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1. Introduction  

The analysis of astrophysical ices and the determination of the compounds that are present 
in the molecular clouds play a fundamental role in order to predict the future evolution of 
the cloud, e.g., its transformation to protostellar bodies or the appearance of new radicals 
and molecules. Because of the difficulties of obtaining satellite data, the process is simulated 
first in the laboratory generating ice analogs under controlled conditions. In this case, the ice 
mixture is carried on allocating the different components in the appropriate concentrations 
in a deposit chamber with a substrate and recording the spectrum of the aggregated ice 
when the chamber is filled through a gas inlet with the corresponding compounds (see 
Figure 1). This process tries to simulate the real process of forming ice mantles under the 
environmental conditions of the Interstellar Medium. The spectrum is obtained analyzing 
the transfer function of the ice when it is excited by a source beam with a known spectrum 
and measuring with a detector the output spectrum after crossing the ice. 

The spectrum of each ice can be modelled as the linear instantaneous superposition of the 
spectrum of the different compounds, so a Source Separation approach is proper. We review 
and compare in this chapter a set of Source Separation algorithms that approach to the 
problem in different ways. 

Initially, the problem can be addressed as a classical Blind Source Separation problem. In 

this case, nothing is assumed about the statistical distribution of the compounds present in 

the ices or how the mixture of these compounds is produced in the ice. The goal is the 

identification of the elements present in it after recovering the spectrum of the components 

that there exist in the ice analog. In addition, if we are able to obtain the demixing matrix, 

we will get a whole description of the mixing process, obtaining the abundances of every 

component in every ice. But the Blind Source Separation can be slightly modified if we 

introduce in the modelling of the problem some constraints based on physical properties of 

the spectrum and mixing process. The priors involve two characteristics: on the one hand, 

the non-negativeness of the spectrum and the abundances; on the other hand, the sparseness 

of the spectrum and sometimes the sparseness of the mixing matrix, depending on the kind 

of astrophysical ice. We will review these approaches and will present the family of 

algorithms that can be obtained when this information is exploited. 
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Fig. 1. Obtention of ices in the laboratory. 

Blind Source Separation consists of the recovering of some independent sources up to a 
permutation, scaling and sign factor starting from instantaneous linear mixtures of them 
with the only assumption of the independence of the sources. The formulation is: 

 x As  (1) 

where x is the observed vector, s the source vector and A the mixing matrix.  

To solve the Blind Source Separation problem, the statistical technique applied is the 
Independence Component Analysis (Oja et al., 2001; Cardoso, 1998 ; Comon, 1994), i.e., the 
generative model that try to decompose the data as a linear combination of statistically 
independent random variables. Traditional solutions are based on the minimization-
maximization of a function that measures the statistical independence of the recovered 
signals. As we do not know anything about the distributions of the sources, a complete 
statistical analysis of the problem is difficult and it is not possible to guarantee exactly the 
independence of the recovered signals. In order to approximate the statistical independence 
of the sources, many approaches have been proposed. All of them use higher order statistics 
or nonlinear functions in order to approximate the independence criterion. In all these 
methods, no prior knowledge is available. However, in many applications, more 
information can be included in the model.  

There are also different ways to modify the Blind Source Separation formulation to 
introduce this additional information. The best theoretical way to do it is to state the 
Bayesian formulation of the problem, where the prior information is combined with the 
likelihood function to obtain the posterior distribution. This approach has the advantage 
that it is statistically well grounded, since we do not obtain a point estimate but a 
distribution. But in practice it has some drawbacks. The most important is that it is difficult 
to implement even in the case when the distributions are approximated with some known 
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expressions. We will implement it through the variational Bayesian approach. If we are 
interested in algorithms that do not require so high computational resources, another 
statement is necessary. The mathematical formulation is still based on the fact that the 
spectrum of the sources are decoupled, but some priors are imposed in the Independent 
Component Analysis solutions. The non-negativeness is enforced modifying classical Blind 
Source Separation solutions obtaining algorithms where some nonlinear function such as a 
threshold function (e.g., the unit step function) are used to assure that there are not negative 
values in the estimated spectra. The idea is that the sources must be projected into the space 
of feasible solution, i.e., the sources can not have negative values. But there is still another 
option to address the problem including the positive restriction. In this case, the 
independence assumption is relaxed and substituted by a matrix factorization where the 
observations are the product of two matrices; the restriction in this case is related to the sign 
of the values of these two matrices: they can not have negative entries. This factorization is 
referred to as Non Negative Matrix Factorization (Lee & Seung, 1999). Its main advantages 
are that it is relatively easy to obtain fast algorithms and to modify them in order to include 
some additional restrictions, such as the non-negativeness of the mixing matrix (the 
abundances or concentrations of the compounds that there exist in an ice). The problem is 
that the numerical analysis of these algorithms reveals problems in convergence issues; 
nevertheless, as we will see in the Results section, they work pretty well in the case of our 
application. 

2. Laboratory simulations of astrophysical ice mixtures 

The signature of each ice is its infrared absorption spectrum, where the absorption bands 

correspond to the specific vibrational mode of the molecules, each one with different atoms 

and bonds. The spectrum is relevant because we know that the frequencies corresponding to 

the middle infrared spectrum (4000-400 cm-1; 2.5-25 µm) span the same range as the 

vibrational frequencies of the adjacent atoms in molecules associated with the most common 

species. This is why the infrared spectroscopy is an adequate tool to detect the compounds 

combined in different concentrations in an ice. Specially, this technique is appropriate to 

detect substances formed by molecules that have dipolar moment, e.g., CO, CO2, H2O, NH3 

and CH4. This dipolar moment can be permanent or induced, due to the presence of other 

molecules. The detection of the existence of methane in water or in beaches after fuel waste 

or other environmental disasters is a typical example of the importance of the detection of 

these kinds of molecules. Each molecule (called endmember) has its own signature, i.e., an 

unique spectrum. The infrared spectrum has indeed another interesting property. It not only 

allows to know which molecules are present; in addition, it provides other kind of 

information, as state of the sample (different spectra for the gas and the ice phase of the 

molecule), and specifically the interatomic bonds of the molecules.  

The molecules are combined in different quantities, called concentrations or abundances 
depending on if we talk about percentages or absolute quantities. They are named “ice 
mixtures” or to abbreviate “ices” when they are found in the frozen state. The data are the 
different spectra recorded by a satellite, but due to the high cost of the equipment and the 
problems inherent to satellite recordings such as the time slot, focusing in the proper 
direction, sensors or noise, a lot of preprocessing must be carried out before the data are 
obtained and after that before they are ready to be used.  
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A solution is to simulate the real ISM processes in the laboratory. In the laboratory, we are 
interested in the analysis of the composition of different ices and their behaviour in specific 
conditions that reproduce situations in which these substances are found outside of the 
laboratory. For example: to raise the temperature gradually or to radiate the samples with 
ions that are similar to the ones originated outside of the planet Earth. This is the reason 
because in the deposit chamber used to obtain the ice (see Fig. 1) in the laboratory there is an 
entrance for the ion beam. In this way, we can obtain in the laboratory molecules of interest 
as carbonic acid (H2CO3) from simple molecules as CO by protons implantation in the same 
way that is supposed it happens in the cloud. The measured infrared spectrum is formed by 
absorption bands around some specific wavelengths determined by the atomic composition 
and bond structure of the ice; their peak position and width depend on the presence or 
absence of some molecules that can affect to their dipolar moment, in addition to 
temperature and particle shape. Besides, these bands usually have an area and a width 
related to the compound abundance in the ice. 

3. Signal processing of laboratory ices 

The analysis of laboratory simulations of astrophysical ice mixtures consists of the study of 
the spectra of the ices in order to establish the compounds present in them. The measured 
spectrum corresponds to the superposition of the different spectra of the molecules present 
in the ice; i.e., it describes the absorption features of the ice mixture as a linear combination 
of the features of the different compounds, e.g., the 2140 cm-1 C≡O stretching band. The 
basic model corresponds to the linear instantaneous mixture model of the Blind Source 
Separation problem (1). 

The infrared absorption spectrum ijx  measured for i 1,...,M ice mixtures in the spectral 

band j 1,...,N , typically corresponding to 4000 up to 400 cm-1 with resolutions 1 or 2 cm-1, 

is the linear combination of the independent absorption spectra kjs of the molecules 

(sources) k 1,...,K present in those ices. The concentration of molecule k in ice i is the 

mixing matrix entry aik. The concentrations aik and absorption spectra kjs  are non-negative, 

although some preprocessing tasks such as baseline removal, noise and complex physics in 

the measurement process can produce a negative ijx . All these processes will be resumed in 

a noise term ijn for ice i in wavelength j. In this case, we obtain the noisy instantaneous 

mixture Blind Source Separation model: 

  x As n  (2) 

The Mx1 data vector x (measured ices) is modeled as the linear instantaneous combination 

of a Kx1 source vector s (spectrum of the compounds), where n is an additive noise 

representing the error in the measurements and the goal is to recover the independent 

components of the source vector and/or estimate the MxK mixing matrix A (abundances of 

each molecule in every ice). In the case of M=K, we have the square problem and the mixing 

matrix can be inverted obtaining the demixing matrix; remember that the product of the 

mixing and demixing matrices is a permuted diagonal matrix, i.e., a matrix with one and 

only one non zero value in every row and column that corresponds to the sign, order and 

amplitude indetermination of the problem. The noise term is usually considered a centered, 

white and Gaussian random vector with a given diagonal covariance matrix Rn. 
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3.1 Bayesian source separation  

Given the set of observations j , j 1 Nx  , the posterior distribution of the unknown 

interesting variables j, , j 1 NA s  of our generative model is, applying Bayes’ Theorem: 

 
j j

j j j
j

p( | )
p( | ) p( )

p( )
 

x A,s
A,s x A,s

x
 (3) 

where jp( )A,s is called the prior probability, j jp( | )x A,s the likelihood and  jp( )x  the 

marginal likelihood or evidence.  

The prior describes our knowledge before we obtain the observations, i.e., it encodes in 
advance the possible values of the model parameters, e.g., if we know before any 
observation that the sources follow a known distribution; the likelihood describes the 
goodness of the model, i.e., the probability that the observations follow the model; the 
evidence, in our case, because we assume the Blind Source Separation model, is just a 
normalization factor that can be dropped in the optimization step. Shortly, Bayes rule 
updates the prior after a new data is observed, obtaining the posterior probability. Because 
the spectrum of the molecules and the concentrations in the ices are independent, we can 
factorize the prior in two terms, obtaining the posterior: 

 1 N 1 N 1 N 1 N 1 Np( | ) p( ) p( ) p( | )  A,s x A s x A,s      (4) 

Bayesian inference with the posterior density is intractable in a general framework. The first 

step consists of approximating the distributions using some parametric distributions. In our 

case, the prior distribution for the sources and the mixing matrix corresponds to a mixture 

of Gaussians with hyperparameters the mixing proportions, the mean and the variance 

value of the Gaussians (Igual & Llinares, 2007). This mixture model can be optimized 

attending to the non-negativeness of the spectrum. In this case, the distribution used is the 

truncated or positive Gaussian, i.e. a distribution with zero probability of taking negative 

values and two times the probability of the Gaussian for positive values. 

The variational approach is a good solution to obtain an algorithm that can implement the 

parameterized posterior distribution. The objective function to be maximised is the negative 

free energy E (Choudrey & Roberts, 2001): 

 1 N p̂( )
ˆE log p( , H(p( )) Θx Θ Θ  (5) 

where Θ is the set of all parameters: the mixing matrix, the noise covariance matrix, the 

variance of the mixing matrix entries, the sources, the mixing proportions, mean and 

variances of the mixture of Gaussian model used for the molecular ice distribution (sources); 

p̂( )Θ is the approximating posterior. The first term in (5) is the expectation of the joint 

density with respect p̂( )Θ ; the second one is the entropy. Maximizing (5) is equivalent to 

minimizing the Kullback-Leibler distance between the true and the approximating 

posteriors. The approximated pdf p̂( )Θ is chosen such that it can be factorized over the 

setΘ . Therefore, the maximization can be done individually with coupled terms. The 

factorization we use is: 
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 2
1 N

ˆ ˆ ˆ ˆ ˆ ˆp( ) p( )p( )p( )p( )p( )Θ A R s π σ  (6) 

where  2,π σ are the vectors defined by the mixing proportions and variances of the 

different mixture of truncated Gaussians used to model the source distribution. Their 

distribution is a product of symmetric Dirichlets for the mixing proportions and a product 

of inverted Gammas for the variance. The prior used for the noise variance is also a product 

of inverted Gammas. Maximizing (5) yields updating rules for the parameters of the 

posteriors. The parameters of the posteriors are updated versions of the priors. 

Unfortunately, the update equations are coupled and the implementation of the algorithm 

requires iterations; these are carried out starting with some initial value for the variables and 

iterating until convergence. 

3.2 Non negative matrix factorization 

Since the Bayesian approach involves the use of statistical distributions, it allows a 
physically well grounded exposition of the solution, at least satisfying the physical 
restrictions of the problem, in particular, the non-negativeness of the absorption spectrum 
and abundances. However, it has the drawback that in some point some approximations 
must be done in order to obtain an implementation of the algorithm. The good thing is that 
we work with distributions, so we can infer not only a point estimate, but a posterior 
distribution. This is the classical advantage of Bayesian approach. But there are more ways 
for obtaining an algorithm that enforce the physical restrictions. 

One option is extending the Blind Source Separation model adding constraints about the 

non-negativeness. Another related approach is to model the observations as the product of 

two non-negative matrix, the so called Non Negative Matrix Factorization (Lee & Seung, 

1999). It is closely related to Independent Component Analysis (Cichocki et al., 2006). 

Although it was not motivated originally by a Bayesian framework, it has been shown that 

both of them are the same under mild assumptions about the distributions of the sources 

(Igual & Llinares, 2008).  

The NMF statement of the problem is (in matricial form): the infrared absorption spectrum 

X  of the ices is factorized as the product of the matrix of concentrations A  and the matrix 

of absorption spectra S  of the molecules present in those ices: 

 , 0, 0  X AS A S  (7) 

Note that in this case we include in the formulation of the problem the whole matrices, i.e., 
we do not assume any generative model nor time series approach (in our case “time“ 
corresponds to “wavelength“). In real measurements, as it was explained before, an additive 
noise term must be considered. Although in the laboratory the conditions are well 
controlled (a high signal to noise ratio), a perfect reconstruction such as (7) is not possible. 
For example, we experience difficulties to obtain pure mixtures of the different compounds 
and to control the temperature and pressure conditions in the vacuum chamber where the 
ice is aggregated. Therefore, in order to use a more complete model, we will assume the 
noisy model as we did in the Blind Source Separation in order to take into account all these 
sources of noise. It reads: 
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 , 0, 0   X AS V A S  (8) 

where M NV  is the noise matrix. Thanks to this term, we will be able to explain 

measured spectra with negative absorptions, i.e., we will suppose that the negative values of 

our data are due to the noise vector. In addition, adding the noise term will also allow to 

understand (8) as a probabilistic generative model connected to (2) although this was not the 

original motivation of the Non Negative Matrix Factorization.  

Assuming in the model the term V as an i.i.d. Gaussian noise, the maximum likelihood 
estimates of the matrices A and S are:  

 ML ML 2

, ,

( , ) arg min( log p( / , )) arg min|| || , 0, 0     
A S A S

A S X A S X AS A S  (9) 

Therefore, for a Gaussian assumption, the cost function to be minimized results rather 
intuitive: the ML estimate tries to minimize the squared Frobenius norm between the 
spectra of the ice mixtures and the factorization. 

The original multiplicative version of the algorithm is: 

 

T
i ,k

i ,k i ,k T
i ,k

T
k , j

k , j k , j T
k , j

( )

( )

( )

( )





XS
A A

ASS

A X
S S

A AS

 (10) 

If we know that the spectra of the ices do not include negative values, the multiplicative 

version guarantees that the matrix of abundances and the spectra of the compounds are 

positive just initializing the algorithm with non negative matrices. However, if there exist 

negative values due to the noise term, the non-negativeness can not be guaranteed since all 

the spectral values of the ices are used in the updating step. If we do not take care of it, we 

can obtain for example compounds with negative absorptions, something physically 

impossible. When it happens, the rule is modified constraining the algorithm to 

enforce 0, 0 A S  simply converting the negative or zero values of A and S to small 

positive numbers. 

3.3 Sparseness of the spectrum 

The algorithms explained in the previous section are based on the superposition of non 

negative signals. In the case of our application, and considering the typical molecules 

involved in the formation of ices, e.g., CO and CO2, there exist another hypothesis that can 

be introduced in the statement of the problem: the sparseness of the signals, i.e., their value 

is zero excepting in some few wavelengths determined by the atomic composition and bond 

structure of the corresponding compound.  

The consequence from a statistical signal processing point of view is that the spectra are 
characterized by deep narrow absorption peaks around some specific wavelengths, so they 
can be modeled from a flexible distribution with several parameters, such as a mixture of 
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Gaussians, to a simple supergaussian distribution such as the Laplacian one, with only one 
parameter. In the case of a mixture of Gaussians, it reads: 

 
k

k

k

k k ,qkk ,qk

2QK K
k, j k ,q

j k , j k ,q 22
q 1k 1 k 1

( )1
p( ) p( ) exp

22 

  
    
   

 
S

s S  (11) 

where the pdf of the k-source at the wavelength  j  corresponds to a mixture of kQ Gaussians 

with mixing proportions 
kk,q , 

k

k

k

Q

k,q
q 1

1, k 1, ,K

    , and hyperparameters the mean 

kk,q and the variance 
k ,qk

2 for each Gaussian.  

Note that this information is easily included in the Bayesian approach, since we can control 
the sparseness simply adjusting the corresponding parameters. In the case of the Non 
Negative Matrix Factorization, since we are not using the distributions, the sparseness must 
be incorporated in a different way. We have to modify the cost function, i.e., the squared 
Frobenius norm between the spectra of the ice mixtures and the factorization, to add a 
constraint in the optimization procedure that enforces the sparseness hypothesis. 

The new cost function to be minimized is: 

 2
i , j i , j

i , j

1
D( || ) ( ( ) ) J( ) , 0, 0

2
      X AS X AS S A S  (12) 

where   is a regularization parameter. With respect to the regularization function J( )S , to 

enforce the sparseness, it is defined such as k , j
k , j

J( ) S S , that is equivalent to model the 

source with a Laplacian distribution. We can calculate the derivatives and use a gradient 
descent algorithm that minimizes (12). We call this algorithm the regularized Non Negative 
Matrix Factorization estimate. The updating rules are:  

 

T
i ,k

i ,k i ,k T
i ,k

i ,k
i ,k K

i,k
k 1

T
k , j

k , j k , j T
k , j

( )
,

( )

( )

( )







 




XS
A A

ASS

A
A

A

A X
S S

A AS

 (13) 

In order to prevent that A and S can take negative values, in every iteration we apply the 

nonlinear function i ,k i ,k k , j k , jmax( , ), max( , )   A A S S , where ε is a very small value, i.e., 

the abundance and spectra are projected to the subspace of possible values as we did in 

previous sectionand it is typical to all implementations of NMF algorithms to prevent 

numerical problems. 
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4. Results 

The data corresponds to the public ice analogs database of the University of Leiden. This 
database contains the infrared spectra of laboratory analogs of interstellar ices. Different 
mixtures of molecules (from one up to three components selected from H2, H2O, NH3, CH4, 
CO, H2CO, CH3OH, HCOOH, O2, N2 and CO2) at different temperatures and UV radiation 
exposures were produced, the final spectrum being calculated rationing the measured and 
the background spectrum. The units of the data are absorbance and cm-1. Figure 2 shows the 
spectra of the pure ices (molecules) used in the experiments. 

The baseline was removed with Origin software and the useful wavelengths intervals were 
selected. Among all the preprocessing tasks, the most important one is the baseline removal, 
because in much attenuated absorption bands, a bad approximation of the baseline can 
mask some compounds or produce negative values of the optical depth. 

The measure of performance used in this section is the Signal-to-Interference Ratio (SIR) 
defined as: 

  

 

2

i 2

E
SIR 10log

ˆE

 
 

   

i

i i

S

S S

 (14) 

where 
i
S  represents the original source i  and ˆ

i
S  the corresponding recovered source, 

normalized to the same power. In this index, a high value means high quality results. 

The spectra of the ices were mixed with a 10x5 uniform random positive mixing matrix in 
the range 0-1 in order to simulate nine real laboratory ices. Figure 3 shows an example of 
such a mixture. The first experiment involved the recovery of the five ices using the 
algorithms explained in previous sections: NMF (Non Negative Matrix Factorization - Eq. 
10), RNMF (Regularized Non Negative Matrix Factorization - Eq. 13) and VBICA (Bayesian 
Source Separation). Figures 4 to 6 represent the ices recovered by the three algorithms. 

Remember that the sources can be recovered in any order. The separation of CO and H2O 

obtained by NMF algorithm is almost perfect. For the other sources, there is some remaining 

of the other molecules. The algorithm was not able to cancel in the rest of compounds the 

peak around 2300 cm-1 due to CO. The same problem occurs for the water, which is 

contaminating the spectrum of the estimated CO2. In addition, the algorithm fails absolutely 

in the extraction of the CH3OH, obtaining two HCOOH (third and fourth signals in  

Figure 4).  

In the case of RNMF, the results improve. Only for the water (the fourth recovered source in 
the Figure 5) it is still visible the same noisy peak than in the case of the NMF algorithm: the 
very narrow absorption band around 2300 cm-1 due to CO. For the rest of compounds, the 
separation is excellent. 

VBICA was able to recover all the sources but the CH3OH (fourth source in Figure 6). It was 
not able to estimate correctly the right side of the spectrum of the CH3OH. However, for the 
other sources, the algorithm worked very well, as we can see in the same Figure comparing 
with Figure 2. 
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Fig. 2. Spectrum of the pure ices: CH3OH, CO, CO2, H2O and HCOOH. 
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Fig. 3. A mixture of ices: CH3OH, CO, CO2, H2O and HCOOH. 
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Fig. 4. Ices recovered by NMF. CO2, HCOOH, HCOOH, H2O, CO. 
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Fig. 5. Ices recovered by RNMF: CO2, CO, HCOOH, H2O, CH3OH. 
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Fig. 6. Ices recovered by VBICA: HCOOH, H2O, CO, CH3OH and CO2. 
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5. Conclusion 

We have reviewed an application of Signal Processing techniques in Astrophysics: the study 

and analysis of ices obtained in the laboratories that try to simulate the astrophysical ices 

found in the outer space. We have exposed the problem from a Signal Processing point of 

view, showing the goodness of the Blind Source Separation approach to model the recorded 

absorption spectra as the combination of the spectra of the molecules that there exist in the 

obtained ice by aggregation of the molecules.  

The problem can be addressed in a Bayesian framework, where the prior distributions about 

the spectrum of the compounds and the abundances of them in every ice can be treated in a 

proper way when they are approximated by models such as mixture of Gaussians. But these 

algorithms are very slow when compared to classical optimization methods based on a cost 

function that is maximized according to some gradient based algorithm. We have shown 

that the statistical approach can be relaxed when the Non Negative Matrix Factorization is 

introduced. The obtained algorithms are faster although they can suffer from convergence 

problems due to the initialization and adjustment of some parameters that control the 

performance of the algorithms. 

Both procedures work, although attending to all the factors, we can conclude that the 

algorithms that enforce the non-negativeness condition in the optimization step obtain the 

best results, since they are fast and are able to cancel the remaining spectrum of the 

compounds demixing the spectrum of the ices. Nevertheless, the extraction is not always 

perfect, especially when some large narrow peaks are involved. On the other hand, when 

the sparseness restriction is included, the results improve, as we have seen with the RNMF 

algorithm, which obtained similar results to VBICA with a lower computational cost. 
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