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Defects in Product Line Models  
and How to Identify Them 

Camille Salinesi and Raúl Mazo 
CRI, Panthéon Sorbonne University 

France 

1. Introduction 

The history of software and system development shows that abstraction plays a major role 

in making complexity manageable (Bosch 2000). Thus, abstracting the common and variable 

artefacts of an undefined collection of products and organising them into a model may be a 

good option to manage the complexity of a product line. Product line models improve 

decision-making processes. In addition, the representation of PLMs in different views 

improves communication of the actors participating in the product line management 

(Finkelstein et al. 1992). Nuseibeh et al. (1994) describe views as partial representations of a 

system and its domain. 

Several approaches have been found in literature to represent commonality and variability 
of a product line. Most of the approaches use features (Kang et al. 1990) as the central 
concept of product line models. However, other modelling approaches exist like Orthogonal 
Variability Models (OVM, cf. Pohl et al. 2005), Dopler variability models (Dhungana et al. 
2010), Textual Variability Language (TVL, cf. Boucher et al. 2010 and Classen et al. 2010), 
and constraint-based product line language (Djebbi et al. 2007, Mazo et al. 2011e; Salinesi et 
al. 2010b; 2011).  

Quality assurance of PLMs has recently been a prominent topic for researchers and 
practitioners in the context of product lines. Identification and correction of PLMs defects, is 
vital for efficient management and exploitation of the product line. Defects that are not 
identified or not corrected will inevitably spread to the products created from the product 
line, which can drastically diminish the benefits of the product line approach (Von der 
Maßen and Lichter 2004, Benavides 2007). Besides, product line modeling is an error-prone 
activity. Indeed, a product line specification represents not one, but an undefined collection 
of products that may even fulfil contradictory requirements (Lauenroth et al. 2010). The 
aforementioned problems enforce the urgent need of early identification and correction of 
defects in the context of product lines. 

Product line models quality has been an intensive research topic over the last ten years (Von 
der Maßen & Lichter 2004; Zhang et al. 2004; Batory 2005; Czarnecki & Pietroszek 2006; 
Benavides 2007; Janota & Kiniry 2007; Lauenroth & Pohl 2007; Trinidad et al. 2008; Van den 
Broek & Galvão 2009; Elfaki et al. 2009; Kim et al. 2011; Liu et al. 2011). Usually, to guaranty a 
certain level of quality of a model, this one must be verified against a collection of criteria 
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and then, these defects must be corrected. Verifying PLMs entails finding undesirable 
properties, such as redundancies, anomalies or inconsistencies (Von der Maßen et al. 2004). 
It is widely accepted that manual verification is already tedious and error-prone (Benavides 
et al. 2005). This is even worst when several (often millions) of products are represented 
altogether in a single specification. Several approaches to automate verification of PLMs 
have been proposed in order to overcome this limitation. However, despite the relative 
success of these approaches, there is still a number of pending issues that have motivated 
the proposal developed in this chapter: 

1. Quality assurance techniques from the development of single systems cannot be 
directly applied to product line specifications because these specifications contain 
variability. As shows the example presented by Lauenroth et al. (2010), a product line 
may contain requirements R and ¬R at the same time. When a traditional technique is 
used for verifying this specification, even though those requirements are not included 
for the same product, a contradiction would be identified since the requirements R and 
¬R cannot be fulfilled together. Therefore, it is necessary to take into account the 
variability of the product line to check whether contradictory requirements can really 
be part of the same product.  

2. The current state of the art on verification is mainly focused on feature models (Kang et 
al. 1990). Only properties that can be evaluated over feature models represented as 
boolean expressions are considered in these works. This brushes aside the non-boolean 
elements of the more sophisticated product line specification formalisms (e.g., integer 
cardinalities, attributes and complex constraints; cf. Mazo et al. 2011d, Salinesi et al. 
2010b, 2011). Current approaches restrict the verification operations to those that can be 
solved by boolean solvers. The verification is guided by the pre-selected technology and 
not by the verification requirements themselves. As a result, verification techniques are 
designed for a limited number of formalisms. These verification techniques are 
inadequate for many of the existing formalisms, included some used in an industrial 
context (Djebbi et al. 2007; Dhungana et al. 2010). 

3. Inadequate support for multi-model specification. The size and complexity of industrial 
product line models motivates the development of this one by heterogeneous teams 
(Dhungana et al. 2006; Segura 2008). Nevertheless, existing tools provide only little 
support for integrating the models developed by different teams and the subsequent 
verification of the global model and configurations of products from that model. For 
instance, a global model that integrates two models must itself have no defects resulting 
from the integration. 

Also in the context of PLs specified with several models, we have identified in our literature 

review a weak support for verifying the global view of the product line. A product line 

model has to change over time and in multi-model PLs a change on one of the models can 

make the global view inconsistent. To the best of our knowledge, existing tools do not 

provide automated mechanisms for detecting errors on the global PLM as a result of the 

changes in the different models of the PLM. 

This chapter addresses the fourth problem situations aforementioned. To tackle these 
situations, we present in Section 2 the most relevant concepts used in this chapter, a 
literature review of related works and the running example to be used in the rest of the 
chapter. Section 3 presents our typology of verification criteria, which is developed in 
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Section 4 for the case of single-view product line models, and Section 5 for the case of multi-
view product line models. Section 6 presents the evaluation of the approach presented in 
this chapter.  

2. Background and running example 

This section presents a literature review on verification of product line models and the 
corresponding analysis regarding the gaps and challenges identified in each approach. This 
section also presents a UNIX product line and the corresponding model of the whole or a 
part of the PL in three different PL modeling languages. The UNIX PL will be used in the 
rest of this chapter as our running example. 

2.1 Verification of product line models 

Verifying PLMs entails several aspects. On the one hand, a product line model, 
independently of the language used to express it, must respect certain properties associated 
with the domain of product lines. On the other hand, certain properties are associated with 
the concepts used in the language in which it is expressed. Therefore, some properties of 
PLMs are independent of the language while other ones are particular to each language. 
Thus, product line models can be verified from two different points of view. This chapter 
proposes an approach for PLM verification (Von der Maßen & Lichter 2004; Lauenroth & 
Pohl 2007; Mendonça et al. 2009) in with the engineer selects the verification operations that 
he/she want to use according to the language in which the model(s) to be verified are 
specified. In this approach, verification consists in “finding undesirable properties, such as 
redundant or contradictory information” (Trinidad et al. 2008). For instance, PLMs should 
not be void (i.e., they should allow to configure more than one product) and for the 
languages with the concept of optionality, elements modeled as optional must be really 
optional (i.e., they should not appear in all the products configured from the PLM). 

2.2 Related work 

Von der Maßen & Lichter (2004) present an approach to identify redundancies, anomalies 
and inconsistencies. According to the authors, a feature model contains redundancy, “if at 
least one semantic information is modeled in a multiple way”; anomalies, “if potential 
configurations are being lost, though these configurations should be possible”; and 
inconsistencies, “if the model includes contradictory information”. Several cases of 
redundancies, anomalies and inconsistencies on FMs are identified. In order to validate the 
approach, the authors use RequiLine, a tool that allows detecting inconsistencies on the 
domain and on the product configuration level (Von der Maßen & Lichter 2003). The 
approach was evaluated in “a small local software company” and “in a global player of the 
automotive industry”. However no information about the automating detection of 
redundancies and anomalies, no details about the sizes of the models or about the 
technology used to automate the approach or about the results obtained were provided.  

Whereas Batory (2005) used grammar and propositional formulas to represent basic FMs 
and enable truth maintenance systems and SAT solvers to identify contradictory (or 
inconsistency) predicates to verify that a given combination of features effectively defines a 
product. In the same line as Batory, Hemakumar (2008) proposed a dynamic solution to find 
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contradictions, “where errors can be detected during usage and silently reported to model 
designers”. The author proposes an incremental consistency algorithm that incrementally 
verifies some contradiction properties. The approach consists in verify that a model is 
contradiction-free if it is k-contradiction free for all k where 0<k≤n (A feature model is k-
contradiction free if every selection of k features does not expose a contradiction, for 
example: “unconditionally” dead features are exposed when k=1). When k=n, where n is the 
number of user selectable features, the model has been proven to be contradiction free. 
However, the incremental consistency algorithm has important practical limits because it is 
limited to “verify contradiction freedom of models with about 20 or fewer features”.  

In (Benavides et al. 2005a; 2005b; 2006; 2007; Trinidad et al. 2008), authors transform FODA 

models with and without attributes into Boolean expressions. These expressions are 

executed on Constraint Satisfaction Problem (CSP), Satisfiability (SAT) and Binary Decision 

Diagrams (BDD) solvers in order to execute analysis and verification operations over feature 

models. In (Benavides et al. 2006) the relationships of the FM are represented as ifThenElse 

constrains on CPS. Despite the originality of this proposal, the constraint representing a 

feature cardinality (m,n) between the father feature A and its child B (according to their 

notation: ifThenElse(A=0;B=0;B in {n,m})) does not consider that the feature A can itself have 

a feature cardinality, and in this case the semantic of feature cardinalities is not well 

represented in the constraint. Authors performed a comparative test between two off–the–

shelf CSP Java solvers (JaCoP and Choco). The experiment was executed on five FMs with 

up to 52 features and in both solvers. The time to get one solution seemed to be linear and 

the time to get all solutions seemed to be exponential. 

Janota & Kiniry (2007) have formalized in higher-order logic (HOL) a “feature model meta-
model” that integrates properties of several feature modeling approaches such as attributes 
and cardinalities. Once the model represented in HOL, author have formulated HOL 
expressions for root selectivity, existence of a path of selected features from the root to a 
feature that has been selected, and cardinality satisfaction of a selected feature that each 
feature model must respect. The approach has been implemented in Mobius program 
verification environment, an Eclipse-based platform for designing, testing, performing various 
kinds of verification of Java programs and bytecode. Nevertheless, the paper does not 
provide evidence about the evaluation of the approach, its scalability and its applicability to 
real cases. 

Trinidad et al. (2008) mapped FMs into CSP in order to find and diagnose three types of 
errors: (i) “dead features” are non-selectable features (features that do not appear in any 
product); (ii) “false optional features”, which are features that in spite of being modeled as 
optional, are always chosen whenever their parents are chosen; and (iii) “void models”;a 
feature model is said to be void if no product can be defined from it. The goal of Trinidad et 
al. is to detect the above three errors and provide explanations for the cause of these errors. 
In order to achieve the first goal, authors transform the FM into a CSP expression and then, 
to query the Choco solver (by means of the FaMa tool) to find the errors. The approach has 
been evaluated on five FMs up to 86 features. Unfortunately, no details about the scalability 
and the efficiency of the approach and tool are provided. 

Van der Storm (2007) transformed feature diagrams into BDDs in order to check 
configurations, obtain valid configurations and check consistency of the feature diagram. 
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Checking the consistency of the feature diagram consists in checking the satisfiability for the 
BDD logical formulas. Unfortunately, neither details about implementation nor performance 
nor scalability of the approach are provided in the paper.  

Yan et al. (2009) proposed an approach that consists in eliminating verification-irrelevant 
features and constraints from FMs in order to reduce the problem size of verification, and 
alleviate the state-space explosion problem. The authors carried out an experiment in which 
they generated FMs with up to 1900 features. The authors verified the consistency of models 
and showed that verification is faster when the redundant features had been eliminated. The 
problem with this approach is that it only considers as redundant, the constraints that 
contain redundant features, whereas it does not consider typical redundancies such as 
domain overlapping or cyclic relationships (Salinesi et al. 2010; Mazo et al. 2011). Besides, (i) 
the validation of the approach was done with in-house and random build features models, 
which does not guaranty that the approach works with real world feature models; and (ii) 
the details about the formalisation and implementation of the approach are not revealed. 

Van den Broek & Galvão (2009) analyze FODA product line models using generalized 

feature trees. In their approach they translate FMs into feature trees plus additional 

constraints. Once FMs represented in the functional programming language Miranda, they 

detect the existence of products (void models), dead features and minimal set of conflicting 

constraints. In FMs with cross-tree constraints, the function to find the number of products 

belongs to O(N*2M), where N is the number of features and M is the number of cross-tree 

constraints. Unfortunatelly, no evaluation of the theoretical calculations of efficiency is 

reported in the paper. The approach was validated with a feature tree of 13 features and two 

cross-tree constraints, which is not enough to evaluate the scalability and the usability of the 

approach on industrial models.  

Elfaki et al. (2009) propose to use FOL to detect dead features and inconsistencies due to 

contradictions between include-type and exclude-type relationships in FMs. The innovative 

point of their work is the suggestion of expressions dealing with both individuals and sets of 

features. 

SPLOT (Mendonca et al. 2009b) is a Web-based reasoning and configuration system for 
feature models supporting group-cardinalities instead of alternative and or-relations. The 
system maps feature models into propositional logic formulas and uses boolean-based 
techniques such as BDD and SAT solvers to verify the validity of models (not void) and find 
dead features. 

2.3 Running example 

The example taken in this chapter is that of the UNIX operating system, initially presented 

in (Mazo et al. 2011d). UNIX was first developed in the 1960s, and has been under constant 

development ever since. As other operating systems, it is a suite of programs that makes 

computers work. In particular, UNIX is a stable, multi-user and multi-tasking system for 

many different types of computing devices such as servers, desktops, laptops, down to 

embedded calculators, routers, or even mobile phones. There are many different versions of 

UNIX, although they share common similarities. The most popular varieties of UNIX are 

Sun Solaris, Berkeley (BSD), GNU/Linux, and MacOS X.  

www.intechopen.com



 
Software Product Line – Advanced Topic 

 

102 

The UNIX operating system is made up of three parts: the kernel, the shell and the 

programs; and two constituent elements: files and processes. Thus, these three parts consist 

in a collection of files and processes allowing interaction among the parts. The kernel of 

UNIX is the hub of the operating system: it allocates time and memory to programs and 

handles the file-store and communications in response to system calls. The shell acts as an 

interface between the user and the kernel, interprets the commands (programs) typed in by 

users and arranges for them to be carried out. As an illustration of the way the shell, the 

programs and the kernel work together, suppose a user types rm myfile (which has the effect 

of removing the file myfile). The shell searches the file-store for the file containing the 

program rm, and then requests the kernel, through system calls, to execute the program rm 

on myfile. The process rm removes myfile using a specific system-call. When the process rm 
myfile has finished running, the shell gives the user the possibility to execute further 

commands.  

As for any product line, our example emphasizes the common and variable elements of the 

UNIX family and the constraints among these elements. This example is built from our 

experience with UNIX operating systems and it does not pretend to be exhaustive, neither 

on the constituent elements nor on the constraints among these elements. The idea with this 

PL is, for instance, to look at what utility programs or what kinds of interfaces are available 

for a particular user. This PL is composed of the following six constraints: 

Constraint 1. UNIX can be installed or not and the installation can be from a CDROM, a 
USB device or from the NET.  

Constraint 2. UNIX provides several hundred UTILITY PROGRAMS for each user. The 
collection of UTILITY PROGRAMS varies even when the UNIX product is full-
configured. 

Constraint 3. The SHELL is a kind of UTILITY PROGRAM. Different USERS may use 
different SHELLS. Initially, each USER has a default shell, which can be overridden or 
changed by users. Some common SHELLS are: 

 Bourne shell (SH) 

 TC Shell (TCSH) 

 Bourne Again Shell (BASH) 
For the sake of simplicity will consider only two users in this running example: 
ROOT_USER and GUEST_USER. 

Constraint 4. Some functions accomplished by the UTILITY PROGRAMS are: 

 EDITING (mandatory and requires USER INTERFACE) 

 FILE MAINTENANCE (mandatory and requires USER INTERFACE) 

 PROGRAMMING SUPPORT (optional and requires USER INTERFACE) 

 ONLINE INFO (optional and requires USER INTERFACE) 

Constraint 5. The USER INTERFACE can be GRAPHICAL and/or TEXTUAL.  

Constraint 6. The GRAPHICAL interface is characterized by a WIDTH RESOLUTION 
and a HEIGHT RESOLUTION that can have the following couples of values [800,600], 
[1024,768] and [1366,768]. 
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2.3.1 Representation of the UNIX product line as a feature model 

Feature Models (FMs) were first introduced in 1990 as a part of the Feature-Oriented Domain 
Analysis (FODA) method (Kang et al. 2002) as a means to represent the commonalities and 
variabilities of PLs. Since then, feature modeling has become a de facto standard adopted by 
the software product line community and several extensions have been proposed to 
improve and enrich their expressiveness. A FM defines the valid combinations of features in 
a PL, and is depicted as a graph-like structure in which nodes represent features, and edges 
the relationships between them (Kang et al. 2002). Two of these extensions are cardinalities 
(Riebisch et al. 2002; Czarnecki et al. 2005) and attributes (Streitferdt et al. 2003; White et al. 
2009). Although there is no consensus on a notation to define attributes, most proposals 
agree that an attribute is a variable with a name, a domain and a value. Attributes are 
integers, enumerations, and boolean values representing important properties of a feature; 
as for instance the price, the cost, the width, the height or the time spent to build the 
corresponding feature. In this chapter we use the group cardinalities grouping bundles of 
features (cf. Cdrom, Usb and Net in Figure 1). We use the semantic of feature models 
proposed by (Schobbens et al. 2007). 

The elements of the FM notation used in this chapter are presented and exemplified as 
follows: 

 Feature: A feature is a prominent or distinctive user-visible aspect, quality, or 
characteristic of a software system (Kang et al. 1990). For the sake of simplicity FMs 
usually comport only the name of the feature; for instance Editing in Figure 1. Every 
FM must have one root, which is called root feature and identifies the product line; for 
example UNIX in Figure 1. 

 Attribute: Although there is no consensus on a notation to define attributes, most 
proposals agree that an attribute is a variable with a name (Name), a domain (Domain), 
and a value (consistent with the domain) at a given configuration time. From a technical 
point of view an attribute must to be differentiated from the other ones by an identifier 
(IdAttribute). For instance in Figure 1, WidthResolution and HeightResolution are two 
attributes with a domain determined by the constraint at the bottom of the model. 

 Mandatory: Given two features F1 and F2, F1 father of F2, a mandatory relationship 
between F1 and F2 means that if the F1 is selected, then F2 must be selected too and vice 
versa. For instance in Figure 1, features UtilityProgram and Editing are related by a 
mandatory relationship. 

 Optional: Given two features F1 and F2, F1 father of F2, an optional relationship 
between F1 and F2 means that if F1 is selected then F2 can be selected or not. However, 
if F2 is selected, then F1 must also be selected. For instance in Figure 1, features UNIX 
and UtilityProgram are related by an optional relationship. 

 Requires: Given two features F1 and F2, F1 requires F2 means that if F1 is selected in 
product, then F2 has to be selected too. Additionally, it means that F2 can be selected 
even when F1 is not. For instance, Editing requires UserInterface (cf. Figure 1). 

 Exclusion: Given two features F1 and F2, F1 excludes F2 means that if F1 is selected then 
F2 cannot to be selected in the same product. This relationship is bi-directional: if F2 is 
selected, then F1 cannot to be selected in the same product. 

 Group cardinality: A group cardinality is an interval denoted <n..m>, with n as lower 
bound and m as upper bound limiting the number of child features that can be part of a 
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product when its parent feature is selected. If one of the child features is selected, then 
the father feature must be selected too. For instance in Figure 1, Cdrom, Usb and Net are 
related in a <1..1> group cardinality. 

Cdrom

UserInterface
Editing

UNIX

Shell 

SH

Usb Net UtilityProgram

<1..1>

BASH
TCSH

File

Maintenance 
Programming 

Support 

OnlineInfo

<1..3>

<1..2>

Graphical

Graphical→  relation([WidthResolution, HeightResolution], {[800, 600], [1024,768], [1366,768]}) 

WidthResolution

HeightResolution

 

Fig. 1. User model of the UNIX operating system family of our running example 

Figure 1 corresponds to the feature representation of the user model of our running 

example. In this model, a user has the possibility to install a UNIX system using one of the 

following options: a CD ROM, an USB devise or a network. In addition, users have the 

possibility to install or not utility programs for file maintenance, edition, online access, and 

user interface. The user interface may be graphical or command-line (Shell) based; there are 

three options of command-line interface: SH, TCSH and BASH. The utility programs for 

user interface, online information and programming support are optional features.  

2.3.2 Representation of the UNIX product line as a dopler variability model 

The Decision-oriented (Dopler) variability modeling language focuses on product derivation 
and aims at supporting users configuring products. In Dopler variability models (Dhungana 
et al. 2010a; 2010b), the product line’s problem space is defined using decision models whereas 
the solution space is specified using asset models. An example of Dopler model is presented 
in Figure 2. This figure depicts the installation of a UNIX operating system (decision model) 
and the associated packages (asset model) that can be selected if the UNIX system is 
installed with a graphical interface. The decision model is composed of four decisions. The 
first one proposes one of three ways to install a UNIX operating system (with a CD ROM, 
with a USB or with the Net). The solution of this decision implies the solution of a second 
decision in which the user must select the utility programs to be installed in the particular 
UNIX system; in that regard, five utility programs are proposed: one tool for editing, one for 
file maintenance, one for programming, one for online information access and one shell. If 
the choice contains the utility program for online information, the user must decide what 
kind of graphical resolution will be configured and several choices are proposed: 800x600, 
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1024x768, 1366x768. Depending of each selection, the values of the variables corresponding 
to the width and height resolution will be assigned automatically by means of several 
decision effects; for instance in Figure 2: if(GraphicalResolution==800x600) then Width=800. To 
finish, the assignation of the width and height resolution must respect a certain number of 
validity conditions like for instance: Width ≥ 800 and Width ≤ 1366. The asset model is 
composed of seven graphical user interfaces and libraries that can be used in a UNIX 
graphical interface. The Tab Window Manager asset is available for all UNIX implementations 
with a graphical interface and requires the asset Motif; the others assets are optional. The 
IRIS 4d window manager is based on Mwm and Motif and therefore requires all of them in 
order to work in the same way as the KDE asset requires the Qt widget toolkit to work. 

 

Fig. 2. Example of Dopler Model: Installation of a UNIX System 

A decision model consists of a set of decisions (e.g., Which utility programs? with two 
attributes: name and expected values) and dependencies among them (i.e., the Visibility 
condition isTaken(Means of installation) forcing the answer of the decision Utility program if 
the decision Means of installation is taken). Assets allow defining an abstract view of the 
solution space to the degree of details needed for subsequent product derivation. In a 
domain-specific metamodel attributes and dependencies can be defined for the different 
types of assets. Decisions and assets are linked with inclusion conditions defining 
traceability from the solution space to the problem space (e.g., the asset Tab Window Manager 
must be included in the solution space if the option OnlineInfo of the decision Utility program 
is selected in a particular configuration). In our integration approach, these inclusion 
conditions are constraints that will be added to the collection of constraints representing the 
decision and asset model. Once these constraints are added, both viewpoints of the PL are 
integrated, and the model is ready to be verified against the typology of verification criteria 
presented in this chapter. 
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2.3.3 Representation of the UNIX product line as a constraint program 

Constraint Programming (CP) emerged in the 1990’s as a successful paradigm to tackle 
complex combinatorial problems in a declarative manner (Van Hentenryck 1989). CP 
extends programming languages with the ability to deal with logical variables of different 
domains (e.g. integers, reals or booleans) and specific declarative relations between these 
variables called constraints. These constraints are solved by specialized algorithms, adapted 
to their specific domains and therefore much more efficient than generic logic-based 
engines. A constraint is a logical relationship among several variables, each one taking a 
value in a given domain of possible values. A constraint thus restricts the possible values 
that variables can take.  

In modern Constraint Programming languages (Diaz & Codognet 2001; Schulte & Stuckey 
2008), many different types of constraints exist and are used to represent real-life problems: 
arithmetic constraints such as X + Y < Z, symbolic constraints like atmost(N,[X1,X2,X3],V) 
which means that at most N variables among [X1,X2,X3] can take the value V, global 
constraints like alldifferent(X1,X2,…,Xn)meaning that all variables should have different 
values, and reified constraints that allow the user to reason about the truth-value of a 
constraint. Solving constraints consists in first reducing the variable domains by 
propagation techniques that will eliminate inconsistent value within domains and then 
finding values for each constrained variable in a labeling phase, that is, iteratively 
grounding variables (fixing a value for a variable) and propagating its effect onto other 
variable domains (by applying again the same propagation-based techniques). The labeling 
phase can be improved by using heuristics concerning the order in which variables are 
considered as well as the order in which values are tried in the variable domains. Consult 
(Schulte & Stuckey 2008) for more details. Mazo et al. (2011e) present a constraint system to 
represent product line models by means of abstract constraints where the domain is an 
argument of the system. 

Our running example can also be represented as a constraint program according to the 
method proposed by Salinesi et al. (2010; 2011) and Mazo et al. (2011d). The resulting model 
is presented in the following table, where the first column corresponds to each constraint of 
our example and the second column its representation as a constraint program. 

 

Constraint CP Representation 

C. 1 UNIX ≤ Cdrom + Usb + Net ≤ UNIX 

C. 2 UtilityProgram ≤ UNIX 

C. 3 Shell = UtilityProgram ˄ 

Shell  ((1 * ROOT_USER ≤ ROOT_USERSH + ROOT_USERTCSH + 
ROOT_USERBASH ≤ 3 * ROOT_USER) ˄ (1 * GUEST_USER ≤ 
GUEST_USERSH + GUEST_USERTCSH + GUEST_USERBASH ≤ 3 * 
GUEST_USER)) 

C. 4 Editing = UtilityProgram ˄ 

Editing  UserInterface ˄ 
FileMaintenance = UtilityProgram ˄ 

FileMaintenance  UserInterface ˄ 
ProgrammingSupport ≤ UtilityProgram ˄ 

ProgrammingSupport  UserInterface ˄ 
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Constraint CP Representation 

OnlineInfo ≤ UtilityProgram ˄ 

OnlineInfo  UserInterface ˄ 
UserInterface ≤ UtilityProgram  

C. 5 1 * UserInterface ≤ Graphical + Textual ≤ 2 * UserInterface 

C. 6 Graphical = 1  (WidthResolution = W1 ˄ HeightResolution = H1) ˄ 

Graphical = 0  (WidthResolution = 0 ˄ HeightResolution = 0) ˄ 
relation([W1, H1], [[800, 600], [1024, 768], [1366, 768]]) 

Table 1. UNIX PL represented as a constraint program 

3. Typology of verification criteria 

Verifying PLMs entails several aspects. On the one hand, a product line model, 

independently of the language used to express it, must respect certain properties associated 

with the domain of product lines. On the other hand, certain properties are associated with 

the fact that each PLM respects the syntactic rules of the language in which it is expressed. 

Therefore, some properties of PLMs are independent of the language while other ones are 

particular to each language. In light of this observation, this chapter proposes a typology of 

PLM verification criteria adapted from the initial version presented in (Salinesi et al. 2010a). 

The typology presented in Figure 1 is structure in two levels; the top level represents the 

three categories of verification criteria and the bottom level represents the corresponding 

operations of the two criteria with more than one operation. This figure indicates that not all 

PLM verification criteria are equivalent: some are a result of the specification of the PL with 

a metamodel, whereas others can be used to verify PL specifications independent of the 

formalism used when they were specified. Besides, some criteria help verifying the ability of 

PLM to generate all the desired products and only them, whereas others are interested in the 

quality of PLMs, independently of their semantics (i.e., the collection of all possible products 

that can be generated from it). This is for example the case with the respect of certain rules 

providing formality (i.e., absence of ambiguity) at the PLM.  

 

Fig. 3. Typology of verification criteria on PLMs 

The outcomes of the typology are multiple:  

2. Error-free criteria

Verification criteria

1. Expressiveness 
criteria 

3. Redundancy-free criteria 

Non-void Non-false

Non-attainable 
domains 

Dead reusable 
elements 

False optional 

reusable elements 
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a. the typology classify the criteria semantic, allowing the identification of similarities and 
differences among the criteria;  

b. the typology makes easier to identify some defects for which no verification criterion is 
available in the literature. Redundancy of relationships among reusable elements is an 
example of defect for which no verification criterion has been defined in the literature 
(at least to our knowledge).  

c. the classification behind the typology makes it easier the proposition of a standard and 
reusable approach to verify the domain-specific criteria of PLMs; and 

d. the typology can be used to select the criteria that one wants to use to verify a PLM 
according to the impact that these criteria have or the expected level of quality of a 
particular PLM. 

The following sections use the typology of verification criteria presented in Figure 3 to 
develop the verification approach proposed in this chapter. 

4. Single-model verification 

In order to verify models against the verification criteria identified and calcified in the 
former section, it is necessary to represent PLMs in a way that is (a) expressiveness-enough 
to represent the semantics (i.e. the collection of products that can be configured from the 
PLM) of PLMs, (b) consistent with the formalization of the criteria, and (c) easy to parse 
with analysis tools. Experience shows that the semantic of every PLM can be represented as 
a collection of variables over different domains and constrains among these variables. While 
the variables specify what can vary from a configuration to another one, constraints express 
under the form of restrictions what combinations of values are allowed in the products.  

This section will show how to represent the semantic of PLMs with a constraint based 

approach, and to verify each and every criterion shown in the typology of the former section 

on a PLM. The approach will be applied to our feature model example to show how to 

navigate between the generic specifications of the criteria. The genericity of the approach 

will be shown by providing examples with other formalisms (cf. Section 5). 

Verifying PLMs is about looking for undesirable properties such as redundant or 

contradictory information. This chapter proposes three domain-specific verification criteria: 

expressiveness, error-free and redundancy-free. Each domain-specific verification criterion 

is defined, formalized and exemplified with our running example (cf. Figure 1 and Table 1) 

as follows. 

2.1.  Expressiveness: every PLM must allow configuring more than one product, i.e., the 
model must be not void and the model must be expressive enough to allow configure 
more than one product (Benavides et al. 2005). In case the PLM allows configuring only 
one product, the PLM, even if it is not considered as a void model, is not expressive 
enough to be a PLM. Indeed, the purpose of PLMs is to represent at least two products 
–or there is not reuse. Two verification operations can be used to implement this 
criterion: 

a. Non-void PLMs. This operation takes a PLM as input and returns “Void PLM” if the 
PLM does not define any products. Two alternative techniques have been proposed so 
far to implement this operation: calculate the number of products (Van den Broek & 
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Galvão 2009) or ask for a product configuration that meets the constraints of a FM 
(Benavides et al. 2005; Trinidad et al. 2008). Our proposal follows along the lines of the 
latter alternative and is formalized in the following algorithm. It consists in determining 
if there is at least one product that can be generated by means of a query to an off-the-
shelf solver. If the PLM is not void, the solver will return one valid product or false 
otherwise. 
Non-void _PLM(PLM M, Solver S) { 
 S.charge(M); 
 Answer = S.getOneSolution();  
 If (Answer ≠ “false”) { 
  Write (Answer); 
 } 
 Else { 
  Write (“Void PLM”); 
 } 
} 
The execution of this algorithm over the running example gives as result that our UNIX 
PL is non-void. 

b. Non-false PLMs. This operation takes a PLM as input and returns “False PLM” if at 

most one valid product can be configured with it. Although this operation could also 

help detect when PLMs are void (our precedent operation), the converse is not true. The 

two operations have then a separate implementation. Our approach consists in asking 

the solver to generate two products in order to decide if the PLM is false. The algorithm 

proposed to automate this operation is as follows:  

Non-false_PLM(PLM M, Solver S) { 

 S.charge(M); 

 Answer1 = S.getOneSolution();  

 If (Answer1 ≠ “false”) { 

  Answer2 = S.getNextSolution(); 

  If (Answer2 ≠ “false”) { 

   Write (Answer1, Answer2); 

  } 

  Else { 

   Write (“False PLM”); 

  } 

 } 

 Else { 

  Write (“False PLM”); 

 } 

} 

The execution of this algorithm over the running example gives as result that our UNIX 

PL is a non-false PLM. 

2.2.  Error-free. The Dictionary of Computing defines an error as “A discrepancy between 
a computed, observed, or measured value or condition, and the true, specified, or 
theoretically correct value or condition” (Howe 2010). In PLMs, an error represents a 
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discrepancy between what the engineer want to represent and the result obtained 
from the model. For instance, this is the case when the engineer includes a new 
reusable element (in a given domain) in a PLM, but this element never appears in a 
product. The error-free criterion can be verified by means of three operations: the first 
one allows identifying the non-attainable domain values of PLM’s reusable elements; 
the second one allows identifying the dead elements, i.e. elements of the PL that are 
never used in a product; the third one allows identifying the reusable elements 
modeled as optional but that appear in all the products of the PL. These operations 
are presented as follows: 

c. Non-attainable domains: This operation takes a PLM and a collection of reusable 
elements as input (all of them by default) and returns the reusable elements that cannot 
attain one of the values of their domain. Reusable elements can have domains 
represented as particular values (e.g., 800), intervals of values (e.g., [0..5]), or collections 
of values (e.g., {0, 800, 1024, 1280}). A non-attainable value of a domain is the value of 
an element that never appears in any product of the product line. For example, if a 
reusable element R has the domain [0..1], value 1 is non-attainable if R can never be 
integrated in a product line it never take the value of 1. Non-attainable values are 
clearly undesired since they give the user a wrong idea about domain of reusable 
elements. The approach presented in this chapter can assess the attainability of any 
reusable elements for all (or parts of) their domain values. This operation was also 
implemented by Trinidad et al. (2008), but only for boolean domains on FMs. Our 
proposal goes a step further by offering an algorithm for any domain as e.g. needed 
when using attributes or features whit individual cardinality. 
Our algorithm to automate this operation evaluates the domain of each variables of the 

PLM. For each vale of the domain, the algorithm requests the solver at hand for a 

solution. If the solver gives a solution for all the values of the variable’s domain, the 

variable is erased from the list of reusable elements with non-attainable domains. 

Otherwise, the variable, representing a reusable element, is affected with the non-

attainable value(s) and kept in the list of reusable elements with non-attainable 

domains. In each product obtained from the solver, all the variables of the PLM are 

affected with a particular value of the corresponding domain. Thus, this algorithm takes 

advantage of that fact and records the answers given by the solver in order to avoid 

achieving useless requests testing the attainability of domain values that have already 

been obtained in precedent tests. The corresponding algorithm is as follows: 

NonAttainableDomains(PLM M, Solver S) { 
 S.charge(M); 
 For (each variable V ∈ M) { 
  For(each Di ∈ domain of V AND not in {PrecedentProducts}){ 
   Product = S.getOneSolution(“V = Di”); 
   If (Product = “false”) { 
    Write (“The domain ” + Di + “ of ” + V + “ is non-
attainable”); 
   } 
   Else { 
    PrecedentProducts += Product; 
   } 

www.intechopen.com



 
Defects in Product Line Models and How to Identify Them 

 

111 

  } 
 } 
} 
For instance in our running example, if when asking for a product with 
WidthResolution=800 we get a product  
P1 = [UNIX=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1, 
UserInterface=1, Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1, 
TCSH=1, BASH=0, OnlineInfor=0, ProgrammingSupport=0].  
This means both that WidthResolution can attain the value of 800, and that the rest of 
variables can attain the values assigned by the solver. Thus, for instance, it is not 
necessary to ask if the variable UNIX can attain the value of 1 or if HeightResolution can 
attain the value of 600. 

d. Dead-free reusable elements: A reusable element is dead if it cannot appear in any 
product of the product line. This operation takes as input a PLM and a collection of 
reusable elements, and it returns the set of dead reusable elements, or false if there is 
none in the input list. Reusable elements can be dead because: (i) they are excluded by 
an element that appears in all products (also known as full-mandatory or core reusable 
elements, c.f. Von der Maßen & Lichter 2004; Benavides et al. 2005; Trinidad et al. 2008; 
Van den Broek & Galvão 2009); and (ii) they are wrongly constrained (e.g., an attribute 
of the feature is > 5 and < 3 at the same time, or a group cardinality is wrong defined). 
Elfaki et al. (2009) detect dead features by searching only for predefined cases, i.e. 
defined dead features in the domain-engineering process. Trinidad et al. (2006, 2008) 
detect dead features by finding all products and then searching for unused features. 
Van den Broek and Galvão (2009) detect dead features by transforming the FM into a 
generalized feature tree, and then searching the feature occurrences that cannot be true. 
To the better of our knowledge there is not details in literature about the way in which 
the other references have implemented this operation. Our approach evaluates each 
non-zero value of each reusable element’s domain, and reuses each solution obtained 
from the solver in order to avoid useless computations. If a reusable element cannot 
attain any of its non-zero values, then the reusable element is dead. The reuse of the 
solutions previously obtained makes our dead artefacts detection technique scalable as 
showed below, by contrasts to the state of the art. The corresponding algorithm is 
presented as follows: 
DeadReusableElements(PLM M, Solver S) { 
 S.charge(M); 
 DeadElementsList = all variables of M; 
 For (each variable V ∈ DeadElementsList) { 
  Product = S.getOneSolution(“V > 0”); 
  If (Product = “false”) { 
   Write (“The variable ” + V + “ is dead”); 
  } 
  Else { 
  Erase V and all the other non-zero variables obtained in Product from 
DeadElementsList; 
  } 
 } 
} 
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Our algorithm first creates a list of the reusable elements whose dead or non-dead 
condition is yet to be assessed. For example:  
deadElements=[UNIX, Cdrom, Usb, Net, UtilityProgram, FileMaintenance, Editing, 
UserInterface, Graphical, WidthResolution, HeightResolution, Shell, SH, TCSH, BASH, 
OnlineInfor, ProgrammingSupport]. 
Then, our algorithm queries for a configuration based on reusable elements for which 
we still ignore if they are dead or not, and sieves the selected (and thus alive) elements 
from this list. For example, to know if UtilityProgram is dead or not, it is sufficient to 
query the solver for a product with UtilityProgram=1, which provides a product  
P1 = [UNIX=1, Cdrom=1, Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1, 
UserInterface=1, Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1, 
TCSH=1, BASH=0, OnlineInfor=0, ProgrammingSupport=0].  
This means not only that the reusable element UtilityProgram is not dead, but also that 
the other elements with values different from 0 are not dead. Therefore these elements 
can be sieved from the list of dead elements. The test can be repeated until all elements 
are sieved. For example querying for products with Usb =1, the solver provides another 
product which means that this reusable element is not dead either. According to our 
algorithm, the variable Usb, and all the other non-zero variables, must be erased from 
the list of dead elements. At this point the list of dead elements is empty, which means 
that there are no dead elements in the product line model.  
The purpose of the aforementioned list is to reduce the number of queries. For instance 
in this example, only two queries were necessary to evaluate all reusable elements. In 
contrast, 17 queries would have been required in the current state of the art algorithm. 
However, it is not possible to calculate in advance how many queries would be needed, 
or even, to guaranty that the minimal number of queries will be executed, as this 
depends on the configuration generated by the solver. 

e. False optional reusable elements: a reusable element is false optional if it is included in 
all the products of the product line despite being declared optional (Von der Maßen & 
Lichter 2004; Benavides et al. 2005; Trinidad et al. 2008). This operation takes a PLM and 
a collection of reusable elements modeled as optional as input, and returns the set of 
false optional reusable elements, or false if no one exists. Trinidad et al. (2006, 2009) 
detect false optional features based on finding all products and then searching for 
common features among those which are not assigned as common. To verify if an 
optional reusable element is false optional, we query for a product that does not contain 
the reusable element at hand (setting the feature’s value to 0). If there is no such 
product, then the reusable element we are evaluating is indeed false optional.  
FalseOptionalReusableElements(PLM M, Solver S) { 
 S.charge(M); 
 FalseOptionalElementsList = all optional elements of M; 
 For (each variable V ∈ FalseOptionalElementsList) { 
  Product = S.getOneSolution(“V = 0”); 
  If (Product = “false”) { 
   Write (V + “ is false optional”); 
  } 
  Else { 
   Erase V and all the other variables with a Zero affectation into 
Product, from DeadElementsList; 
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  } 
 } 
} 
For example if we want to know whether the optional reusable component Usb is false 
optional of not, it is sufficient to request for a product without this component 
(Support_usb=0). The solver, in this case, returns the product P1 = [UNIX=1, Cdrom=1, 
Usb=0, Net=0, UtilityProgram=1, FileMaintenance=1, Editing=1, UserInterface=1, 
Graphical=1, WidthResolution=800, HeightResolution=600, Shell=1, SH=1, TCSH=1, 
BASH=0, OnlineInfor=0, ProgrammingSupport=0], which means that this optional 
reusable element can take the value of 0, it is, be effectively optional. 

2.3.  Redundancy-free: according to the Oxford dictionary something redundant is 
something “able to be omitted without loss of meaning or function” (Oxford University 
2008). Therefore, redundancy in a PLM is about the presence of reusable elements and 
variability constraints among them that can be omitted from the PLM without loss of 
semantic on the PLM. Redundant constraints in FMs are undesired because, although 
they do not alter the space of solutions, they may consume extra computational effort in 
derivation and analysis operations (Yan et al. 2009), and they are likely to generate 
inconsistencies when the PL evolves. For the sake of evolution, it is certainly better 
detect and correct these redundancies. In order to detect them in a PLM this chapter 
proposes an operation that takes a PLM and a constraint as input and returns true if 
removing the constraint does not change the space of solutions.  

Three alternatives can be implemented to check if a relationship is redundant or not. 

The naïve algorithm consists in calculating all the products of the PLM with the 

constraint to check; then, remove the constraint; and calculate all the solutions of the 

new model. If both results are equal (i.e. exact the same products can be configured 

with and without the constraint), then the constraint is redundant. This approach is 

computationally very expensive as it requires (a) to compute all configurations twice 

and (b) to perform an intersection operation between two potentially very large sets 

(e.g. 1021 configurations for the Renault PLM according to Dauron & Astesana (2010)). 

Not only this algorithm is not scalable, it is typically unfeasible. The second algorithm, 

proposed by Yan et al. (2009) defines a redundant constraint of a PLM as a constraint in 

which a redundant reusable element takes part. This approach consists in calculating 

the redundant reusable elements on feature models — features disconnected from the 

FM — and then the redundant constraint in this approach are those in which the 

redundant features take part. Though it yields a solution, this algorithm is not 

sufficiently general: indeed, only these trivial cases of redundancy are considered. The 

approach proposed in this chapter is based on the fact that if a system is consistent, then 

the system plus a redundant constraint is consistent too. Therefore, negating the 

allegedly redundant relation implies contradicting the consistency of the system and 

thus rendering it inconsistent (Mazo et al. 2011a). This approach is more efficient, and 

thus more scalable, when applied on large models. Our algorithm is in two steps: first, 

it tries to obtain a solution with the set of constraints. Then, if a solution exists, we 

negate the constraint we want to check. In the case where no solution is found, the 

inspected constraint turns out to be redundant. This alternative to find redundant 

constraints can be formalized as follows:  
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If (at least 1 product can be configured from PLM M under a collection of constraints C 
= {C1,...,Ci}) { 
 Write (C |= M); 
 Let take Cr ∈ C a constraint to be evaluated;  
 If (C without Cr |= M AND C ∪ ¬Cr |≠ M) { 
  Write (Cr is redundant); 
 } 
 Else{ 
  Write (Cr is not redundant); 
 } 
} 
For example, to check if the constraint UNIX ≥ UtilityProgram (cf. Table 1) is redundant 
or not, it is sufficient to query the solver for a product. Then, if a product is found, the 
algorithm proceeds to replace the constraint by its negation (UNIX < UtilityProgram) 
and ask again for a product. If the solver does not give a solution (as is the case for our 
running example), one can infer that the constraint (UNIX ≥ UtilityProgram) is not 
redundant. 

5. Multi-model verification 

Multi-model modeling allows tackling various models and aspects of a system, in particular 
in the presence of stakeholders with multiple viewpoints (executives, developers, 
distributors, marketing, architects, testers, etc.; cf. Nuseibeh et al. 1994). For example, a 
UNIX product line can be composed of several models, each one developed by a different 
team or developing a particular view of the PL. Thus, while the team responsible of the 
kernel develops a model, the team responsible of the user interface develops another model. 
Motivated by the fact that (a) this practice is current in industry (Dhungana et al. 2010); (b) 
even if each individual model is consistent, once the models are integrated, they can easily 
be inconsistent; and (c) the lacks in current state of the art in multi-model PL verification, 
this chapter proposes a method to verify multi-model PLs. This method is composed of 
fourth steps: (i) the base models’ semantic should be transformed into constraint programs; 
(ii) once these base models transformed into CP, they may be integrate using the integration 
strategies and rules appropriates for each language (cf. Mazo et al. 2011a for further details 
about integration of Dopler models, and Mazo et al. 2011d for further details about 
integration of constraint-based PLMs; and (iii) once the base models integrated, the 
collection of verification criteria, proposed in Section 4 for single models, can be applied on 
the integrated model in the same manner as for single models.  

The application of these verification criteria over the Dopler model depicted in Figure 2 and 
the explanation regarding the minor variants are presented as follows:  

1. Non-void model. This model is not a void because it allows configure at least one 
product; for instance C1 = {USB, Editing, ProgrammingSupport, Shell} 

2. Non-false model. This model is not a false because it allows configure more than two 
products; for instance: C2 = {Cdrom, Editing, OnlineInfo, Shell, Twm, KDE, Qt, 
GraphicalResolution = “800x600”, Width = 800} and C3 = {USB, Editing}. 

3. Non-attainable validity conditions’ and domains’ values. This operation either (i) 
takes a collection of decisions as input and returns the decisions that cannot attain 
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one or more values of its validity condition; or (ii) takes a collection of assets as input 
and returns the assets that cannot attain one of the values of its domain. A non-
attainable value of a validity condition or a domain is a value that can never be taken 
by a decision or an asset in a valid product. Non-attainable values are undesired 
because they give the user a wrong idea of the values that decisions and assets 
modeled in the product line model can take. In our example of Figure 2, the validity 
condition Width ≥ 800 && Width ≤ 1366 determines a very large range of values that 
can take the variable Width, however this variable can really take three values: 800, 
1024 and 1366 which means that values like 801, 802,..., 1023, 1025, ..., 1365 are not 
attainable values. 

4. Dead reusable elements. In Dopler language, the reusable elements are Decisions and 

Assets. This operation takes a collection of decisions and assets as input and returns the 

set of dead decisions and assets (if some exist) or false otherwise. A decision is dead if it 

never becomes available for answering it. An asset is dead if it cannot appear in any of 

the products of the product line. The presence of dead decisions and assets in product 

line models indicates modeling errors and intended but unreachable options. A 

decision can become dead (i) if its visibility condition can never evaluate to true (e.g., if 

contradicting decisions are referenced in a condition); (ii) a decision value violates its 

own visibility condition (e.g., when setting the decision to true will in turn make the 

decision invisible); or (iii) its visibility condition is constrained in a wrong way (e.g., a 

decision value is > 5 && < 3 at the same time). An asset can become dead (i) if its 

inclusion depends on dead decisions, or (ii) if its inclusion condition is false and it is not 

included by other assets (due to requires dependencies to it). Dead variables in CP are 

variables than can never take a valid value (defined by the domain of the variable) in 

the solution space. Thus, our approach consists in evaluating each non-zero value of 

each variable’s domain. If a variable cannot attain any of its non-zero values, the 

variable is considered dead. For instance, in the Dopler model of Figure 2, there are not 

dead decisions or assets. 

5. Redundancy-free. In the asset model (cf. the right side of Figure 2) the asset 4dwn 
requires MwM, which at the same time requires the asset Motif, therefore the 
dependency 4dwm requires Motif is redundant according to the redundancy-free 
algorithm presented in Section 4. 

It is worth noting that the domain-specific operation “false optional-free reusable elements” 

is not applicable in Dopler models due to the fact that this language does not have explicitly 

the concept of optional. Decisions and assets are optional in Dopler models according to the 

evaluation of the visibility conditions (in the case of decisions) and inter-assets 

dependencies in the case of assets 

6. Validation 

We performed a series of experiments to evaluate the verification approach proposed in this 

chapter. The goal was to measure the effectiveness or precision of the defect’s detection, the 

computational scalability and the usability of the approach to verify different kinds of 

product line models. These measurements are presented in the next sections, grouped by the 

kind of product line models used to evaluate our approach.  
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6.1 Single-view models  

We assessed the feasibility, precision and scalability of our approach with 46 models, out of 

which 44 were taken from the SPLOT repository (Mendonca et al. 2009b) and the other two 

models are the Vehicle movement control system (Salinesi et al. 2010b) and the Stago model 

(Salinesi et al. 2011). The sizes of the models are distributed as follows: 32 models of sizes 

from 9 to 49 features, 4 from 50 to 99, 5 from 100 to 999 and 6 from 1000 to 2000 features. The 

six largest feature models that we have were not considered in this experiment due to the 

fact that the solver used does not accept more that 5000 variables. Note that SPLOT models 

do not have attributes, on the contrary to our two industrial models. Therefore artificial 

attributes were introduced in a random way, in order to have models with 30%, 60% or 

100% of their features with attributes. In order to do that, we created a simple tool1 that 

translates models from SPLOT format to constraint programs, and we integrate next the 

artificial attributes. In order to test that the transformation respects the semantic of each 

feature model, we compared the results of our models without attributes with the results 

obtained with the tools SPLOT (Mendonca et al. 2009b) and FaMa (Trinidad et al. 2008b). In 

both comparisons we obtained the same results in all the shared functions: detection of void 

models, dead features, and false optional features. These results show that our 

transformation algorithm respects the semantic of initial models.  

6.1.2 Precision of the detection 

Not only must the transformation of FMs into CPs be correct but also the detection of 

defects. As aforementioned, we compared the results obtained with our tool VariaMos 

against these obtained with two other tools: SPLOT and FaMa. These comparisons were 

made over models without attributes due to the fact that original models taken from SPLOT, 

and also available for FaMa, do not have attributes. In these comparisons we find the same 

results, for the common verification functions on the three tools, but due to the fact that our 

own models contain attributes and group cardinalities <m..n>, for any m and n bellowing to 

non negative integer numbers, a manual inspection were necessary. A manual inspection on 

two samples of 28 and 56 features showed that our approach identify the 100% of the 

anomalies with 0% false positive. 

6.1.3 Computational scalability 

The execution time of the verification operations in our tool shows that the performance 

obtained with our approach is acceptable in realistic situations; because in the worst case, 

users can execute any verification operation less than 19 seconds for models up to 2000 

features. Figure 4 shows the execution time of each one of the six verification operations in 

the 50 models. In Figure 4 each plot corresponds to a verification operation: Figure 4(1) 

corresponds to operation 1, Figure 4(2) corresponds to operation 2 and so on. Times in the Y 

axis are expressed in milliseconds (ms) and X axis corresponds to the number of features. It 

is worth noting that most of the results overlap the other ones; we avoid the use of a 

logarithmic scale in the X axis, to keep the real behaviour of the results.  

                                                 
1 parserSPLOTmodelsToCP.rar available at: https://sites.google.com/site/raulmazo/  

www.intechopen.com



 
Defects in Product Line Models and How to Identify Them 

 

117 

0

5

10

15

20

0 500 1000 1500 2000

Not Void FMs - VariaMos
N° Features

(1)

ms

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000

False FMs - VariaMos N° Features

(2)

ms

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000

Non Attainable Domains - VariaMos

(3)

N° Features

ms

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

Dead Features - VariaMos N° Features

(4)

ms
0

10

20

30

40

0 500 1000 1500 2000

Redundant Relationships - VariaMos
N° Features

(5)

ms

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

False Optional Features - VariaMos N° Features

(6)

ms

 

Fig. 4. Execution time of the six verification operations, per number of features 

Let us now present the results in more detail. For the models with sizes between 9 and 100 

features our approach verified all operations in less than 1 second on average. For the 

models with sizes between 101 and 500 features verified dead features and false optional 

features in 0,4 seconds, 1 second to calculate the non attainable domains and 0 milliseconds 

in the rest of verification operations. It is worth noting ant our solver does not provide time 

measures of microseconds (10-6 seconds); thus, 0 milliseconds (10-3 seconds) must be 

interpreted as less than 1 millisecond. In general, over the 46 FMs, the execution time to 

detect dead features, false optional features and non attainable domains is inferior than 8,68, 

8,82 and 19,09 seconds respectively. For the rest of verification operations, the execution 

time is inferior to 0,02 seconds even for the largest models. Following the projection of our 

results, our approach is able to be used in larger FMs with a quadratic increase, in the worst 

of cases, of the time to execute any verification operation proposed in this paper. To finish, 

the verification operations like redundant relationships, false feature models and void 

feature models are executed in less than 0,03 seconds. According to the results of our 

experiment, we can conclude that our verification approach presented in this chapter is 

scalable to large FMs. 

3.6 The case multi-view models 

We also tested our verification approach with two Dopler variability models (Mazo et al. 
2011a). In both models, we seeded 33 defects in the DOPLER model and 22 defects in the 
camera model. The defects cover different types of problems to show the feasibility of the 
verification approach. For instance, the decision Wizard_height cannot take the values 1200, 
1050, 1024 and 768 and the asset VAI_Configuration_DOPLER cannot take the value 1 (is 
never included for any product), even if these values take part in the corresponding 
variables’ domain. Furthermore, we measured the execution time of applying the approach 
for both models for the different verification operations as presented below. 

Applying our verification approach to the DOPLER model has shown that the model is not 
void and can generate 23016416 products. However, we discovered 18 defects related with 
non-attainable domain values and 15 dead decisions and assets (these together are the 33 
defects we have seeded before). By applying our verification approach on the digital camera 
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model we obtained that the model is not void and can generate 442368 products. In this 
model, we discovered 11 defects related with non-attainable domain values as well as 11 
dead decisions and assets (these together are the 22 defects we have seeded before). It is 
noteworthy that the same number of defects was identified in a manual verification of both 
models. The automated verification found all of the seeded defects in the DOPLER model 
and all of the seeded defects in the camera model.  

Table 2 shows the number of defects found and the execution time (in milliseconds) 
corresponding to the verification operations on the models. No defects were found 
regarding the “Void model”, “False model” and “Redundant relationships” operations and 
the execution time was less than 1 millisecond for each one of these operations in each 
model. The model transformations from Dopler models to constraint programs took about 1 
second for each model. 
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DOPLER 
81 Variables 

Defects No No 18 15 No 

Time 0 0 125 47 0 

Camera 
39 Variables 

Defects No No 11 11 No 

Time 0 0 16 15 0 

Table 2. Results of model verifications: Execution time (in milliseconds) and number of 
defects found with each verification operation. 

In the same way as for the single-view models, the results obtained on multi-view models 
allow concluding that the verification approach presented in this chapter is scalable to 
medium Dopler models and give promising expectations on large Dopler models. 
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