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1. Introduction

In this chapter, we will be concerned with hadronic interactions in the nuclear medium,
particularly under conditions of extreme densities such as those encountered in some compact
astrophysical objects. This issue goes to the very core of nuclear physics. In fact, our present
knowledge of the nuclear force in free space is, in itself, the result of decades of struggle
(Machleidt, 1989) which will not be reviewed in this chapter. The nature of the nuclear force
in the medium is of course an even more complex problem, as it involves aspects of the force
that cannot be constrained through free-space nucleon-nucleon (NN) scattering. Predictions
of properties of nuclei are the ultimate test for many-body theories.

Nuclear matter is a convenient theoretical laboratory for many-body theories. By "nuclear
matter" we mean an infinite system of nucleons acted on by their mutual strong forces and no
electromagnetic interactions. Nuclear matter is characterized by its energy per particle as a
function of density and other thermodynamic quantities, as appropriate (e.g. temperature).
Such relation is known as the nuclear matter equation of state (EoS). The translational
invariance of the system facilitates theoretical calculations. At the same time, adopting what
is known as the "local density approximation", one can use the EoS to obtain information on
finite systems. This procedure is applied, for instance, in Thomas-Fermi calculations within
the liquid drop model, where an appropriate energy functional is written in terms of the EoS
(Furnstahl, 2002; Oyamatsu et al., 1998; Sammarruca & Liu, 2009).

Isospin-asymmetric nuclear matter (IANM) simulates the interior of a nucleus with unequal
densities of protons and neutrons. The equation of state of (cold) IANM is then a function of
density as well as the relative concentrations of protons and neutrons.

The recent and fast-growing interest in IANM stems from its close connection to the physics
of neutron-rich nuclei, or, more generally, isospin-asymmetric nuclei, including the very
"exotic" ones known as "halo" nuclei. At this time, the boundaries of the nuclear chart are
uncertain, with several thousands nuclei believed to exist but not yet observed in terrestrial
laboratories. The Facility for Rare Isotope Beams (FRIB) has recently been approved for design
and construction at Michigan State University. The facility will deliver intense beams of
rare isotopes, the study of which can provide crucial information on short-lived elements
normally not found on earth. Thus, this new experimental program will have widespread
impact, ranging from the origin of elements to the evolution of the cosmos. It is estimated
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2 Will-be-set-by-IN-TECH

that the design and construction of FRIB will take ten years. In the meantime, systematic
investigations to determine the properties of asymmetric nuclear matter are proliferating at
existing facilities.

The equation of state of IANM is also the crucial input for the structure equations of compact
stars, and thus establishes the connection between nuclear physics and compact astrophysical
systems. It is the focal point of this chapter to present and discuss our approach to the
devolopment of the EoS of nuclear and neutron-rich matter, with particular emphasis on the
latter and its relation to the properties of neutron stars.

The chapter will articulate through the following sections: In Section 2, we present a
brief review of facts and phenomenology about IANM. We then proceed to describe our
microscopic approach to calculate the energy per particle in IANM (Section 3) and show the
corresponding predictions. Section 4 will be dedicated to a review of neutron star structure
and available empirical constraints. Microscopic predictions of neutron star properties will be
presented and discussed there. Section 5 contains a brief discussion on the topic of polarized
IANM. The chapter will end with our conclusions and an outlook into the future (Section 6).

2. Facts about isospin-asymmetric nuclear matter

Asymmetric nuclear matter can be characterized by the neutron density, ρn, and the proton
density, ρp, defined as the number of neutrons or protons per unit of volume. In infinite
matter, they are obtained by summing the neutron or proton states per volume (up to their
respective Fermi momenta, kn

F or k
p
F) and applying the appropriate degeneracy factor. The

result is

ρi =
(ki

F)
3

3π2
, (1)

with i = n or p.

It may be more convenient to refer to the total density ρ = ρn + ρp and the asymmetry (or

neutron excess) parameter α =
ρn−ρp

ρ . Clearly, α=0 corresponds to symmetric matter and α=1

to neutron matter. In terms of α and the average Fermi momentum, kF, related to the total
density in the usual way,

ρ =
2k3

F

3π2
, (2)

the neutron and proton Fermi momenta can be expressed as

kn
F = kF(1 + α)1/3 (3)

and
k

p
F = kF(1 − α)1/3, (4)

respectively.

Expanding the energy per particle in IANM with respect to the asymmetry parameter yields

e(ρ, α) = e0(ρ) +
1

2

( ∂2e(ρ, α)

∂α2

)

α=0
α2 +O(α4) , (5)
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A Microscopic Equation of State for Neutron-Rich Matter and its Effect on Neutron Star Properties 3

where the first term is the energy per particle in symmetric matter and the coefficient of the
quadratic term is identified with the symmetry energy, esym. In the Bethe-Weizsäcker formula
for the nuclear binding energy, it represents the amount of binding a nucleus has to lose when
the numbers of protons and neutrons are unequal. A typical value for esym at nuclear matter
density (ρ0) is 30 MeV, with theoretical predictions spreading approximately between 26 and
35 MeV.

To a very good degree of approximation, the energy per particle in IANM can be written as

e(ρ, α) ≈ e0(ρ) + esym(ρ)α
2. (6)

The effect of a term of fourth order in the asymmetry parameter (O(α4)) on the bulk properties
of neutron stars is very small, although it may impact the proton fraction at high density.

Equation (6) displays a convenient separation between the symmetric and aymmetric parts of
the EoS, which facilitates the identification of observables that may be sensitive, for instance,
mainly to the symmetry energy. At this time, groups from GSI (Sfienti et al., 2009; Trautmann
et al., 2009), MSU (Tsang et al., 2009), Italy (Greco, 2010), France (Borderie & Rivet, 2008),
China (Feng, 2010; Yong, 2010), Japan (Isobe, 2011), Texas A&M (Kohley et al., 2011), and
more are investigating the density dependence of the symmetry energy through heavy-ion
collisions. Typically, constraints are extracted from heavy-ion collision simulations based on
transport models. Isospin diffusion and the ratio of neutron and proton spectra are among the
observables used in these analyses.

These investigations appear to agree reasonably well on the following parametrization of the
symmetry energy:

esym(ρ) = 12.5 MeV
( ρ

ρ0

)2/3
+ 17.5 MeV

( ρ

ρ0

)γi

, (7)

where ρ0 is the saturation density. The first term is the kinetic contribution and γi (the
exponent appearing in the potential energy part) is found to be between 0.4 and 1.0. Recent
measurements of elliptic flows in 197Au + 197Au reactions at GSI at 400-800 MeV per nucleon
favor a potential energy term with γi equal to 0.9 ± 0.4. Giant dipole resonance excitation in
fusion reactions (Simenel et al., 2007) is also sensitive to the symmetry energy, since the latter
is responsible for isospin equilibration in isospin-asymmetric collisions.

Isospin-sensitive observables can also be identified among the properties of normal nuclei.
The neutron skin of neutron-rich nuclei is a powerful isovector observable, being sensitive to
the slope of the symmetry energy, which determines to which extent neutrons will tend to
spread outwards to form the skin.

Parity-violating electron scattering experiments are now a realistic option to determine
neutron distributions with unprecedented accuracy. The neutron radius of 208Pb is expected
to be measured with a precision of 3% thanks to the electroweak program at the Jefferson
Laboratory, the PREX experiment in particular, just recently completed at Jefferson Lab. This
level of accuracy could not be achieved with hadronic scattering. Parity-violating electron
scattering at low momentum transfer is especially suitable to probe neutron densities, as the
Z0 boson couples primarily to neutrons. With the success of this program, reliable empirical
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4 Will-be-set-by-IN-TECH

information on neutron skins will be able to provide, in turn, much needed independent
constraint on the density dependence of the symmetry energy.

A measure of the density dependence of the symmetry energy is the symmetry pressure,
closely related to the parameter

L = 3ρ0

( ∂esym(ρ)

∂ρ

)

ρ0

≈ 3ρ0

( ∂en.m.(ρ)

∂ρ

)

ρ0

, (8)

where we have used Eq. (6) with α=1. Thus, L is sensitive to the gradient of the energy per
particle in neutron matter (en.m.). As to be expected on physical grounds, the neutron skin,
given by

S =
√

< r2
n >−

√

< r2
p > , (9)

is highly sensitive to the same pressure gradient.

Values of L are reported to range from -50 to 100 MeV as seen, for instance, through the
numerous parametrizations of Skyrme interactions, all chosen to fit the binding energies and
the charge radii of a large number of nuclei, see (Li & Chen, 2005) and references therein.
Heavy-ion data impose boundaries for L at 85 ± 25 MeV, with more stringent constraints
being presently extracted. At this time constraints appear to favor lower values of L. . In
fact, a range of L values given by 52.7 ± 22.5 MeV has emerged from recent analyses of global
optical potentials (Xu et al., 2010).

Typically, parametrizations like the one given in Eq. (7) are valid at or below the saturation
density, ρ0. Efforts to constrain the behavior of the symmetry energy at higher densities
are presently being pursued through observables such as π−/π+ ratio, K+/K0 ratio,
neutron/proton differential transverse flow, or nucleon elliptic flow (Ko et al., 2010).

Another important quantity which emerges from studies of IANM is the symmetry potential.
Its definition stems from the observation that the single-particle potentials experienced by
the proton and the neutron in IANM, Un/p, are different from each other and satisfy the
approximate relation

Un/p(k, ρ, α) ≈ Un/p(k, ρ, α = 0)± Usym(k, ρ) α , (10)

where the +(-) sign refers to neutrons (protons), and

Usym =
Un − Up

2α
. (11)

(Later in the chapter we will verify the approximate linear behavior with respect to α
displayed in Eq. (10).) Thus, one can expect isospin splitting of the single-particle potential
to be effective in separating the collision dynamics of neutrons and protons. Furthermore,
Usym, being proportional to the gradient between the single-neutron and the single-proton
potentials, should be comparable with the Lane potential (Lane, 1962), namely the isovector
part of the nuclear optical potential. Optical potential analyses can then help constrain this
quantity and, in turn, the symmetry energy.
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A Microscopic Equation of State for Neutron-Rich Matter and its Effect on Neutron Star Properties 5

Because of the fundamental importance of the symmetry energy in many systems and
phenomena, it is of interest to identify the main contributions to its density dependence. In
a recent work (Sammarruca, 2011) we discussed the contribution of the isovector mesons (π,
ρ, and δ) to the symmetry energy and demonstrated the chief role of the pion. Note that
the isovector mesons carry the isospin dependence by contributing differently in different
partial waves, and that isospin dependence controls the physics of IANM. Hence, we stress
the relevance of a microscopic model that contains all important couplings of mesons with
nucleons.

3. Our microscopic approach to isospin-asymmetric nuclear matter

3.1 The two-body potential

Our approach is ab initio in that the starting point of the many-body calculation is a realistic
NN interaction which is then applied in the nuclear medium without any additional free
parameters. Thus the first question to be confronted concerns the choice of the "best"
NN interaction. After the development of Quantum Chromodynamics (QCD) and the
understanding of its symmetries, chiral effective theories (Weinberg, 1990) were developed
as a way to respect the symmetries of QCD while keeping the degrees of freedom (nucleons
and pions) typical of low-energy nuclear physics. However, chiral perturbation theory (ChPT)
has definite limitations as far as the range of allowed momenta is concerned. For the purpose
of applications in dense matter, where higher and higher momenta become involved with
increasing Fermi momentum, NN potentials based on ChPT are unsuitable.

Relativistic meson theory is an appropriate framework to deal with the high momenta
encountered in dense matter. In particular, the one-boson-exchange (OBE) model has proven
very successful in describing NN data in free space and has a good theoretical foundation.
Among the many available OBE potentials, some being part of the "high-precision generation"
(Machleidt, 2001; Stocks et al., 1994; Wiringa et al., 1995), we seek a momentum-space potential
developed within a relativistic scattering equation, such as the one obtained through the
Thompson (Thompson, 1970) three-dimensional reduction of the Bethe-Salpeter equation
(Salpeter & Bether, 1951). Furthermore, we require a potential that uses the pseudovector
coupling for the interaction of nucleons with pseudoscalar mesons. With these constraints in
mind, as well as the requirement of a good description of the NN data, Bonn B (Machleidt,
1989) is a reasonable choice. As is well known, the NN potential model dependence of
nuclear matter predictions is not negligible. The saturation points obtained with different
NN potentials move along the famous "Coester band" depending on the strength of the tensor
force, with the weakest tensor force yielding the largest attraction. This can be understood in
terms of medium effects (particularly Pauli blocking) reducing the (attractive) second-order
term in the expansion of the reaction matrix. A large second-order term will undergo a large
reduction in the medium. Therefore, noticing that the second-order term is dominated by the
tensor component of the force, nuclear potentials with a strong tensor component will yield
less attraction in the medium. For the same reason (that is, the role of the tensor force in
nuclear matter), the potential model dependence is strongly reduced in pure (or nearly pure)
neutron matter, due to the absence of isospin-zero partial waves.

Already when QCD (and its symmetries) were unknown, it was observed that the contribution
from the nucleon-antinucleon pair diagram, Fig. 1, becomes unreasonably large if the
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6 Will-be-set-by-IN-TECH

Fig. 1. Contribution to the NN interaction from virtual pair excitation. Upward- and
downward-pointing arrows represent nucleons and antinucleons, respectively. Dashed lines
denote mesons.

Fig. 2. Three-body force due to virtual pair excitation. Conventions as in the previous figure.

pseudoscalar (ps) coupling is used, leading to very large pion-nucleon scattering lengths
(Brown, 1979). We recall that the Lagrangian density for pseudoscalar coupling of the nucleon
field (ψ) with the pseudoscalar meson field (φ) is

Lps = −igpsψ̄γ5ψφ. (12)

On the other hand, the same contribution, shown in Fig. 1, is heavily reduced by the
pseudovector (pv) coupling (a mechanism which became known as "pair suppression"). The
reason for the suppression is the presence of the covariant derivative at the pseudovector
vertex,

Lpv =
fps

mps
ψ̄γ5γμψ∂μφ, (13)

which reduces the contribution of the vertex for low momenta and, thus, explains the small
value of the pion-nucleon scattering length at threshold (Brown, 1979). Considerations
based on chiral symmetry (Brown, 1979) can further motivate the choice of the pseudovector
coupling.

In closing this section, we wish to highlight the most important aspect of the ab initio approach:
Namely, the only free parameters of the model (the parameters of the NN potential) are
determined by fitting the free-space NN data and never readjusted in the medium. In other
words, the model parameters are tightly constrained and the calculation in the medium is
parameter free. The presence of free parameters in the medium would generate effects and
sensitivities which are hard to control and interfere with the predictive power of the theory.
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A Microscopic Equation of State for Neutron-Rich Matter and its Effect on Neutron Star Properties 7

3.2 The Dirac-Brueckner-Hartree-Fock approach to symmetric and asymmetric nuclear

matter

3.2.1 Formalism

The main strength of the DBHF approach is its inherent ability to account for important
three-body forces through its density dependence. In Fig. 2 we show a three-body force
(TBF) originating from virtual excitation of a nucleon-antinucleon pair, known as "Z-diagram".
Notice that the observations from the previous section ensure that the corresponding diagram
at the two-body level, Fig. 1, is moderate in size when the pv coupling, Eq. 13, is used. The
main feature of the DBHF method turns out to be closely related to the TBF depicted in Fig. 2,
as we will argue next. In the DBHF approach, one describes the positive energy solutions of
the Dirac equation in the medium as

u∗(p, λ) =

(

E∗
p + m∗

2m∗

)1/2 (
1

σ·�p
E∗

p+m∗

)

χλ, (14)

where the nucleon effective mass, m∗, is defined as m∗ = m + US, with US an attractive
scalar potential. (This will be derived below.) It can be shown that both the description of a
single-nucleon via Eq. (14) and the evaluation of the Z-diagram, Fig. 2, generate a repulsive
effect on the energy per particle in symmetric nuclear matter which depends on the density
approximately as

∆E ∝

(

ρ

ρ0

)8/3

, (15)

and provides the saturating mechanism missing from conventional Brueckner calculations.
(Alternatively, explicit TBF are used along with the BHF method in order to achieve a similar
result.) Brown showed that the bulk of the desired effect can be obtained as a lowest order
(in p2/m) relativistic correction to the single-particle propagation (Brown et al., 1987). With
the in-medium spinor as in Eq. (14), the correction to the free-space spinor can be written
approximately as

u∗(p, λ)− u(p, λ) ≈

(

0

−
σ·�p
2m2 US

)

χλ, (16)

where for simplicity the spinor normalization factor has been set equal to 1, in which case
it is clearly seen that the entire effect originates from the modification of the spinor’s lower
component. By expanding the single-particle energy to order U2

S, Brown showed that the

correction to the energy consistent with Eq. (16) can be written as
p2

2m (US
m )2. He then proceeded

to estimate the correction to the energy per particle and found it to be approximately as given
in Eq. (15).

The approximate equivalence of the effective-mass description of Dirac states and the
contribution from the Z-diagram has a simple intuitive explanation in the observation that
Eq. (14), like any other solution of the Dirac equation, can be written as a superposition of
positive and negative energy solutions. On the other hand, the "nucleon" in the middle of
the Z-diagram, Fig. 2, is precisely a superposition of positive and negative energy states. In
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8 Will-be-set-by-IN-TECH

summary, the DBHF method effectively takes into account a particular class of TBF, which are
crucial for nuclear matter saturation.

Having first summarized the main DBHF philosophy, we now proceed to describe the DBHF
calculation of IANM (Alonso & Sammarruca, 2003; Sammarruca, 2010). In the end, this will
take us back to the crucial point of the DBHF approximation, Eq. (14).

We start from the Thompson (Thompson, 1970) relativistic three-dimensional reduction of
the Bethe-Salpeter equation (Salpeter & Bether, 1951). The Thompson equation is applied to
nuclear matter in strict analogy to free-space scattering and reads, in the nuclear matter rest
frame,

gij(�q
′,�q, �P, (ǫ∗ij)0) = v∗ij(�q

′,�q)

+
∫

d3K

(2π)3
v∗ij(�q

′, �K)
m∗

i m∗
j

E∗
i E∗

j

Qij(�K, �P)

(ǫ∗ij)0 − ǫ∗ij(
�P, �K)

gij(�K,�q, �P, (ǫ∗ij)0) , (17)

where gij is the in-medium reaction matrix (ij=nn, pp, or np), and the asterix signifies that
medium effects are applied to those quantities. Thus the NN potential, v∗ij, is constructed

in terms of effective Dirac states (in-medium spinors) as explained above. In Eq. (17), �q, �q′,

and �K are the initial, final, and intermediate relative momenta, and E∗
i =

√

(m∗
i )

2 + K2. The

momenta of the two interacting particles in the nuclear matter rest frame have been expressed
in terms of their relative momentum and the center-of-mass momentum, �P, through

�P =�k1 +�k2 (18)

and

�K =
�k1 −�k2

2
. (19)

The energy of the two-particle system is

ǫ∗ij(�P, �K) = e∗i (�P, �K) + e∗j (�P, �K) (20)

and (ǫ∗ij)0 is the starting energy. The single-particle energy e∗i includes kinetic energy and

potential energy contributions. The Pauli operator, Qij, prevents scattering to occupied nn, pp,
or np states. To eliminate the angular dependence from the kernel of Eq. (17), it is customary
to replace the exact Pauli operator with its angle-average. Detailed expressions for the Pauli
operator and the average center-of-mass momentum in the case of two different Fermi seas
can be found in (Alonso & Sammarruca, 2003).

With the definitions

Gij =
m∗

i

E∗
i (
�q′)

gij

m∗
j

E∗
j (�q)

(21)

and

V∗
ij =

m∗
i

E∗
i (
�q′)

v∗ij
m∗

j

E∗
j (�q)

, (22)
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one can rewrite Eq. (17) as

Gij(�q
′,�q, �P, (ǫ∗ij)0) = V∗

ij (�q
′,�q)

+
∫

d3K

(2π)3
V∗

ij (�q
′, �K)

Qij(�K, �P)

(ǫ∗ij)0 − ǫ∗ij(
�P, �K)

Gij(�K,�q, �P, (ǫ∗ij)0) , (23)

which is formally identical to its non-relativistic counterpart.

The goal is to determine self-consistently the nuclear matter single-particle potential which, in
IANM, is different for neutrons and protons. To facilitate the description of the procedure, we
will use a schematic notation for the neutron and proton potentials. We write, for neutrons,

Un = Unp + Unn , (24)

and for protons
Up = Upn + Upp , (25)

where each of the four pieces on the right-hand-side of Eqs. (24-25) signifies an integral
of the appropriate G-matrix elements (nn, pp, or np) obtained from Eq. (23). Clearly, the
two equations above are coupled through the np component and so they must be solved
simultaneously. Furthermore, the G-matrix equation and Eqs. (24-25) are coupled through
the single-particle energy (which includes the single-particle potential, itself defined in terms
of the G-matrix). So we have a coupled system to be solved self-consistently.

Before proceeding with the self-consistency, one needs an ansatz for the single-particle
potential. The latter is suggested by the most general structure of the nucleon self-energy
operator consistent with all symmetry requirements. That is:

Ui(�p) = US,i(p) + γ0U0
V,i(p)− �γ · �p UV,i(p) , (26)

where US,i and UV,i are an attractive scalar field and a repulsive vector field, respectively,
with U0

V,i the timelike component of the vector field. These fields are in general density and
momentum dependent. We take

Ui(�p) ≈ US,i(p) + γ0U0
V,i(p) , (27)

which amounts to assuming that the spacelike component of the vector field is much smaller
than both US,i and U0

V,i. Furthermore, neglecting the momentum dependence of the scalar and
vector fields and inserting Eq. (27) in the Dirac equation for neutrons or protons propagating
in nuclear matter,

(γμ pμ − mi − Ui(�p))ui(�p, λ) = 0 , (28)

naturally leads to rewriting the Dirac equation in the form

(γμ(pμ)∗ − m∗
i )ui(�p, λ) = 0 , (29)

with positive energy solutions as in Eq. (14), m∗
i = m + US,i, and

(p0)∗ = p0 − U0
V,i(p) . (30)
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The subscript "i" signifies that these parameters are different for protons and neutrons.

As in the symmetric matter case (Brockmann & Machleidt, 1990), evaluating the expectation
value of Eq. (27) leads to a parametrization of the single particle potential for protons and
neutrons [Eqs.(24-25)] in terms of the constants US,i and U0

V,i which is given by

Ui(p) =
m∗

i

E∗
i

< �p|Ui(�p)|�p >=
m∗

i

E∗
i

US,i + U0
V,i . (31)

Also,
Ui(p) = ∑

j=n,p
∑

p′≤k
j
F

Gij(�p,�p′) , (32)

which, along with Eq. (31), allows the self-consistent determination of the single-particle
potentials as explained below.

The kinetic contribution to the single-particle energy is

Ti(p) =
m∗

i

E∗
i

< �p|�γ · �p + m|�p >=
mim

∗
i + �p2

E∗
i

, (33)

and the single-particle energy is

e∗i (p) = Ti(p) + Ui(p) = E∗
i + U0

V,i . (34)

The constants m∗
i and

U0,i = US,i + U0
V,i (35)

are convenient to work with as they facilitate the connection with the usual non-relativistic
framework (Haften & Tabakin, 1970).

Starting from some initial values of m∗
i and U0,i, the G-matrix equation is solved and a first

approximation for Ui(p) is obtained by integrating the G-matrix over the appropriate Fermi
sea, see Eq. (32). This solution is again parametrized in terms of a new set of constants,
determined by fitting the parametrized Ui, Eq. (31), to its values calculated at two momenta,
a procedure known as the "reference spectrum approximation". The iterative procedure is
repeated until satisfactory convergence is reached.

Finally, the energy per neutron or proton in nuclear matter is calculated from the average
values of the kinetic and potential energies as

ēi =
1

A
< Ti > +

1

2A
< Ui > −m . (36)

The EoS, or energy per nucleon as a function of density, is then written as

ē(ρn, ρp) =
ρn ēn + ρp ēp

ρ
, (37)

or

ē(kF, α) =
(1 + α)ēn + (1 − α)ēp

2
. (38)
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A Microscopic Equation of State for Neutron-Rich Matter and its Effect on Neutron Star Properties 11

Clearly, symmetric nuclear matter is obtained as a by-product of the calculation described
above by setting α=0, whereas α=1 corresponds to pure neutron matter.

3.2.2 Microscopic predictions of the EoS and related quantities

In Fig. 3, we show EoS predictions for symmetric matter (solid red) and neutron matter
(dashed black) as obtained from the Idaho calculation described in the previous section. The
EoS from DBHF can be characterized as being moderately "soft" at low to medium density and
fairly "stiff" at high densities. The predicted saturation density and energy for the symmetric
matter EoS in Fig. 3 are equal to 0.185 fm−3 and -16.14 MeV, respectively, and the compression
modulus is 252 MeV.

The increased stiffness featured by the DBHF EoS at the higher densities originates from
the strongly density-dependent repulsion characteristic of the Dirac-Brueckner-Hartee-Fock
method. In (Klähn et al., 2006), it is pointed out that constraints from neutron star
phenomenology together with flow data from heavy-ion reactions suggest that such EoS
behavior may be desirable.

The pressure as a function of density, as discussed in the next section, plays the crucial role in
building the structure of a neutron star. In Fig. 4 we show the pressure in symmetric matter
as predicted by the Idaho calculation compared with constraints obtained from flow data
(Danielewicz et al., 2002). The predictions are seen to fall just on the high side of the constraints
and grow rather steep at high density.

We show in Fig. 5 the pressure in neutron matter (red curve) and β-equilibrated matter (green)
as predicted by DBHF calculations. The pressure contour is again from (Danielewicz et al.,
2002).

Next we move on to the symmetry energy as defined from Eq. (6). In Fig. 6, we display the
Idaho DBHF prediction for the symmetry energy by the solid red curve. The curve is seen
to grow at a lesser rate with increasing density, an indication that, at large density, repulsion
in the symmetric matter EoS increases more rapidly relative to the neutron matter EoS. This
can be understood in terms of increased repulsion in isospin zero partial waves (absent from
neutron matter) as a function of density. Our predicted value for the symmetry pressure L
[see Eq. (8)], is close to 70 MeV.

The various black dashed curves in Fig. 6 are obtained with the simple parametrization

esym = C(ρ/ρ0)
γ , (39)

with γ increasing from 0.7 to 1.0 in steps of 0.1, and C ≈ 32 MeV. Considering that all of the
dashed curves are commonly used parametrizations suggested by heavy-ion data (Li & Chen,
2005), Fig. 6 clearly reflects our limited knowledge of the symmetry energy, particularly, but
not exclusively, at the larger densities.

As already mentioned in Section 2, from the experimental side intense effort is going on
to obtain reliable empirical information on the less known aspects of the EoS. Heavy-ion
reactions are a popular way to seek constraints on the symmetry energy, through analyses
of observables that are sensitive to the pressure gradient between nuclear and neutron matter.
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Fig. 3. DBHF predictions for the EoS of symmetric matter (solid red) and neutron matter
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Fig. 4. Pressure in symmetric matter from the Idaho DBHF calculation. The shaded area
corresponds to the region of pressure consistent with the flow data analysed in (Danielewicz
et al., 2002).

We close this Section with demonstrating the approximately linear dependence on the
asymmetry parameter of the single-nucleon potentials in IANM as anticipated in Eq. (10).
We recall that this isospin splitting is the crucial mechanism that separates proton and
neutron dynamics in IANM. In Fig. 7 we display predictions obtained with three different
NN potentials based on the one-boson-exchange model, Bonn A, B, and C (Machleidt, 1989).
These three models differ mainly in the strength of the tensor force, which is mostly carried
by partial waves with isospin equal to 0 (absent from pure neutron matter) and thus should
fade away in the single-neutron potential as the neutron fraction increases. In fact, the figure
demonstrates reduced differences among the values of Un predicted with the three potentials
at large α.
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Fig. 5. Pressure in neutron (red curve) and baryon-lepton (green curve) matter from the
Idaho DBHF calculation. The shaded area corresponds to the region of pressure consistent
with flow data and the inclusion of strong density dependence in the asymmetry term
(Danielewicz et al., 2002).
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Fig. 6. DBHF prediction for the symmetry energy (solid red) compared with various
phenomenological parametrizations (dashed black), as explained in the text.
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Fig. 7. The neutron and proton single-particle potentials as a function of the asymmetry
parameter at fixed average density and momentum equal to the average Fermi momentum,
which is chosen to be 1.4 fm−1. The red, green, and blue lines represent the predictions from
the Bonn A, B, and C potentials, respectively.

4. Neutron stars

4.1 A brief review of basic structure equations and available constraints

Fusion reactions in stars give rise to elements, but at the same time exhaust the nuclear fuel.
After the fuel is exhausted, the star can die through four possible channels: it can become
a black hole, a white dwarf, a neutron star, or it can disassemble completely. The ultimate
outcome depends on the mass of the original star. If the mass is larger than about four solar
masses, the star may become a supernova which, in turn, may result either in a neutron star
or a black hole.

Neutron stars contain the most dense form of matter found in the universe and, therefore, are
unique laboratories to study the properties of highly compressed (cold) matter. They are held
together by gravity and neutron degeneracy pressure. (In contrast, white dwarfs are kept in
hydrostatic equilibrium by gravity and electron degeneracy pressure.)

Although neutron stars were predicted as early as in the 1930’s, hope for their observation
remained slim for a long time. In 1967, strange new objects, outside the solar system, were
observed at the University of Cambridge. They were named pulsars, as they emitted periodic
radio signals. To date, about 1700 pulsars have been detected, many in binary systems.

Typically, detection of thermal radiation from the surface of a star is the way to access
information about its properties. Furthermore, the possibility of exploring the structure of
neutron stars via gravitational waves makes these exotic objects even more interesting.

The densities found in neutron stars range from the density of iron to several times normal
nuclear density. Most of the mass consists of highly compressed matter at nuclear and
supernuclear densities. The surface region is composed of normal nuclei and non-relativistic
electrons, with typical mass densities in the range 104 g cm−3 ≤ ǫ ≤ 106 g cm−3. As density
increases, charge neutrality requires matter to become more neutron rich. In this density range
(about 106 g cm−3 < ǫ < 1011 g cm−3), neutron-rich nuclei appear, mostly light metals,
while electrons become relativistic. This is the outer crust. Above densities of approximately
1011 g cm−3, free neutrons begin to form a continuum of states. The inner crust is a compressed
solid with a fluid of neutrons which drip out and populate free states outside the nuclei, since
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those have become neutron-saturated. Densities in the inner crust range between 1011 g cm−3

and 1014 g cm−3. At densities equal to approximately 1/2 of saturation density, clusters begin
to merge into a continuum. In this phase, matter is a uniform fluid of neutrons, protons, and
leptons. Above a few times nuclear matter density, the actual composition of stellar matter is
not known. Strange baryons can appear when the nucleon chemical potential is of the order
of their rest mass. Meson production can also take place. At even higher densities, transitions
to other phases are speculated, such as a deconfined, rather than hadronic, phase. The critical
density for such transition cannot be predicted reliably because it lies in a range where QCD
is non perturbative (Sedrakian, 2007).

The possibility has been speculated that the most stable state at zero pressure may be u, d, s
quark matter instead of iron. This would imply that strange quark matter is the most stable
(in fact, the absolutely stable) state of strongly interacting matter, as originally proposed by
Bodmer (Bodmer, 1971), Witten (Witten, 1984), and Terazawa (Terazawa, 1989). In such case,
hyperonic and hybrid stars would have to be metastable with respect to stars composed
of stable three-flavor strange quark matter (Weber, 1999), which is lower in energy than
two-flavor quark matter due to the extra Fermi levels open to strange quarks. Whether or
not strange quark stars can give rise to pulsar glitches (which are observed sudden small
changes in the rotational frequency of a pulsar), may be a decisive test of the strange quark
matter hypothesis (Weber, 1999).

The maximum gravitational mass of the star and the corresponding radius are the typical
observables used to constraint the EoS. The gravitational mass is inferred mostly from
observations of X-ray binaries or binary pulsars. Determination of the mass provide a unique
test of both theories of nuclear matter and general relativity. The pulsar in the Hulse-Taylor
binary system has a mass of 1.4408± 0.0003 M⊙, to date the best mass determination.

At this time, one of the heaviest neutron stars (with accurately known mass) has a mass of
1.671 ± 0.008 M⊙ (Champion et al., 2008). The observation of an even heavier star has been
confirmed recently, namely J1614-2230, with a mass of 1.97±0.04 M⊙ (Demorest et al., 2010).
This value is the highest measured with this certainty and represents a challenge for the softest
EoS. We also recall that an initial observation of a neutron star in a binary system with a white
dwarf had suggested a neutron star mass (PSR J0751+1807) of 2.1±0.2M⊙ (Nice et al., 2005).
Such observation, which would imply a considerable constraint on the high-density behavior
of the EoS, was not confirmed.

The minumum mass of a neutron star is also a parameter of interest. For a cold, stable system,
the minimum mass is estimated to be 0.09 M⊙ (Lattimer & Prakash, 2007). The smallest
reliably estimated neutron star mass is the companion of the binary pulsar J1756-2251, which
has a mass of 1.18± 0.02 M⊙ (Faulkner et al., 2004).

Measurements of the radius are considerably less precise than mass measurements (Lattimer
& Prakash, 2007). No direct measurements of the radius exist. Instead, the observed X-ray
flux, together with theoretical assumptions (Weber, 1999), can provide information on the
radiation or photospheric radius, R∞, which is related to the actual stellar radius by R∞ =
R(1 − 2GM/Rc2)−1/2. Estimates are usually based on thermal emission of cooling stars,
including redshifts, and the properties of sources with bursts or thermonuclear explosions
at the surface. A major problem associated with the determination of radii is that the distance
from the source is not well known, hence the need for additional assumptions. Much more
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stringent constraints could be imposed on the EoS if mass and radius were determined
independently from each other.

Another bulk property of neutron stars is the moment of inertia, I. For softer EoS, both mass
and radius are smaller and so is I. From observations of the Crab nebula luminosity, a lower
bound on the moment of inertia was inferred to be I ≥4-8 × 1044 g cm2, see (Weber, 1999)
and references therein. A measurement of the moment of inertia within 10%, together with
the information on the mass, would be able to discriminate among various EoS (Lattimer &
Prakash, 2007). To date, the best determination of the moment of inertia is the one for the Crab
pulsar (Beiger & Haensel, 2003) which would rule out only very soft EoS (Lattimer & Prakash,
2007).

A proton-neutron star is the result of a supernova explosion resulting from the gravitational
collapse of a massive star core. Nearly all of the remaining binding energy is carried away
by neutrinos during the first few tens of seconds of the evolution. Thus neutrino emission is
very efficient as a cooling mechanism, with the internal temperature dropping to about 1010 K
within a few days. Cooling through neutrino emission continues for a long time (in the order
of 1,000 years), until the temperature drops to about 108 K, at which point photon emission
becomes the dominant cooling mechanism. Neutrino luminosity and emission timescale are
controlled by several factors including the total mass of the (proton-neutron) star and the
opacity of neutrinos at high densities, which is sensitive to the EoS of dense hadronic matter.

Gravitational waves are a less conventional way to probe neutron star properties. Compact
stars in binary systems are epected to produce gravitational radiation. In turn, emission of
gravitational waves causes decay of the mutual orbits and eventually merger of the binary
system. Because of the merger timescale (250 million years for PSR B1913+16, for instance,
and 85 million years for PSR J0737-3039), it can be expected that many such decaying binary
systems exist in the galaxy and emit large amounts of gravitational radiation. The observation
of gravitational waves has the potential to set strong constraints on masses and radii, see see
(Lattimer & Prakash, 2007) and references therein.

A theoretical estimate of the maximum possible mass of a neutron star was performed by
Rhoades and Ruffini (Rhoades & Ruffini, 1974) on the following assumptions: 1) General
relativity is the correct theory of gravitation; 2) the EoS satisfy the Le Chatelier’s principle
(∂P/∂ǫ ≥ 0) and the causality condition, ∂P/∂ǫ ≤ c2; and 3) the EoS below some matching
density is known. On this basis, they determined that the maximum mass of a neutron
star cannot exceed 3.2 solar masses. Abandoning the causality condition, which would hold
exactly only if stellar matter is neither dispersive nor absorptive, this limit can be as high as 5
solar masses due to the increased stiffness of the EoS at supernuclear densities.

The maximum mass and the radius of a neutron star are sensitive to different aspects of the
EoS. The maximum mass is mostly determined by the stiffness of the EoS at densities greater
than a few times saturation density. The star radius is mainly sensitive to the slope of the
symmetry energy. In particular, it is closely connected to the internal pressure (that is, the
energy gradient) of matter at densities between about 1.5ρ0 and 2-3ρ0 (Lattimer & Prakash,
2007). Non-nucleonic degrees of freedom, which typically make their appearance at those
densities, are known to have a considerable impact on the maximum mass of the star. The
latter is predicted by the equation of hydrostatic equilibrium for a perfect fluid.
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In general relativity, the invariant interval between two infinitesimally close space-time events
is given by

ds2 = gαβdxαdxβ , (40)

where gαβ is the space-time metric. For a spherically symmetric space-time, the most general
static line element consistent with all required symmetries has the form

ds2 = − f (r)dt2 + g(r)dr2 + h2(r)(sin2θ dφ2 + dθ2) . (41)

Choosing a radial coordinate r such that h2(r) = r2 yields the so-called "standard" form of the
metric.

The equation of hydrostatic equilibrium (the TOV equation) determines the form of the metric
functions along with the pressure and the total mass-energy density as a function of the radial
coordinate in the interior of the star. It reads

dP(r)

dr
= −

G

c2

(P(r) + ǫ(r))(M(r) + 4πr3P(r)/c2)

r(r − 2GM(r)/c2)
, (42)

with
dM(r)

dr
= 4πr2ǫ(r) , (43)

where ǫ is the total mass-energy density. The star gravitational mass is

M(R) =
∫ R

0
4πr2ǫ(r)dr , (44)

where R is the value of r where the pressure vanishes. It’s worth recalling that no mass limit
exists in Newtonian gravitation.

The pressure is related to the energy per particle through

P(ρ) = ρ2 ∂e(ρ)

∂ρ
. (45)

The structure equations of rotationally deformed compact stars are much more complex
than those of spherically symmetric stars (Weber, 1999) presented here. The most rapidly
rotating pulsar, PSR J1748-2446 (Hessels et al., 2006), is believed to rotate at a rate of 716 Hz,
although an X-ray burst oscillation at a frequency of 1122 Hz was reported (Kaaret et al., 2006),
which may be due to the spin rate of a neutron star. Naturally, the maximum mass and the
(equatorial) radius become larger with increasing rotational frequency.

4.2 Composition of β-stable matter

Assuming that only neutrons, protons, and leptons are present, the proton fraction in stellar
matter under conditions of β-equilibrium is calculated by imposing energy conservation
and charge neutrality. The resulting algebraic equations can be found in standard literature
(Glendenning, 1997). The contribution to the energy density from the electrons is written as

ee =
h̄c

4π2
(3π2ρe)

4/3 , (46)
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whereas for muons we write

eμ = ρμmμc2 + (h̄c)2 (3π2ρμ)5/3

10π2mμc2
. (47)

These contributions are added to the baryonic part to give the total energy density. The
derivative of the total energy per particle with respect to the fraction of a particular species is
the chemical potential of that species. The conditions

μp + μe = μn ; μμ = μe ; ρp = ρμ + ρe , (48)

allow to solve for the densities (or fractions) of protons, electrons, and muons. Near the
saturation density, when the muon fraction is close to zero, one can estimate the equilibrium
proton fraction, xp, to be (Lattimer & Prakash, 2007)

xp ≈
(4esym(ρ0)

h̄c

)3
/(3π2ρ0). (49)

The fractions of protons, electrons, and muons as predicted with the DBHF equation of state
are shown in Fig. 8. The critical density for the proton fraction to exceed approximately 1/9
and, thus, allow cooling through the direct Urca processes,

n → p + e + ν̄e and p + e → n + νe , (50)

is about 0.36 − 0.39 fm−3. Notice that, due to the relation between symmetry energy and
proton fraction, large values of the symmetry energy would make the star cool rapidly. In
fact, already in earlier studies (Boguta, 1981) tha rapid cooling of neutron stars and the
corresponding high neutrino luminosity was understood in terms of neutron β decay and
large proton fractions.

At densities close to normal nuclear density, protons and neutrons are the only baryonic
degrees of freedom. As density increases, other baryons begin to appear, such as strange
baryons or isospin 3/2 nucleon resonances. Hyperonic states can be classified according to
the irreducible representation of the SU(3) group. The octet of baryons that can appear in
neutron matter includes nucleons, Λ, Σ0,±, and Ξ0,−.

Neglecting the nucleon-hyperon interaction, the threshold for stable hyperons to exist in
matter is determined by comparing the hyperon mass with the neutron Fermi energy, which
is the largest available energy scale in neutron-rich matter. We consider cold neutron stars,
after neutrinos have escaped. Strange baryons appear at about 2-3 times normal density
(Baldo et al., 1998), an estimate which is essentially model independent, through the processes
n + n → p + Σ− and n + n → n + Λ. The equilibrium conditions for these reactions are

2μn = μp + μΣ− ; μn = μΛ . (51)

Also, we have
μe = μμ ; μn = μp + μe , (52)
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the equations above being special cases of

μ = bμn − qμe , (53)

where b and q are the baryon number and the charge (in units of the electron charge) of the
particular species with chemical potential μ. Together with the charge neutrality condition
and baryon number conservation,

ρp = ρe + ρμ + ρΣ− ; ρ = ρn + ρp + ρΣ− + ρΛ , (54)

the above system allows to determine the various particle fractions.

Naturally, the composition of matter at supra-nuclear densities determines the behavior of
stellar matter. It is also speculated that a transition to a quark phase may take place at very
high densities, the occurrence of which depends sensitively on the properties of the EoS in
the hadronic (confined) phase. The presence of hyperons in the interior of neutron stars is
reported to soften the equation of state, with the consequence that the predicted neutron star
maximum masses become considerably smaller (Schulze et al., 2006). Strange baryons are not
included in the predictions shown below.
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Fig. 8. Proton (solid black), electron (dashed red), and muon (dotted blue) fractions in
β-stable matter as a function of total baryon density as predicted by the DBHF model.

4.3 Microscopic predictions of neutron star properties

We are now ready to move to applications of our EoS to compact stars.

As explained in Section 3, the DBHF model does not include three-body forces explicitely,
but effectively incorporates the class of TBF originating from the presence of nucleons and
antinucleons (the "Z-diagrams" in Fig. 2), see discussion in Section 3.1. In order to broaden
our scopes, we will compare our predictions with those of other microscopic models. As the
other element of our comparison, we will take the EoS from the microscopic approach of (Li
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Fig. 9. The baryon density and the mass-energy density profile for a neutron star with the
maximum mass allowed by each EoS model.

et al., 2008). There (and in previous work by the same authors), the Brueckner-Hartree-Fock
(BHF) formalism is employed along with microscopic three-body forces. In particular, in (Li
& Schulze, 2008) the meson-exchange TBF are constructed applying the same parameters as
used in the corresponding nucleon-nucleon potentials, which are: Argonne V18 (Wiringa et
al., 1995) (V18), Bonn B (Machleidt, 1989) (BOB), Nijmegen 93 (Stocks et al., 1994) (N93). The
popular (but phenomenological) Urbana TBF (Pieper et al., 2001) (UIX) is also utilized in (Li &
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Fig. 10. The baryon density and the mass-energy density profile for a neutron star with a
mass of 1.4 solar masses.

Schulze, 2008). Convenient parametrizations in terms of simple analytic functions are given
in all cases and we will use those to generate the various EoS. We will refer to this approach,
generally, as "BHF + TBF".

At subnuclear densities all the EoS considered here are joined with the crustal equations of
state from Harrison and Wheeler (Harrison et al., 1965) and Negele and Vautherin (Negele &
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Vautherin, 1973). The composition of the crust is crystalline, with light (Harrison et al., 1965)
or heavy (Negele & Vautherin, 1973) metals and electron gas.

We begin with showing the baryon number density and the mass-energy density profile of the
star, see Fig. 9. For each EoS model, the maximum mass configuration is considered. Thus the
models differ in their central density, which, in turn, impact the radius. The relations shown
in Fig. 9 are insightful, as they reveal the detailed structure of the star at each radial position.
Furthermore, the compactness of the star, whose density profile is reminescent of the one in a
nucleus, a system 55 orders of magnitude lighter, is apparent. In Fig. 10, the same quantities
are shown for a star with a mass of 1.4 solar masses, the most probable mass of a neutron star.

The models labeled as UIX and BOB have the smallest and largest radius, respectively, as
can be seen from the figure. We also see that the star’s outer regions, that is, for energy
densities less than about 1014 g cm−3, are influenced quite strongly by differences in the
various EoS models. Note that the UIX model, with the smallest radius, can tolerate larger
central densities.
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Fig. 13. Energy density vs. baryon number density for the various EoS being addressed in the
text. The maximum-mass model is considered in each case.

Of interest is also the pressure profile for the maximum-mass star in each model, which is
shown in Fig. 11 for the maximum mass and in Fig. 12 for a 1.4 solar mass star.

The ǫ(r) and ρ(r) relations from Fig. 9 are combined to provide the ǫ(ρ) relation within the
star as shown in Fig. 13 for the maximum mass. Again, we see that the stiffest (BOB) and
softest EoS (UIX) support the smallest and largest central densities, respectively. At the same
time, these two EoS predict the largest (BOB) and smallest (UIX) maximum mass, see below.

In Fig. 14, we show the mass-radius relation for a sequence of static neutron stars as predicted
by the various models. All models besides DBHF share the same many-body approach
(BHF+TBF) but differ in the two-body potential and TBF employed. The differences resulting
from the use of different NN potentials can be larger than those originating from emplying
different many-body approaches. This can be seen by comparing the DBHF and BOB curves,
both employing the Bonn B interaction (although in the latter case the non-relativistic, r-space
version of the potential is adopted). Overall, the maximum masses range from 1.8M⊙ (UIX) to
2.5M⊙ (BOB). Radii are less sensitive to the EoS and range between 10 and 12 km for all models
under consideration, DBHF or BHF+TBF. Concerning consistency with present constraints,
the observations reported in Section 4.1 would appear to invalidate only the model with
the smallest maximum mass, UIX. Notice, further, that phenomena such as condensation of
mesons may soften the EoS considerably at supernuclear density as condensation would bring
loss of pressure.

Also of interest is the star baryon number, A, which is obtained by integrating the baryon
density over the proper volume (Weber, 1999). Namely,

A = 4π
∫ R

0
dr r2 ρ(r)

√

1 − 2GM(r)/(rc2)
. (55)

Defining the star’s baryon mass as
MA = mn A , (56)
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where mn is the mass of the baryon, one can calculates the star’s binding energy, defined as

EB = M − MA . (57)

The baryon number and the star binding energy as a function of the central density (in units
of nuclear matter density) are shown in Fig. 15 and Fig. 16 for the various models. We see
that the baryon number for stable stars is approximately equal to 1056 − 1057. A much higher
value would make the star unstable with respect to gravitational collapse. The binding energy
displayed in Fig. 16 is defined in units of the solar mass. Typically, the binding energy changes
the sign for masses less than 0.1 solar masses. The binding energy is a potentially observable
quantity, since neutrinos from a supernova carry information about the gravitational binding
energy of the neutron star that has resulted from the explosion.

Next, we calculate the gravitational redshift predicted by each model. The redshift is defined
as

z =
νE

ν∞
− 1 , (58)

where νE and ν∞ are the photon frequencies at the emitter and at the infinitely far receiver.
The photon frequency at the emitter is the inverse of the proper time between two wave crests
in the frame of the emitter,

1

dτE
= (−gμνdxμdxν)−1/2

E , (59)

with a similar expression for the frequency at the receiver. Then

ν∞

νE
=

((−g00)
1/2dx0)E

((−g00)1/2dx0)∞

. (60)

Assuming a static gravitational field, in which case the time dx0 between two crests is the
same at the star’s surface and at the receiver, and writing g00 as the metric tensor component
at the surface of a nonrotating star yield the simple equation

z =
(

1 −
2MG

Rc2

)−1/2
− 1 . (61)

Notice that simultaneous measurements of R∞ and z determines both R and M, since

R = R∞(1 + z)−1 , (62)

and

M =
c2

2G
R∞(1 + z)−1[1 − (1 + z)−2] . (63)

In Fig. 17 we show the gravitational redshift as a function the mass for each model. Naturally
the rotation of the star modifies the metric, and in that case different considerations need to
be applied which result in a frequency dependence of the redshift. We will not consider the
general case here.

We conclude this section with showing a few predictions for the case of rapidly rotating stars.
The model dependence of the mass-radius relation is shown in Fig. 18. The 716 Hz frequency
corresponds to the most rapidly rotating pulsar, PSR J1748-2446, (Hessels et al., 2006) although
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Fig. 14. Static neutron star mass-radius relation for the models considered in the text.

recently an X-ray burst oscillation at a frequency of 1122 Hz has been reported (Kaaret et al.,
2006) which may be due to the spin rate of a neutron star. As expected, the maximum mass
and the (equatorial) radius become larger with increasing rotational frequency.

In Fig. 19, we show the moment of inertia at different rotational speeds (again, for all models).
These values are not in contradiction with observations of the Crab nebula luminosity, from
which a lower bound on the moment of inertia was inferred to be I ≥4-8 × 1044 g cm2, see
(Weber, 1999) and references therein.

Clearly, at the densities probed by neutron stars the model dependence is large, but presently
available constraints are still insufficient to discriminate among these EoS. The model
dependence we observe comes from two sources, the two-body potential and the many-body
approach, specifically the presence of explicit TBF or Dirac effects. The dependence on the
two-body potential is very large. Typically, the main source of model dependence among NN
potentials is found in the strength of the tensor force. Of course, differences at the two-body
level impact the TBF as well, whether they are microscopic or phenomenological.

5. Polarized isospin-asymmetric matter

Before concluding this chapter, we like to touch upon the issue of polarization in IANM.

When both isospin and spin asymmetries are present, constraints are much more difficult to
obtain and predictions regarding magnetic properties of nuclear matter are sometimes found
to be in qualitative disagreement with one another. This is especially the case with regard to
the possibility of spontaneous phase transitions into spin ordered states, ferromagnetic (FM,
with neutron and proton spins alligned), or antiferromagnetic state (AFM, with opposite spins
for neutrons and protons). Notice that the presence of polarization would impact neutrino
cross section and luminosity, resulting into a very different scenario for neutron star cooling,
which is why we find it appropriate to briefly discuss this issue here.

Recently, we have extended the framework described in Section 3 (Sammarruca, 2011) to
include both spin and isospin asymmetries of nuclear matter and calculated the energy per
particle under extreme conditions of polarization. The existence (or not) of a possible phase
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Fig. 16. Binding energy (in units of the solar mass) as a function of the central density for the
EoS models considered in the text.

transition can be argued by comparing the energies of the fully polarized and the unpolarized
phases.

In a spin-polarized and isospin asymmetric system with fixed total density, ρ, the partial
densities of each species are

ρn = ρnu + ρnd , ρp = ρpu + ρpd , ρ = ρn + ρp , (64)

where u and d refer to up and down spin-polarizations, respectively, of protons (p) or neutrons
(n). The isospin and spin asymmetries, α, βn, and βp, are defined in a natural way:

α =
ρn − ρp

ρ
, βn =

ρnu − ρnd

ρn
, βp =

ρpu − ρpd

ρp
. (65)
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Fig. 17. Gravitational redshift for all models. For each model, the corresponding sequence of
static stars is considered.

The single-particle potential of a nucleon in a particular τσ state, Uτσ, is now the solution of a
set of four coupled equations, which are the appropriate extension of Eqs. (24-25). They read

Unu = Unu,nu + Unu,nd + Unu,pu + Unu,pd (66)

Und = Und,nu + Und,nd + Und,pu + Und,pd (67)

Upu = Upu,nu + Upu,nd + Upu,pu + Upu,pd (68)

Upd = Upd,nu + Upd,nd + Upd,pu + Upd,pd , (69)

to be solved self-consistently along with the two-nucleon G-matrix. In the above equations,
each Uτσ,τ′σ′ term contains the appropriate (spin and isospin dependent) part of the
interaction, Gτσ,′τ′σ′ . More specifically,

Uτσ(�k) = ∑
σ′=u,d

∑
τ′=n,p

∑
q≤kτ′σ′

F

< τσ, τ′σ′|G(�k,�q)|τσ, τ′σ′
>, (70)

where the third summation indicates integration over the Fermi seas of protons and neutrons
with spin-up and spin-down. Notice that this equation is the extension of Eq. (32) in the
presence of spin polarization.

In the left panel of Fig. 20, we show, in comparison with unpolarized symmetric matter (solid
line): the EoS for the case of fully polarized neutrons and completely unpolarized protons
(dashed line); the EoS for the case of protons and neutrons totally polarized in the same
direction, that is, matter in the ferromagnetic (FM) state ( dashed-dotted line); the EoS for
the case of protons and neutrons totally polarized in opposite directions, namely matter in the
antiferromagnetic (AFM) state ( dotted line). A similar comparison is shown in the right panel
of Fig. 20, but for isospin asymmetric matter. (Notice that all predictions are invariant under
a global spin flip.)

We conclude that, for both symmetric and asymmetric matter, the energies of the FM and
AFM states are higher than those of the corresponding unpolarized cases, with the AFM state
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Fig. 18. Mass-radius relation for the models considered in the text and for different rotational
frequencies.
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Fig. 19. Moment of inertia for the models considered in the text and for different rotational
frequencies.
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Fig. 20. The energy per particle as a function of density and variuos degrees of proton and
neutron polarizations in symmetric matter (left) and asymmetric matter (right). In both
frames, the (blue) dashed line corresponds to totally polarized neutrons and unpolarized
protons (βn=1, βp=0); the (green) dash-dotted line is the prediction for the FM state (βn=1,
βp=1); the (red) dotted line shows the energy of the AFM state (βn=1, βp=-1). The (black)
solid line shows the predictions for unpolarized matter.

being the most energetic. Thus, a phase transition to a spin-ordered state is not anticipated
in our model. This conclusion seems to be shared by predictions of microscopic models, such
as those based on conventional Brueckner-Hartree-Fock theory (Vidaña & Bombaci, 2002).
On the other hand, calculations based on various parametrizations of Skyrme forces result
in different conclusions. For instance, with the SLy4 and SLy5 forces and the Fermi liquid
formalism a phase transition to the AFM state is predicted in asymmetric matter at a critical
density equal to about 2-3 times normal density (Isayev & Yang, 2004).

In closing this brief section, it is interesting to remark that models based on realistic
nucleon-nucleon potentials, whether relativistic or non-relativistic, are at least in qualitative
agreement with one another in predicting more energy for totally polarized states (FM or
AFM) up to densities well above normal density.

6. Summary and conclusions

In this chapter, we have been concerned with the nuclear equation of state of isospin
asymmetric nuclear matter, the main input for calculations of the properties of compact stars
as well as a variety of other systems, such as the neutron skin of neutron-rich nuclei.

After describing our microscopic approach to the development of the equation of state for
nuclear matter and neutron-rich matter, we presented a brief review of the structure equations
leading to the prediction of neutron star properties. Microscopic predictions from different
models employing three-body forces along with the non-relativistic Brueckner-Hartree-Fock
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method have also been shown for comparison. Large model dependence is seen among
predictions, especially those involving the highest densities.

Rich and diverse effort is presently going on to improve the available constraints on the EoS
or find new ones. These constraints are usually extracted through the analysis of selected
heavy-ion collision observables. At the same time, partnership between nuclear physics and
astrophysics is becoming increasingly important towards advancing our understanding of
exotic matter. The recently approved Facility for Rare Isotope Beams (FRIB), thanks to new
powerful technical capabilities, will forge tighter links between the two disciplines, as it will
allow access to rare isotopes which play a critical role in astrophysical processes but have not
yet been observed in terrestrial laboratories.
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