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1. Introduction

Proteins with interactions carry out most biological functions within living cells such as
gene expression, enzymatic reactions, signal transduction, inter-cellular communications and
immunoreactions. As the interactions are mediated by short sequence of residues among
the long stretches of interacting sequences, these interacting residues or so-called interaction
(binding) sites are at the central spot of proteome research. Although many imaging wet-lab
techniques like X-ray crystallography, nuclear magnetic resonance spectroscopy, electron
microscopy and mass spectrometry have been developed to determine protein interaction
sites, the solved amount of protein interaction sites constitute only a tiny proportion among
the whole population due to high cost and low throughput. Computational methods are
still considered as the major approaches for the deep understanding of protein binding
sites, especially for their subtle 3-dimensional structure properties that are not accessible by
experimental methods.

The classical graph concept—maximal biclique subgraph (also known as maximal complete
bipartite subgraph)—has been emerged recently for bioinformatics research closely related to
topological structures of protein interaction networks and biomolecular binding sites. For
example, Thomas et al. introduced complementary domains in (Thomas et al., 2003), and
they showed that the complementary domains can form near complete bipartite subgraphs
in PPI networks. A lock-and-key model has been proposed by Morrison et al. which is also
based on the concept of maximal complete bipartite subgraphs (Morrison et al., 2006). Very
recently, Andreopoulos et al. used clusters in PPI networks for identifying locally significant
protein mediators (Andreopoulos et al., 2007). Their idea is to cluster common-friend
proteins, which are in fact complete-bipartite proteins, based on their similarity to their direct
neighborhoods in PPI networks. Other computational methods studying bipartite structures
of PPI networks include (Bu et al., 2003; Hishigaki et al., 2001) which are focused on protein
function prediction.

To identify motif pairs at protein interaction sites, Li et al. introduced a novel method with the
core idea related to the concept of complete bipartite subgraphs from PPI networks (Li et al.,
2006). The first step of the algorithm in (Li et al., 2006) finds large subnetworks with
all-versus-all interactions (complete bipartite subgraphs) between a pair of protein groups.
As the proteins within these protein groups have similar protein interactions and may share
the same interaction sites, the second step of Li’s algorithm is to compute conserved motifs
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(possible interaction sites) by multiple sequence alignments within each protein group. Thus,
those conserved motifs can be paired with motifs identified from other protein groups to
model protein interaction sites. One of the novel aspects of the algorithm in (Li et al., 2006) is
that it combines two types of data: the PPI data and the associated sequence data for modeling
binding motif pairs.

Each protein in the above PPI networks is represented by a vertex and every interaction
between two proteins is represented by an edge. Discovering complete bipartite subgraphs
in PPI networks can thus be formulated as the following biclique problem: Given a graph,
the biclique problem is to find a subgraph which is bipartite and complete. The objective is
to maximize the number of vertices or edges in the bipartite complete subgraph. We note
that the maximum vertex biclique problem is polynomial time solvable (Yannakakis, 1981).
This problem is also equivalent to the maximum independent set problem on bipartite graphs
which is known to be solvable by a minimum cut algorithm. However, the maximum vertex
balanced biclique problem is NP-hard (Garey & Johnson, 1979). The maximum edge biclique
problem is proved to be NP-hard as well (Peeters, 2003).

In this paper, we consider incompleteness of biological data, as the interaction data of PPI
networks is usually not fully available. On the other hand, within an interacting protein
group pair, some proteins in one group may only interact with a proportion of the proteins
in the other group. Therefore, many subgraphs formed by interacting protein group pairs
are not perfect bicliques. They are more often near complete bipartite subgraphs. Therefore,
methods of finding bicliques may miss many useful interacting protein group pairs. To deal
with this problem, we use quasi-bicliques instead of bicliques to find interacting protein
group pairs. With the quasi-biclique, even though some interactions are missing in a protein
interaction subnetwork, we can still find the two interacting protein groups. In this paper,
we introduce and investigate the maximum vertex quasi-biclique problem. We show that the
problem is NP-hard. We also propose approximation and heuristic algorithms for finding
large quasi-bicliques in PPI networks. The applications for finding protein-protein binding
sites are illustrated.

2. Bicliques and quasi-bicliques

Let G = (V , E) be an undirected graph, where each vertex represents a protein and there is an
edge connecting two vertices if the two proteins have an interaction. Since G is an undirected
graph, any edge (u, v) ∈ E implies (v, u) ∈ E . For a selected edge (u, v) in G , in order to find
the two groups of proteins having the similar pairs of binding sites, we translate the graph
G = (V , E) into a bipartite graph. Let X = {x|(x, v) ∈ E}, Y1 = {y|(u, y) ∈ E&y �∈ X} and
Y2 = {w|(u, w) ∈ E&w ∈ X}. For a vertex w ∈ Y2, w is incident to both u and v in G . Thus
both X and Y2 contain w. We keep w in X and replace w in Y2 with a new virtual vertex w.
After replacing all vertices w in Y2 with w, we get a new vertex set Y2. Let Y = Y1 ∪ Y2 and
E = {(x, y)|(x, y) ∈ E&x ∈ X&y ∈ Y1} ∪ {(x, w)|(x, w) ∈ E&x ∈ X&w ∈ Y2}. In this way,
we have a bipartite graph G = (X ∪ Y, E). A biclique in G corresponds to two subsets of
vertices, say, subset A and subset B, in G . In G , every vertex in A is adjacent to all the vertices
in B, and every vertex in B is adjacent to all the vertices in A. Moreover, A ∩ B may not be
empty. In this case, for any vertex w ∈ A ∩ B, (w, w) ∈ E . This is the case, where the protein
has a self-loop. Self-loops are very common in practice. When a self-loop appears, one protein
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molecule interacts with another identical protein molecule. For example, two identical protein
subunits can assemble together to form a homodimeric protein.

In the following, we focus on the bipartite graph G = (X ∪ Y, E). For a vertex x ∈ X and
a vertex set Y′ ⊆ Y, the degree of x in Y′ is the number of vertices in Y′ that are adjacent
to x, denoted by d(x, Y′) = |{y|y ∈ Y′&(x, y) ∈ E}|. Similarly, for a vertex y ∈ Y and
X′ ⊆ X, we use d(y, X′) to denote |{x|x ∈ X′&(x, y) ∈ E}|. Now, we are ready to define the
δ-quasi-biclique.

Definition 1. For a bipartite graph G = (X ∪ Y, E) and a parameter 0 < δ ≤ 1
2 , G is called a

δ-quasi-biclique if for each x ∈ X, d(x, Y) ≥ (1 − δ)|Y| and for each y ∈ Y, d(y, X) ≥ (1 − δ)|X|.

Similarly, a δ-quasi-biclique in G corresponds to two subsets of vertices, say, subset A and
subset B, in G . In G , every vertex in A is adjacent to at least (1 − δ)|B| vertices in B, and
every vertex in B is adjacent to at least (1 − δ)|A| vertices in A. Moreover, according to the
translation and the definition, A ∩ B may not be empty. Again, if a protein appears in both
sides of a δ-quasi-biclique and there is an edge between the two corresponding vertices, the
protein has a self-loop. In our experiments, we observe that about 22% of the δ-quasi-bicliques
produced by our program contain self-loop proteins.

In many applications, due to various reasons, some edges in a clique/biclique may
be missing and a clique/biclique becomes a quasi-clique/quasi-biclique. Thus, finding
quasi-cliques/quasi-bicliques is more important in practice. Here we show that large
quasi-bicliques may not contain any large bicliques.

Theorem 1. Let G = (X ∪ Y, E) be a random graph with |X| = |Y| = n, where for each pair of

vertices x ∈ X and y ∈ Y, (x, y) is chosen, randomly and independently, to be an edge in E with

probability 2
3 . When n → ∞, with high probability, G is a 1

2 -quasi-biclique, and G does not contain

any biclique G′ = (X′ ∪ Y′, E′) with |X′| ≥ 2 log n and |Y′| ≥ 2 log n.

In the biological context, Theorem 1 indicates that it is possible that some large interacting
protein groups cannot be obtained by simply finding a maximal biclique if a few (interaction)
edges are missing. As large interacting protein groups are more useful, according to this
theorem, we have to develop new computational algorithms to extract from PPI networks
large interacting protein groups which form quasi-bicliques.

In terms of false positive edges, both quasi-biclique and biclique can handle spurious edges
very well. If very few spurious edges are added, in most cases, an irrelative protein will
not be included in the quasi-bicliques or biclique unless (1 − δ)|A| spurious edges are
simultaneously added to the protein that has no interaction with any of the proteins in A,
where A is one of the two interaction groups.

The maximum vertex quasi-biclique problem is defined as follows.

Definition 2. Given a bipartite graph G = (X ∪ Y, E) and 0 < δ ≤ 1
2 , the maximum vertex

δ-quasi-biclique problem is to find X′ ⊆ X and Y′ ⊆ Y such that the X′ ∪ Y′ induced subgraph is a

δ-quasi-biclique and |X′|+ |Y′| is maximized.

The maximum vertex biclique problem, where δ = 0, can be solved in polynomial
time (Yannakakis, 1981). Here we show that the maximum vertex δ-quasi-biclique problem
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when δ > 0 is NP-hard. The reduction is from X3C (Exact Cover by 3-Sets), which is known
to be NP-hard (Karp, 1972).

Theorem 2. For any constant integers p > 0 and q > 0 such that 0 <
p
q ≤ 1

2 , the maximum vertex
p
q -quasi-biclique problem is NP-hard.

3. A polynomial time approximation scheme

The following lemma that is originally from (Li et al., 2002) will be repeatedly used in our
proofs.

Lemma 1. Let X1, X2, . . . , Xn be n independent random 0-1 variables, where Xi takes 1 with

probability pi, 0 < pi < 1. Let X = ∑
n
i=1 Xi, and μ = E[X]. Then for any 0 < ǫ ≤ 1,

Pr(X > μ + ǫ n) < exp(−
1
3

nǫ2),

Pr(X < μ − ǫ n) ≤ exp(−
1
2

nǫ2).

The Main Ideas and Techniques: The problem can be formulated as a quadratic
programming problem. We use a random sampling technique and a randomized rounding
method to get a good approximate solution for the quadratic programming problem under
the conditions that |Xopt| = Ω(|X|) and |Yopt| = Ω(|Y|). The random sampling technique
involves to randomly select r1 = Ω(log |Xopt|)) vertices from Xopt when Xopt is not known.
This can be done when |Xopt| = Ω(|X|) and |Yopt| = Ω(|Y|).

In order to make sure that |Xopt| = Ω(|X|) and |Yopt| = Ω(|Y|), we design a combinatorial
approach to find a subset X′ ⊆ X and a subset Y′ ⊆ Y such that |X′| = Ω(|Xopt| + |Yopt|),
|X′ ∩Xopt| ≥ (1− ǫ)|Xopt, |Y′| = Ω(|Xopt|+ |Yopt|) and |Y′∩Yopt| ≥ (1− ǫ)|Yopt|. See Lemma
2. Thus, we can work on a bipartite graph induced by X′ and Y′. Without loss of generality, we
can assume that |Yopt| ≥ |Xopt|. Now, two subcases arise: Case 1: |Xopt| ≤ ǫ|Yopt|, and Case
2: |Xopt| > ǫ|Yopt|. For case 1, we can use linear programming approach and a brute-force
approach to solve the problem. For case 2, we can use the quadratic programming approach
to solve the problem.

Let G = (X ∪ Y, E) be the input bipartite graph. Let Xopt ⊆ X and Yopt ⊆ Y be the optimal
biclique for the maximum quasi-biclique problem. Without loss of generality, we can assume
that

Assumption 1: |Yopt| ≥ |Xopt|.

The basic idea of our algorithm is to (1) formulate the problem into a quadratic programming
problem and (2) use a random sampling approach to approximately solve the problem. In
order to make the random sampling approach work, we have to make sure that

|Xopt| = Ω(|X|) (1)

and

|Yopt| = Ω(|Y|). (2)

116 Protein-Protein Interactions – Computational and Experimental Tools

www.intechopen.com



Mining Protein Interaction Groups 5

However, for any input bipartite graph G = (X ∪ Y, E), there is no guarantee that (1) and
(2) hold. Here we propose a method to find a subset X′ of X and Y′ of Y such that for any
t > 0, |Xopt| = Ω(|X′|), |Xopt ∩ X′| ≥ t−1

t |Xopt|, |Yopt| = Ω(|Y′|), and |Yopt ∩ Y′| ≥ t−1
t |Yopt|.

If we can obtain this kind of X′ and Y′, then we can work on the induced bipartite graph
G′ = (X′ ∪ Y′, E′), where E′ = {(u, v)|u ∈ X′, v ∈ Y′ and (u, v) ∈ E}. Obviously, any good
approximate solution of G′ is also a good approximate solution of G.

Let xi be a vertex in the bipartite graph G = (X ∪Y, E). Define D(xi, Y) to be the set of vertices
in Y that are incident to xi. The following lemma tells us how to obtain X′ and Y′.

Lemma 2. For any t > 0, there exist k vertices x1, x2, . . ., xk in X for k = ⌈δt⌉ such that

|
⋃k

i=1 D(xi , Y)| ≤ k(|Yopt| + |Xopt|) and |Yopt ∩
⋃k

i=1 D(xi , Y)| ≥ t−1
t |Yopt|. Similarly, there

exists k vertices y1, y2, . . ., yk in Y for k = ⌈δt − 1⌉ such that |
⋃k

i=1 D(yi, X)| ≤ k(|Yopt|+ |Xopt|)

and |Xopt ∩
⋃k

i=1 D(yi, X)| ≥ t−1
t |Xopt|.

Though we do not know which k vertices in X we should choose, we can try all possible
size k subsets of X in O(|X|k) time for constant k. The value of k is ⌈δt⌉ and is determined
by t later. Thus, from now on, we assume that the k vertices x1, x2, . . ., xk are known. Let
X′ =

⋃k
i=1 D(yi, X) and Y′ =

⋃k
i=1 D(xi, Y). We will focus on finding a quasi-biclique in the

sub-graph G′ = (X′ ∪ Y′, E′) of G induced by X′ and Y′.

Let X′
opt ⊆ X′ and Y′

opt ⊆ Y′ be a quasi-(δ + 1
t )-biclique with maximum number of vertices in

G′. From Lemma 2, |X′
opt|+ |Y′

opt| ≥ (1− 1
t )(|Xopt|+ |Yopt|) since X′ ∩ Xopt and Y′ ∩Yopt also

form a quasi-δ + 1
t -biclique of size (1 − 1

t )(|Xopt|+ |Yopt|). From now on, we will try to find a
good approximate solution for X′

opt and Y′
opt.

If |X′
opt| and |Y′

opt| are approximately the same, then we have |X′
opt| = Ω(|X′|) and |Y′

opt| =

Ω(|Y′|). That is, (1) and (2) hold for graph G′. Therefore, we can use quadratic programming
approach to solve the problem. Nevertheless, there is no guarantee that |X′

opt| and |Y′
opt| are

approximately the same. For any ǫ > 0, we consider two cases.

Case 1: |X′
opt| < ǫ|Y′

opt|. In this case, the number of vertices in Y′
opt will dominate the size of

the whole quasi-biclique. If we select a vertex x ∈ X′
opt, then x and D(x, Y′) form a biclique of

size at least 1 + (1 − δ)|d(x, Y′)| ≥ 1 + (1 − δ)|Y′
opt|. When the value of δ is big with respect to

ǫ, we do not have the desired quasi-biclique. If we try to add more vertices from Y′, we have
to guarantee that for every selected vertex y in Y′, y is incident to at least (1 − δ)|X′| selected
vertices in X′. This is impossible if x is the only selected vertex from X′. Therefore, we have to
consider to add more vertices from both X′ and Y′. It is clear that the task here is non-trivial.

In the following lemma, we will show that there exists a subset of r vertices (for some constant
r) Xr ⊆ X′ and a subset Y′′

opt ⊆ Y′
opt such that Xr and Y′′

opt form a quasi-(δ + ǫ′′)-biclique with
|Y′′

opt| ≥ (1 − ǫ′′)|Yopt| for some ǫ′′ > 0. Here r and ǫ′′ are closely related.

Lemma 3. Let 1
t = ǫ′. There exists a subset X′

r of X′
opt containing r = 2

ǫ′2
log( 1

ǫ′ ) elements and a

subset Y′′
opt of Y′

opt with |Y′′
opt| ≥ (1 −

r(r−1)
2|Xopt|

− 2ǫ′)|Y′
opt| such that X′

r and Y′′
opt form a quasi-(δ +

r(r−1)
2|X′

opt|
+ 2ǫ′)-biclique.
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Based on Lemma 3, we can design an algorithm that finds a quasi-(δ + 4ǫ′)-biclique with size
at least (1 − 4ǫ′ − ǫ)(|X′

opt|+ |Y′
opt|). Let G′ = (X′ ∪ Y′, E′) be the sub-graph obtained from

Lemma 2. For any ǫ′ > 0, define r = 2
ǫ′2

log( 1
ǫ′ ).

Case 1.1. |X′
opt| ≥

r(r−1)
ǫ′ : When |X′

opt| ≥
r(r−1)

ǫ′ , r(r−1)
2|X′

opt|
≤ ǫ′. Thus, there exist a quasi-(δ +

3ǫ′)-biclique Xr ⊂ X′ and Y′′
opt as described in Lemma 3.

We select r vertices from X′. For each subset Xr ⊆ X′ of r vertices {v1, v2, . . . , vr}, we define
the following integer linear programming. Let ci,j be a constant, where ci,j = 1 if (vi, uj) ∈ E′;
and ci,j = 0 if (vi, uj) �∈ E′. Let yi be a 0/1 variable, where yi = 1 indicates that the vertex ui

in Y′ is selected in the quasi-biclique and yi = 0 otherwise.

yi(
r

∑
j=1

ci,j) ≥ (1 − δ −
1
t
− ǫ′)r (3)

|Y′|

∑
i=1

yici,j ≥ (1 − δ − 3ǫ′)|Y′
opt| for j = 1, 2, . . . , r, (4)

Here we do not know |Y′
opt|. However, we can guess the value of |Y′

opt| by trying |Y′
opt| =

1, 2, . . . , |Y′|. The integer programming problem formulated by (3) and (4) has no objective
function and we just want a feasible solution to fit (3) and (4). The integer programming
problem is hard to solve. However, we can obtain a fractional solution ȳi for (3) and (4) with
0 ≤ ȳi ≤ 1 in polynomial time. After obtaining the fractional solution ȳi, we randomly set yi

to be 1 with probability ȳi.

Lemma 4. Assume that 1
2 (1 − δ − 3ǫ′)|Y′

opt|ǫ
′2 ≥ 2 log r and 1

t = ǫ′. With probability at least

1 − 1
r , we can get a pair of subsets XA ⊆ X′ and YA ⊆ Y′ (an integer solution) by randomized

rounding according to the probability ȳi such that XA and YA form a quasi-(δ + 4ǫ′)-biclique with

|XA|+ |YA| ≥ (1 − δ − 4ǫ′)|Y′
opt|.

A standard method in (Li et al., 2002) can give a de-randomized algorithm.

When 1
2 (1 − δ − 3ǫ′)|Y′

opt|)ǫ
′2
< 2 log r, we can enumerate all possible subsets of size (1 − δ −

3ǫ′)|Y′
opt| in Y′ in polynomial time to get the desired solution.

Case 1.2. |X′
opt| <

r(r−1)
ǫ′ : In this case, X′

opt and Y′
opt form the desired quasi-δ-biclique. Instead

of selecting r vertices in X′, we select |X′
opt| vertices in X′. Though we do not know the value

of |x′opt|, we can guess the value for |x′opt| = 1, 2, . . . , r(r−1)
ǫ′ . We also solve the integer linear

programming (3) and (4) in the same way as in Case 1.1. The algorithm for Case 1 is given in
Fig. 1.

Theorem 3. Assume |X′
opt| ≤ ǫ|Y′

opt|. We set 1
t = ǫ′ in the algorithm. With probability at

least 1 − 1
r , Algorithm 1 finds a quasi-(δ + 4ǫ′)-biclique XA ⊆ X and YA ⊆ Y with |XA| +

|YA| ≥ (1 − δ − 4ǫ′)(|Xopt| + |Yopt|)(1 − ǫ′)/(1 + ǫ) in time O((|X||Y|)⌈δt⌉[|X||Y||Y′|
4 log r

ǫ′2 +

|X′|
r(r−1)

ǫ′
r(r−1)

ǫ′ (|X|+ |Y|)3)]).
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Algorithm 1: Algorithm for Solving Case 1: |X′
opt| ≤ ǫ|Y′

opt|.

Input: a bipartite graph G = (X ∪ Y, E), a real number 0 ≤ δ ≤ 0.5, a number
t > 0, a number ǫ > 0, and a number ǫ′ > 0.

0. Let k = ⌈δt⌉.
1. for any v1, v2, . . . , vk ∈ X and any u1, u2, . . . , uk ∈ Y do

2. Set X′ = ∪k
i=1D(vi, Y) and Y′ = ∪k

i=1D(ui, X).
3 r == 2

ǫ′2
log( 1

ǫ′ )
4 Guess |X′

opt| and |Y′
opt| assuming |X′

opt| ≤ ǫ|Y′
opt|.

5 if 1
2 (1 − δ − 3ǫ′)|Y′

opt|ǫ
′2
< 2 log r then enumerate all possible subsets of

size (1− δ− 3ǫ′)|Y′
opt| in Y′ in polynomial time to get the desired solution.

6 if 1
2 (1 − δ − 3ǫ′)|Y′

opt|)ǫ
′2
> 2 log r) then

7 for i = r, r + 1, . . . r(r−1)
ǫ′ do

8 for every i-elements subset Xi = {x1, x2, . . . , xi} do
9 give a fractinal solution ȳi for (3) and (4).
10 randomly set yi = 1 with probability ȳi.
8. Output a δ + 1

t + 4ǫ′ quasi-biclique with the biggest |XA|+ |YA|.

Fig. 1. The algorithm for solving Case 1.

Case 2: |X′
opt| ≥ ǫ|Y′

opt|. In this case, we have |X′
opt| = Ω(|X′|) and |Y′

opt| = Ω(|Y′|). We
will use a quadratic programming approach to solve the problem. We can formulate the
quasi-biclique problem for the bipartite graph G′ = (X′ ∪ Y′, E′) into the following quadratic
programming problem.

Quadratic programming formulation:

Let xi and yj be 0/1 variables, where xi = 1 indicates that vertex vi in X′ is in the quasi-biclique
and yj = 1 indicates that vertex uj in Y′ is in the quasi-biclique. Define ei,j = 1 if (vi, uj) ∈ E′

and ei,j = 0 otherwise. Let c1 and c2 be two integers representing the sizes of X′
opt and Y′

opt,
respectively. We can guess the values of c1 and c2 in polynomial time though we do not know
c1 and c2. We have the following inequalities:

yi(
|X′|

∑
j=1

ei,jxj) ≥ (1 − δ −
1
t
)yic1 for i = 1, 2, . . . , |Y′| (5)

xi(
|Y′|

∑
j=1

ei,jyj) ≥ (1 − δ −
1
t
)xic2 for i = 1, 2, . . . , |X′| (6)

|Y′|

∑
i=1

yi = c1, (7)

|X′|

∑
i=1

xi = c2. (8)

(5) and (6) indicate that xi > 0 and yi > 0 imply that ∑
|X′|
j=1 ei,jxj ≥ (1 − δ − 1

t )c1 and

∑
|Y′|
j=1 ei,jyj ≥ (1 − δ − 1

t )c2, respectively.
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Let x̂i and ŷj be the 0/1 integer solution for the quadratic programming problem (5)-(8). Let

r̂i = ∑
|X′|
j=1 ei,j x̂j and ŝi = ∑

|Y′|
j=1 ei,jŷj. To deal with the quadratic programming problem, the key

idea here is to estimate the values of r̂i and ŝj. If we know the values of r̂i and ŷj, then (5) and
(6) become

yi r̂i ≥ yic1(1 − δ −
1
t
) for i = 1, 2, . . . , |Y′| (9)

xi ŝi ≥ xic2(1 − δ −
1
t
) for i = 1, 2, . . . , |X′|, (10)

where r̂i and ŝi in (9) and (10) are constants and the quadratic inequalities become linear
inequalities.

Estimating r̂i and ŝi.

The approach for giving a good estimation of r̂i and ŝi is to randomly and independently
select a subset BX′ of O(log(|X′

opt|)) vertices and a subset BY′ of O(log(|Y′
opt|)) vertices in X′

opt

and Y′
opt, respectively. Let c1 = |X′

opt| and c2 = |Y′
opt|. We do not know c1 and c2, but we

can guess them in O(|X′| × |Y′|) time. Then we can use c1
k ∑vj∈BX′

ei,j and c2
k ∑uj∈BY′

ei,j to
estimate r̂i and ŝi, respectively. Since we do not know X′

opt and Y′
opt, it is not easy to randomly

and independently select vertices from X′
opt and Y′

opt. We develop a method to randomly
select p × log |Y′| vertices in Y′

opt from Y′ when Y′
opt is not known. Here p is a constant to be

determined later.

Finding p log |Y′| vertices in Y′
opt when Y′

opt is not known

Let |Y′| = c|Y′
opt|. The idea here is to randomly and independently select a subset B of (c +

1) × p × log |Y′| vertices from Y′ and enumerate all size p × log |Y′| subsets of B in time

C
p log |Y′|
p(c+1) log |Y′|

≤ O(|Y′|p(c+1)). We can show that with high probability, we can get a set of

p log |Y′| vertices randomly and independently selected from Y′
opt.

Lemma 5. With probability at least 1 − |Y′|
− p

2c2(c+1) , B contains a size p log |Y′| subset of Y′
opt.

Proof. Let us consider the probability that B contains less than p log |Y′| vertices in Y′
opt. Let

b be the expected number of vertices in B that are also in Y′
opt. Recall that |Y′| = c|Y′

opt|. If

we randomly select a vertex in Y′, the probability that the vertex is in Y′
opt is 1

c . Let μ be the

expected number of vertices in B that are in Y′
opt. We have μ = |B|

c = 1
c ⌈(c + 1)p log |Y′|⌉. Let

X1, X2, . . . , X|B| be |B| independent random 0/1 variables, where Xi = 1 with probability 1
c

indicating that the selected vertex is in Yopt. Thus,

b =
|B|

∑
i=1

Xi (11)
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and

μ = E(
|B|

∑
i=1

Xi) =
1
c
⌈(c + 1)p log |Y′|⌉. (12)

Since we selected (c + 1)p log |Y′| vertices,

|B| = ⌈(c + 1)(p log |Y′|)⌉. (13)

Based on Lemma 1, we have

Pr(b < p log |Y′|) ≤ Pr(b < (
1
c
−

1
c(c + 1)

)⌈(c + 1)(p log |Y′|)⌉)

= Pr(
|B|

∑
i=1

Xi < μ −
1

c(c + 1)
|B|) (From (11), (12) and (13))

≤ exp(−
1

2c2(c + 1)2 |B|)

≤ exp(−
1

2c2(c + 1)2 (c + 1)(p log |Y′|))

= exp(−
p log |Y′|

2c2(c + 1)
) = |Y′|

− p

2c2(c+1) .

Therefore, with probability at most |Y′|
− p

2c2(c+1) , B does not contain any size p log |Y′| subset
of Y′

opt. This completes the proof.

Let BX′ and BY′ be the sets of randomly and independently selected vertices in X′
opt and Y′

opt.
Let |BX′ | = p1 log |X′| and |BY′ | = p2 log |Y′|. We define r̄i = ∑vj∈BX′

ei,j and s̄i = ∑uj∈BY′
ei,j.

The following lemma shows that c1
|BX′ |

r̄i and c2
|BY′ |

s̄i are good approximations of r̂i and ŝi.

Lemma 6. With probability at least 1 − 2|Y′||X′|−
ǫ2
3 p1 − 2|X′||Y′|−

ǫ2
3 p2 , for any i = 1, 2, . . . , |X′|

and j = 1, 2, . . . , |Y′|,

(1 − ǫ)r̂i ≤
c1

|BX′ |
r̄i ≤ (1 + ǫ)r̂i

and

(1 − ǫ)ŝj ≤
c2

|BY′ |
s̄j ≤ (1 + ǫ)ŝj.

Now, we set ri = c1
|BX′ |

r̄i and si = c2
|BY′ |

s̄j. We consider the following linear programming
problem.
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yiri ≥ yic1(1 − ǫ)(1 − δ) for i = 1, 2, . . . , m, (14)

xisi ≥ xic2(1 − ǫ)(1 − δ) for i = 1, 2, . . . , m, (15)
|Y′|

∑
i=1

yi = c1, (16)

|X′|

∑
i=1

xi = c2 (17)

|X′|

∑
j=1

ei,jxj ≥
ri

1 + ǫ
(18)

|Y′|

∑
j=1

ei,jyj ≥
si

1 + ǫ
. (19)

The term (1 − ǫ) in (14) and (15) ensures that the quadratic programming problem has a
solution when the estimated values of ri and si are smaller than r̂i and ŝi. Similarly, the term
(1 + ǫ) in (18) and (19) ensures that the quadratic programming problem has a solution when
the estimated values of ri and si are bigger than r̂i and ŝi.

Randomized rounding

Let x′i and y′j be a fractional solution for (14) -(19). In order to get a 0/1 solution, we randomly
set xi and yj to be 1 using the fractional solution as the probability. That is, we randomly set
xi and yj to be 1’s with probability x′i and y′i , respectively. (Otherwise, xi and yj will be 0.)

Lemma 7. With probability 1 − 2exp(− 1
3 |X

′|ǫ2) − 2exp(− 1
3 |Y

′|ǫ2) − |Y′|exp(− 1
2 |X

′|ǫ2) −

|X′|exp(− 1
2 |Y

′|ǫ2), we can find a subset X̂ ⊆ X′ and a subset Ŷ ⊆ Y′ with (1 − ǫ)c1 ≤ |X′| ≤
(1 + ǫ)c1 and (1 − ǫ)c2 ≤ |Y′| ≤ (1 + ǫ)c2 such that for any x ∈ X̂, d(x, Y′) ≥ (1 − δ − 4ǫ)|Ŷ|
and for any y ∈ Ŷ, d(y, X) ≥ (1 − δ − 4ǫ)|X̂|.

The complete algorithm for Case 2 is given in Fig. 2. Let k = ⌈δt⌉ as defined in Lemma 2.
Here cx , cy are set to be k(1 + 1

ǫ ) and 2k, respectively. p1 = p2 = 5
ǫ2 .

Theorem 4. With probability at least 1− o(1), Algorithm 2 finds a quasi-(δ+ 4ǫ+ 1
t )-biclique of size

(1 − 1
t − ǫ)(|Xopt|+ |Yopt|) in O((k × 1

ǫ2 |X||Y|)⌈δt⌉(|X|
5

ǫ2 k(1+ 1
ǫ ) + |Y|

5
ǫ2 2k)(|X|+ |Y|3)) time.

We can derandomize the algorithm to get a polynomial time deterministic algorithm. Step 3
can be derandomized by using the standard method. For instance, instead of randomly and
independently choosing p1 log(|X′|) and p2 log(|Y′|) vertices from X′ and Y′, we can pick the
vertices encountered on a random walk of the same length on a constant degree expander.
Obviously, the number of such random walks on a constant degree expander is polynomial.
Thus, by enumerating all random walks of length p1 log(|X′|) and p2 log(|Y′|), we have a
polynomial time deterministic algorithm.
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Algorithm 2: Algorithm for Soving Case 2: |X′
opt| > ǫ|Y′

opt|.

Input: a bipartite graph G = (X ∪ Y, E), a real number 0 ≤ δ ≤ 0.5, a number
t > 0 and a number ǫ > 0.

0. Let k = ⌈δt⌉, p1 = p2 = 5
ǫ2 , cx = k(1 + 1

ǫ ) and cy = 2k.
1. for any v1, v2, . . . , vk ∈ X and any u1, u2, . . . , uk ∈ Y do

2. Set X′ = ∪k
i=1D(vi, Y) and Y′ = ∪k

i=1D(ui, X).
3 Randomly and independently select a set SX′ of (cx + 1)p1 log |X′|

vertices in X′ and a set SY′ of (cy + 1)p2 log |Y′| vertices in Y′.
4 for any size p1 log |X′| subsset BX′ of SX′ and size p2 log |X′| subset BY′

of SY′ do
(a) r̄i =

c1
|BX′ | ∑vi∈|B|X′

ei,j

(b) s̄i =
c2

|BY′ | ∑ui∈|B|Y′
ei,j

(c) Get a fractional solution x′i and y′i for xi ∈ X′ and yi ∈ Y′ of
(11)-(16)

(d) do randomrized rouding according to x′i and y′i
(e) XA = {vi|xi = 1} and YA = {ui|yi = 1}

5. Output a δ + 1
t + 4ǫ quasi-biclique with the biggest |XA|+ |YA|.

Fig. 2. The algorithm for Case 2.

Step 4 (d) can be derandomized by using Raghavan’s conditional probabilities method
(Raghavan, 1988). From Case 1 and Case 2, we can immediately obtain the following theorem.

Theorem 5. There exists a polynomial time approximation scheme that outputs a quasi-biclique XA ⊆
X and YA ⊆ Y with |XA|+ |YA| ≥ (1 − ǫ)(|Xopt|+ |Yopt|) such that any vertex x ∈ XA is incident

to at least (1− δ− ǫ)|YA| vertices in YA and any vertex y ∈ YA is incident to at least (1− δ− ǫ)|XA|
vertices in XA for any ǫ > 0, where Xopt and Yopt form the optimal solution.

4. The heuristic algorithm

In practice, we need to find large quasi-bicliques in PPI networks. Here, we propose a heuristic
algorithm to find large quasi-bicliques. Consider a PPI network G = (V , E). Our heuristic
algorithm has two steps. First, we construct a bipartite graph from the graph G based on a
pair of interacting proteins (u, v). Using the method described at the beginning of Section
2, we can get a bipartite graph G = (X ∪ Y, E). Second, we find quasi-bicliques in G. The
bipartite graph G contains all proteins that have interactions with u or v. So we can find large
quasi-bicliques containing u and v in the bipartite graph.

In the algorithm for finding quasi-bicliques in G, we have two parameters δ and τ, which
control the quality and sizes of the quasi-bicliques. We use a greedy method to get the seeds
for finding large quasi-bicliques in G. At the beginning, we set X′ = φ and Y′ = Y. In each
step, we find a vertex with the maximum degree in X − X′. The vertex is added into the
biclique vertex set X′, and we eliminate all vertices y in Y′ such that d(y, X′) < (1 − δ)|X′|.
We will continue this process until the size of Y′ is less than τ. At each step, we get a seed for
finding large quasi-bicliques.

The seeds may miss some possible vertices in the quasi-bicliques. We can extend the seeds
to find larger quasi-bicliques. Let X′′ = X′ and Y′′ = Y′ be a pair of seed vertex sets. In
the first step, we can find a vertex x in X − X′′ with the largest degree d(x, Y′′) in X − X′′. If
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d(x, Y′′) ≥ (1 − δ)|Y′′|, we add the vertex x to X′′. In the second step, we can find a vertex y

in Y − Y′′ with the largest d(y, X′′) in Y − Y′′. If d(y, X′′) ≥ (1 − δ)|X′′|, we add the vertex y

to Y′′. We repeat the above two steps until no vertex can be added. The whole algorithm is
shown in Fig. 3. We can also exchange the two vertex sets X and Y to find more quasi-bicliques
using the algorithm.

Let n be the number of vertices in the bipartite graph G. In the greedy algorithm, the time
complexity of Steps 3 − 5 and Step 10 is O(n), and the time complexity of Steps 6− 9 is O(n2).
So the time complexity of Steps 3 − 10 is dominated by O(n2). Since Steps 3 − 10 is repeated
O(n) times, the time complexity of the whole algorithm is O(n3).

The Greedy Algorithm
Input A bipartite graph (X ∪Y, E) and two parameters

δ and τ.
Output A set of δ-quasi-bicliques (X′ ∪ Y′, E′) with

|X′| ≥ τ and |Y′| ≥ τ.
1. Let X′ = φ and Y′ = Y.
2. while |Y′| ≥ τ and X′ �= X do
3. Find the vertex x ∈ X − X′ with the maximum

degree d(x, Y′).
4. Add x into X′, X′ = X′ ∪ {x}, and delete from Y′

all vertices y ∈ Y′ such that d(y, X′) < (1 − δ)|X′|.
5. X′′ = X′ and Y′′ = Y′.
6. repeat
7. Find the vertex x ∈ X − X′′ with the

maximum degree d(x, Y′′). If d(x, Y′′) ≥ (1 −
δ)|Y′′|, add x to X′′, X′′ = X′′ ∪ {x}.

8. Find the vertex y ∈ Y − Y′′ with the
maximum degree d(y, X′′). If d(y, X′′) ≥ (1 −
δ)|X′′|, add y to Y′′, Y′′ = Y′′ ∪ {y}.

9. until no vertex is added in the steps 7 and 8.
10. if |X′′| ≥ τ , |Y′′| ≥ τ, for each x ∈ X′′,

d(x, Y′′) ≥ (1 − δ)|Y′′|, for each y ∈ Y′′,
d(y, X′′) ≥ (1 − δ)|X′′|, output (X′′ ∪ Y′′) as a
quasi-biclique.

Fig. 3. The greedy algorithm.

5. Finding motifs from the multiple sequence alignment of computed δ-bicliques.

We implemented the heuristic algorithm described in the last section in JAVA. The software
is called PPIExtend. In the implementation, we added a new parameter α to speed up the
algorithm. In Step 3, instead of selecting one vertex with the best degree, we can select the
best α vertices in X − X′ and add all the α vertices into X′ in Step 4. As shown in the last
step of the algorithm, some vertices in X′′ may be adjacent to less than (1 − δ)|Y′′| vertices in
Y′′, but the average degree of the vertices in X′′ is no less than (1 − δ)|Y′′|. Similarly, some
vertices in Y′′ may be adjacent to less than (1− δ)|X′′| vertices in |X′′|, but the average degree
of the vertices in Y′′ is no less than (1 − δ)|X′′|. In our experiments, these quasi-bicliques are
still output to get more useful quasi-bicliques.
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Our algorithm for PPIExtend consists of two steps: (i) find interacting protein group
pairs (quasi-bicliques) using the greedy algorithm, (ii) find conserved motifs from multiple
sequence alignments for each of the protein groups. (We use the existing multiple sequence
alignment software PROTOMAT (Pietrokovski, 1996).)

The motifs found by PROTOMAT can be viewed as a block, that is a conserved region in a
multiple sequence alignment of the proteins in a group. For each biclique X and Y obtained
by the greedy algorithm, we use SX and SY to denote the sets of motifs obtained by the
multiple sequence alignments of protein sequences in X and Y, respectively. Any pair of
motifs (m1, m2) with m1 ∈ SX and m2 ∈ SY is a candidate protein-protein interaction motif
pair. Thus, our algorithm can also output lots of motif pairs as candidate protein-protein
interaction motif pairs.

We look at the numbers of motifs found by the programs PPIExtend and FPClose∗ that are
also in the two block databases, BLOCKS (Pietrokovski, 1996) and PRINTS (Attwood & Beck,
1994). The LAMA program (Pietrokovski, 1996) is used to find the local optimal alignment
of two blocks (the motif output by PPIExtend/FPClose∗ and a block in the databases), where
the Z-score is computed to measure the alignments. The default threshold of Z-score was
used in the experiments. The results are reported in Table 1. From this table, we can see
that our method has more mappings to BLOCKS and PRINTS than FPClose∗ (Li et al., 2006;
Grahne & Zhu, 2003).

BLOCKS PRINTS BOTH
blocks domains blocks domains blocks domains

FPClose∗ 6408/24294 3128/4944 2174/11170 1093/1850 24.1% 62.1%
PPIExtend 9325/29767 4191/6149 2423/11435 1160/1900 28.5% 66.4%

Table 1. The mappings between the motifs and the two databases: BLOCKS and PRINTS.
FPClose∗ uses BLOCKS 14.0 and PRINTS 37.0. Our PPIExtend method uses BLOCKS 14.3
and PRINTS 38.0. Each entry a/b means the motifs are mapped to a blocks(domains) in all b
blocks(domains) in the databases.

BLOCKS PRINTS Pfam iPfam
Version 14.3 38.0 20.0 20.0
Number of domains 6149 1900 8296 2883
Number of entries 29767 11435 8296 3019

Table 2. Databases used in the experiments.

We look at the numbers of motif pairs found by the two programs PPIExtend and FPClose∗

that can be mapped into domain-domain interaction pairs in the domain-domain interaction
database iPfam (Finn et al., 2005). The versions of the databases are shown in Table 2. The
iPfam database is built on top of the Pfam database (Sonnhammer et al., 1997) which stores
the information of protein domain-domain interactions. To examine whether the motif pairs
found by PPIExtend and FPClose∗ can match some pairs of interacting domains in iPfam, we
map our motif pairs to domain pairs in iPfam through the integrated protein family database
InterPro (Apweiler et al., 2001) which integrates a number of databases. In fact, we strictly
follow the procedure as suggested in (Li et al., 2006). (1) We map our motifs to domains
(protein groups) in the database BLOCKS or PRINTS; (2) we map a protein group of BLOCKS
to a protein group of InterPro based on the one-to-one mapping between an entry of BLOCKS
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and an entry of InterPro; (Note that both PRINTS and Pfam are member databases of InterPro,
and the mapping between PRINTS and Pfam is clear.) (3) we use existing cross-links between
protein groups of InterPro and domains of Pfam to determine the crosslinks between the
motifs found by PPIExtend/FPClose∗ and Pfam domains. In this way, we can map our motif
pairs into domain pairs with Pfam domain entries. Note that the mapping between motif
pairs and domain pairs is not one-to-one.

We observed that the motif pairs found by PPIExtend can map to 81 distinct domain pairs
in iPfam. However, only 18 domain pairs were reported in (Li et al., 2006). This is a
significant improvement and the main reason is the use of quasi-bicliques. In the 81 domain
pairs, 48 pairs are domain-domain interactions on one protein (self-loops) and 33 pairs are
domain-domain interactions on different proteins. Although the self-loops form a large
portion, we still find many other domain-domain interactions that are not self-loops.

6. Protein interaction sites: a case study

In this section, we present detailed information about binding motif pairs that can be
mapped to interacting domain pairs. The first motif pair is derived from a protein
group pair in which the left protein group contains 7 proteins and the right protein
group contains 10 proteins. There are 66 interactions between the two groups of proteins.
Using the hypergeometric probability model, the p-value of the protein group pair is
less than 1.57 × 10−191. PROTOMAT finds two left blocks and two right blocks in this
protein group pair. The second left block contains 20 positions and the first right block
contains 12 positions. By the mapping method, the positions 1 − 19 of the second left
block can be aligned with the positions 9 − 27 of block IPB001425B in BLOCKS, and the
positions 4 − 12 of the first right block can be aligned with the positions 1 − 9 of block
IPB003660A in BLOCKS. Block IPB001425B is in the Bac_rhodopsin domain, and block
IPB003660A is in the HAMP domain. See Table 3 for more details. Our binding motif
pair can map into the domain pair (PF00672, PF01036) in iPfam. iPfam shows that the
HAMP domain interacts with the Bac_rhodopsin domain in protein complexes such as
lh2s. 1h2s is the complex of Natronobacterium pharaonis sensory rho-dopsin II (sRII) with
receptor-binding domain of HtrII. The X-ray structure of 1h2s was obtained at 1.93 Å
resolution (Gordeliy et al., 2002) and it provided an atomic picture of the first step of the signal
transduction. The interactions in the sRII-HtrII complex have been intensively investigated
to find the signal relay mechanism from the receptor to the transducer (Bergo et al., 2005;
Inoue et al., 2007; Sudo et al., 2007). The 3D structure of the interactions is shown in
Fig. 4(a) and 4(b), which are generated by Protein Explorer (Martz, 2002). The shortest
residue-residue distance between the two motifs in a pair is also interesting. In protein
complex 1h2s, there are two chains: chain A (1h2s_A) and chain B (1h2s_B). The left
motif is located at positions 168 − 186 of 1h2s_A, and the right motif is located at
positions 61 − 69 of 1h2s_B (Table 3). We downloaded the coordinate information of 1h2s
from http://www.ebi.ac.uk/msd-srv/msdlite/atlas/summary/1h2s.html, and computed
the residue-residue distances between the two motifs. The shortest residue-residue distance
is 4.07 Å between atom 1346 of residue 177 in 1h2s_A and atom 2018 of residue 69 in
protein 1h2s_B (Fig. 4(b)). The average shortest residue-residue distance is 9.17Å. From these
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(a) The 3D structure of 1h2s
(asymmetric unit).

(b) The backbone structure of the two motifs in 1h2s.

Fig. 4. (a) The 3D structure (best viewed in color) of the interactions between the
Bac_rhodopsin domain and the HAMP domain in 1h2s. The left part is chain A and contains
the Bac_rhodopsin domain. The right part is chain B and contains the HAMP domain. (b)
The backbone structure of the interactions between segment [168V,186A] in 1h2s_A and
segment [61V,69I] in 1h2s_B.

calculation and information, we may conclude that the positions 1− 19 of the second left block
and the positions 4 − 12 of the first right block are possibly interaction sites.

7. Prediction of binding sites

After obtaining candidate domains (conserved regions) in multiple sequence alignment, we
can further verify if a pairs of predicted domains really interact with each other by using
some tools for protein binding site prediction. Here we briefly introduce a method originally
in (Guo & Wang, 2011). This method assumes that the 3D structures of the two given proteins
are known.

Given two complete protein structures, the task is to find the binding sites between the two
proteins. The method contains three steps. Firstly, we do local sequence alignment at the
atom level to get the alignments of conserved regions. Those alignments of conserved regions
may contain some gaps. Secondly, among the conserved regions obtained in Step 1, we use
the 3D structure information to identify the surface segments. Finally, for any pair of the
surface segments identified in Step 2, we compute a rigid transformation to compare the
similarity of the two substructures in 3D space and output the qualified pairs as binding sites.
When computing the rigid transformations, we treat each protein as a molecule with some
volume and introduce a method to ensure that the two whole protein 3D structures have no
overlap under such a rigid transformation in 3D space. The software package is available at
http://sites.google.com/site/guofeics/bsfinder.

127Mining Protein Interaction Groups

www.intechopen.com



16 Will-be-set-by-IN-TECH

AC l18493xB;

distance from previous block=(4,396)

DE none BL IIK motif=[6,0,17] motomat=[1,1,-10]

width=20 seqs=7

DIP:8095N ( 206) VIGILIISYTKATCDMLAGK

DIP:4973N ( 536) MILILIAQFWVAIAPIGEGK

DIP:5150N ( 417) LIKDEINNDKKDNADDKYIK

DIP:5371N ( 384) IILALIVTILWFMLRGNTAK

DIP:676N ( 402) VIVAWIFFVVSFVTTSSVGK

...

pdb 1h2s_A ( 168) VILWAIYPFIWLLGPPGVA

Bac_rhodopsin: VVLWLAYPVVWLLGPEGIG

AC r18493xA;

distance from previous block=(7,177)

DE none BL LLL motif=[6,0,17] motomat=[1,1,-10]

width=12 seqs=8

DIP:7371N ( 10) LALIILYLSIPL

DIP:8128N ( 35) LSLRFLALIFDL

DIP:4176N ( 106) LVLTSLSLTLLL

DIP:7280N ( 11) LSLFLPPVAVFL

DIP:5331N ( 178) LSFFVLCGLARL

...

pdb 1h2s_B ( 61) VSAILGLII

HAMP: IALLLALLL

Table 3. Left block l18493xB aligning with the Bac_rhodopsin domain and right block
r18493xA aligning with the HAMP domain. For brevity, only 5 sequences in each of the two
blocks are shown. In line Bac_rhodopsin and line HAMP, each letter is the amino acid with
the highest frequency in the corresponding column in the multiple alignment. Pdb 1h2s_A
and pdb 1h2s_B are chain A and chain B in protein complex 1h2s, respectively.

8. Conclusion

We have proposed algorithms for finding the maximum vertex quasi-biclique problem. We
illustrate the applications of the proposed algorithms for finding protein-protein binding sites.
The general approach contains three steps: (1) find quasi-bicliques from PPI networks; (2) do
multiple sequence alignment for each of the groups in the quasi-biclique and identify possible
domains on the protein sequences. (3) use other methods, e.g., the one in (Guo & Wang, 2011),
to further confirm the binding sites.
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