protein? 
The significances of all triads were used to encode protein sequences. 

Methods based on sequence motifs/domains also fall into this category since sequence 
motifs are mined from protein sequences. One may notice that the co-occurrence-based 
methods mentioned in subsection 2.5 used similar features. In this regard, the co-
occurrence-based methods use domain as features with a straightforward rule: if two 
proteins have interacting domains, then they are predicted as interacting. On the other 
hand, ML-based methods use domain as features but resort to ML tools for the final 
decision/prediction. Depending on the ML tools used, the decision rules could be very 
complicated models of, for example, non-linear equations or a combination of multiple 
individual components (it could be a ‘sum’ of multiple functions). Dijk et al. proposed a ML-
based method to select relevant motifs from a set of pre-mined motifs (Van Dijk, Ter Braak 
et al. 2008). They first invoked the D-STAR (Tan, Hugo et al. 2006) algorithm to identify 
correlated motifs that overrepresented in interacting protein pairs. The vector of the 
presence or absence of the identified motif pairs were used to encode proteins. 

3.2 Evolution information 

Methods that require not only the sequences of the query protein pairs but also a collection 
of supporting sequences fall into this category. The supporting collection is usually from 
other species for calculating the conservation score. Position-specific scoring matrix (PSSM) 
is a widely used scheme to encode a protein sequence while considering its orthologues. For 
a protein sequence, PSSM describes the likelihood of a particular residue substitution at a 
specific position based on evolutionary information (Altschul, Madden et al. 1997). It is 
outputted by BLAST when aligning the query protein seuqence to a seqeucne database, e.g. 
the non-redundant (NR) database from National Center for Biotechnology Information 
(NCBI). The likelihood values are scaled to [0,1] using the following logistic function: 

1
1 exp( )

x
x

′ =
− −

, 

where x is the raw value in PSSM profile and x’ is the value corresponding to x after scaling. 
Each position of a protein sequence is represented by a 21-dimensional vector where 20 
elements take the likelihood values of 20 amino acid types from the scaled PSSM profile and 
the last element is a terminal flag. Finally, the feature vector of a residue comprises a 
window of positions. Chang et al. proposed a method based on the assumption that protein 
interactions are more related to amino acids at the surface than those at the core (Chang, Syu 
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et al.). They first used PSSM to encode protein sequences for surface prediction and then 
used the surface sequence for interaction prediction. 

Espadaler et al. proposed a method that made use of conservation of protein pairs 
(Espadaler, Romero-Isart et al. 2005). They first collected 855 protein complexes with known 
three-dimensional structure with <80% sequence identity. The 855 complexes were further 
classified into 16 groups. In a protein complex, the distance between a residue pair from two 
proteins was defined as the distance of the nearest heavy atoms of the two residues. Via 
setting a cut-off of the contact distance, one can identify the interface of two proteins in 
these complexes. These identified interfaces were actually unordered sequence fragments, 
among which Espadaler et al. defined more than five contiguous residues a patch. The 
conservation of the patches obtained by multiple sequence alignment was considered to 
select the final patches. These conserved structural patch pairs can be used to predict novel 
protein interactions. Notice that this method proposed by Espadaler et al. also used the 
structure information which will be introduced in the next subsection. This also reveals that 
with the ML tools, combining multiple resources becomes relatively easy since it is no 
longer dependent on a single co-occurrence pattern. 

3.3 Structure information 

The most critical problem of sequence-based methods is the reliability. Conversely, 
researchers usually resort to structure-based methods for verification since the results 
delivered by structure-based methods can be visualized. Aloy and Russell proposed a 
method to detect interactions based on protein tertiary structures. They used empirical 
potentials to compute the fitness between two protein structures. Thus, success of such a 
method is highly dependent on the performance of the underlying potential function. The 
adopted potential function did not rely on model proteins, which enlarges its applicability. 
Aloy and Russell defined interacting residues as those having at least one i) hydrogen bonds 
(N—O distances ≤ 3.5 Å), salt bridges (N—O distances ≤ 5.5 Å), or van de Waals interactions 
(C—C distances ≤ 5 Å). Buried side-chains were excluded by filtering out residues with 
relative accessibility ≥10%. The identified interacting residues were used to train the 
empirical potentials based on a molar-fraction random state model as follows: 
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where a and b are amino acid types, Oab and Eab are the number of observed/expected 
contacts, N is the number of analyzed residue pairs and na and nb are number of residues of 
the corresponding types. The method of Aloy and Russell provided ranks of analyzed 
protein pairs so that researchers can pick the most promising prediction for further 
biological experiments. 

3.4 Auxiliary information 

Important data that is not mentioned above is microarray data, which has been broadly 
utilized in various biomedical problems. The Gene Expression Omnibus (GEO) database 
(Barrett, Troup et al. 2006) of NCBI holds more than 20 thousands microarray experiments. 

www.intechopen.com



 
Computational Approaches to Predict Protein Interaction 

 

239 

A problem of microarray data is that they are usually full of noises. Soong et al. used 
principal component analysis (PCA) to reduce such noises (Soong, Wrzeszczynski et al. 
2008). PCA is a statistical technique used to find hidden factors from observed factors, 
expression values in this case. Lee and Batzoglou have shown that proteins with extreme 
principal components are prone to participate in relevant biological processes (Lee and 
Batzoglou 2003). The transformation of expression values to principal components can be 
represented as follows: 

PX Y= , 

where P is a l × m transformation matrix obtained by PCA, X is a m × n matrix of the raw 
expression values from m microarrays and n samples while Y is a l × n matrix containing 
every sample’s l principal components. The final feature vector of two proteins a and b was 
the concatenation of a’s principal components, b’s principal components and the Pearson 
correlation of both. 

This section ends with a method based on literature data, which has been discussed in 
subsection 2.6. Demonstrating literature data in a ML-based method is to reinforce the 
impression that in principle any data can be used as features with appropriate encoding 
schemes. Thus, one can consider combining any of the features discussed in section 2 with 
ML-based tools. Donaldson et al. proposed an extraction procedure for identifying protein 
interactions in literature (Donaldson, Martin et al. 2003). They first used a parser to collect 
synonyms for proteins and their encoding loci. The collected protein names were then used 
to search the title and abstract of articles in the PubMed literature database. An article was 
encoded by terms it contained. The weight of each term was the tf-idf score (term frequency-
inverse document frequency), where term frequency is the number of occurrences of the 
term in the document and inverse document frequency is the inverse of the number of 
documents having the term. Here a term was a word or two adjacent words (usually called 
2-gram) that appear in at least three documents. 

4. Machine learning techniques 

After encoding proteins into feature vectors, the next step is to choose a ML tool to generate 
a model describing these feature vectors. The generated model can be used to predict novel 
protein interactions. Most ML tools provide a user-friendly interface, where all that 
researchers need to do is encode their data. The remaining task is very trivial: i) a command 
to train the model and ii) a command to predict with the trained model. In this regard, 
researchers who want to adopt ML-based methods can focus on features without caring 
about the ML algorithms. This section briefly lists three ML algorithms that have been used 
in recent studies of protein interaction, which can be considered as a basic introduction for 
researchers who have no idea how to choose an appropriate ML tool. 

4.1 Decision tree 

Decision trees are usually constructed recursively (Witten, Frank et al. 2011). The first step is 
to select a feature to split samples (branch the decision tree) based on the selected feature. 
This step divides the original dataset into several disjointed subsets, each of them can be 
considered as another dataset. Thus, the same procedure can be applied recursively to each 
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subset and the further sub-subsets. Such a recursive fashion stops at several conditions of, 
for example, all samples in a branch belonging to the same class or all features have been 
examined. The above descriptions, however, missed an important detail in decision trees: 
how to select a feature to branch. A trivial strategy is to select the feature that can result in 
the purest subsets, namely most samples in the same subset belong to the same class. Thus, 
a measure of set purity is required. 

So far, there have been many purity measurements proposed. This subsection introduces the 
most fundamental one, entropy, as follows. Indeed, larger entropy indicates the less purity. 
Thus, negative entropy, in definition, is a measurement of purity. Many mature decision 
tree algorithms use variants of entropy. 

1 2 1 1 2 2entropy( , , , ) log log logn n np p p p p p p p p= − − −  , 

where pi is the fraction of class-i samples in the subset and n is the number of total classes. 
For example, suppose that a dataset has nine positive samples and five negative samples. 
Before any branching, the entropy of the original dataset is –(9/14)log(9/14)-(5/14)log(5/14) 
= 0.940, where p1 is 9/14, p2 is 5/14 and n is 2 (positive and negative). If after a branch, the 
14 samples are split into three nodes that contain 2-3, 4-0, 3-2 positive-negative samples, 
respectively. The entropies of the three nodes are –(2/5)log(2/5)-(3/5)log(3/5) = 0.971, –
(4/4)log(4/4)-0 = 0 and –(3/5)log(3/5)-(2/5)log(2/5) = 0.971, respectively. The total entropy 
of the branched tree became (5/14)×0.971+(4/14)×0+(5/14)×0.971 = 0.693, a weighted sum 
of the three entropies corresponding to the subset size. It is observed that the entropy 
decreased from 0.940 to 0.693, revealing that this operation of branch did increase the purity 
of the dataset. For a purity measurement, the following three conditions must be satisfied: 

1. when a subset is pure (all samples belong to the same class), the measurement is zero; 
2. when all possible classes appear equally, the measurement is maximized; 
3. the measurements must be the same without depending on the order of branches. 

The third condition requires that if a dataset is first split into two nodes of a-b and c-d, 
positive-negative samples and then the second node is further split into two more sub-nodes 
of e-f and g-h, the entropy should be the same as split into three nodes of a-b, e-f and g-h in a 
single branch while using another feature. Entropy is the only one function that fits all these 
conditions (Witten, Frank et al. 2011). This explains the high popularity of entropy and its 
variants in decision trees. 

4.2 Support Vector Machine (SVM) 

Currently, SVM is the state-of-the-art ML tool. It prevails in biomedical data because of its 
high accuracy. SVM first transforms the original data to a higher dimensional space with a 
non-linear transformation and then finds the maximum margin hyperplane to separate 
samples of different classes in the transformed space (Witten, Frank et al. 2011). This 
strategy has two advantages: i) it can generate non-linear model and ii) it prevent 
overfitting as the decision boundary is still linear in the transformed space. Overfitting is a 
critical issue in ML. It indicates that the constructed model overfit the training dataset, so 
that which cannot be used to predict novel data. This problem becomes more serious 
when using more complicated model. However, some complex data do need complicated 

www.intechopen.com



 
Computational Approaches to Predict Protein Interaction 

 

241 

models to describe. Thus most advanced ML algorithms still favor complicated models 
and then try to solve the overfitting issue. In this regard, SVM finds an excellent balance, 
which can generate very complicated models depending on the adopted transformation 
while choosing a very simple decision, a hyperplane, which equals to a one stage decision 
tree of two branches. 

Mathematically, SVM uses support vectors to model the transformation and hyperplane. 
That is the reason for the name. Transforming the original data from the sample space with 
a non-linear function to a new space means that a linear model (a straight line in a two 
dimensional space, a plane in a three dimensional space and a hyperplane in a higher 
dimensional space) in the new space becomes non-linear in the original sample space. For 
example, for a two dimensional sample x = (a, b), a non-linear transformation to a three 
dimensional space could be x’ = (a2, ab, b2). If any ML tool finds a decision boundary in the 
new space, it does not look like a straight line in the original space. Notice that, in principle, 
any tool, such as a decision tree, could be used to make the decision in the transformed 
space. SVM advances in already developing a robust mathematical system with efficient 
optimization algorithms to find good hyperplanes. 

4.3 Relaxed Variable Kernel Density Estimation (RVKDE) 

The biggest drawback of SVM is the computational cost. Yu et al. reported that using SVM 
to perform a complete interaction analysis on human genome may take years (Yu, Chou et 
al. 2010). In this regard, efficient ML algorithms with acceptable accuracy are reasonable 
alternatives to SVM. The relaxed variable kernel density estimation (RVKDE) algorithm 
(Oyang, Hwang et al. 2005) has been practically used in recent interaction studies (Chang, 
Syu et al. 2010; Yu, Chou et al. 2010). The time complexity of RVKDE is an order faster than 
SVM. Furthermore, unlike other fast ML algorithms, such as decision trees, the descriptive 
capability of the constructed model of RVKDE is comparable to SVM. 

The kernel of RVKDE is an approximate probability density function. Let { }1 2, , , ns s s  be a 
set of samples randomly and independently taken from the distribution governed by fx in a 
m-dimensional vector space. RVKDE estimates the value of fx at point v as follows: 
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2. R(si) is the maximum distance between si and its ks-th nearest training sample; 
3. Γ(·) is the Gamma function (Artin 1964); 
4. ┚ and ks are parameters to be set either through cross-validation or by the user. 

For prediction, a kernel density estimators is constructed to approximate the distribution of 
each class. Then, a query sample located at v is predicted to the class that gives the 
maximum value among the likelihood functions defined as follows: 

www.intechopen.com



 
Protein-Protein Interactions – Computational and Experimental Tools 

 

242 

ˆ| | ( )
( ) ˆ| | ( )

j j
j

h h
h

S f
L

S f

⋅
=

⋅
v

v
v

, 

where |Sj| is the number of class-j training samples and ˆ ( )jf ⋅  is the kernel density estimator 
corresponding to class-j training samples. 

RVKDE belongs to the radial basis function network (RBFN), a special type of neural 
networks with several distinctive features (Mitchell 1997; Kecman 2001). The decision 
function of two-class RVKDE can be simplified as follows: 
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where v is a testing sample, yi is the class value as either +1 (positive) or -1 (negative) of a 
training sample si, and σi is the local density of the proximity of si, estimated by the kernel 
density estimation algorithm. The testing sample v is classified as positive if fRVKDE(v) ≥ 0, 
and as negative otherwise. Interestingly, the decision function of RVKDE is very similar to 
that of SVM using the radial basis function (RBF) kernel: 

( )2
SVM( ) exp

i

i i if y α γ= ⋅ ⋅ − −
s

v v s , 

where ┙i (corresponds to the inverse of σi in fRVKDE) and ┛ (corresponds to 21 / 2
i

σ  in fRVKDE) 
are user-specified parameters. Thus, the mathematical models of RVKDE and SVM are 
analogous. The main difference between RVKDE and SVM is the criteria used to determine 
σi and ┙i. 

5. Evaluation 

A paradoxical situation is that a benchmark requires negative samples - proteins known 
not to interact. A benchmark that contains only interacting protein pairs is useless, since a 
trivial predictor predicting any protein pairs as interacting can achieve a perfect accuracy. 
However, there are very limited techniques developed to confirm that two proteins do not 
interact. Recently, several studies have addressed this problem in evaluating 
computational methods of identifying protein interactions (Yu, Chou et al. 2010; Yu, Guo 
et al. 2010). This issue is still in a chaos stage and there is no perfect solution that fit 
everyone’s requirements. Instead, this chapter demonstrates this issue via three major 
contradictions in this area. 

1. Sampled vs. entire data (also efficiency issue)—most ML-based methods adopted 
SVM and have to reduce the data size because of its high time complexity. However, 
sampled data must lose some information and may bias the evaluation. This 
contradiction is especially important when comparing co-occurrence- and ML-based 
methods, where the former usually can be applied on entire data. Using more 
computing power or switching more efficient ML tool is a compromising solution. 
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2. Balanced vs. unbalanced—once sampled data is adopted, (most studies of ML-based 
methods adopted using sampled data even without carefully considering the previous 
contradiction), how to sample is another serious problem. Random sampling can 
preserve the data distribution (ratio of positive and negative samples) but loss too many 
positive samples. However, balanced sampling, which forces the inclusion of all 
positive samples and thus change the data distribution, has also been shown bias the 
evaluation accuracy (Yu, Chou et al. 2010). 

3. Distinct vs. similar—one philosophy of creating negative data is to choose the samples 
which can never be positive. For example, proteins appear in different cellular 
compartments are possible negative samples. An opposite philosophy is that if a 
method can discriminate between the negative samples that are very similar to the 
positive ones, then this method can discriminate those dissimilar ones. The first 
philosophy prevents collecting negative samples that are actually positive but somehow 
makes the problem easier while the second philosophy has opposite advantage and 
disadvantage. 

6. Conclusions 

In this chapter, various computational methods of protein interaction are reviewed. These 
methods used various data sources, including localization data, structural data, 
expression data and/or interactions from orthologs. As a result, all of them are limited to 
the experimental technologies that generate such data and the incompleteness of verified 
data. Based on current understanding, the size of protein interaction network (PIN) of 
human comprises ~650,000 interactions (Stumpf, Thorne et al. 2008). However, the 
Human Protein Reference Database (HPRD) deposits less than 3% of them (Peri, Navarro 
et al. 2003; Mishra, Suresh et al. 2006). Even under such a challenging circumstance, 
computational methods have shown to achieve satisfying performance. This encourages 
more effort in developing computational methods of protein interaction to complement 
experimental technologies. 
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