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1. Introduction

In the study of stellar structure the Lane-Emden equation (1; 2)

d2y

dx2
+

2

x

dy

dx
+ yr = 0, (1)

where r is a constant, models the thermal behaviour of a spherical cloud of gas acting under
the mutual attraction of its molecules and subject to the classical laws of thermodynamics.
This equation was proposed by Lane (1) (see also (3)) and studied in detail by Emden (2).
Fowler (4; 5) considered a generalization of Eq. (1), called Emden-Fowler equation (6), where
the last term is replaced by xν−1yr.

The Lane-Emden equation (1) also models the equilibria of nonrotating fluids in which
internal pressure balances self-gravity. When spherically symmetric solutions of Eq. (1)
appeared in (7), they got the attention of astrophysicists. In the latter half of the twentieth
century, some interesting applications of the isothermal solution (singular isothermal sphere)
and its nonsingular modifications were used in the structures of collisionless systems such as
globular clusters and early-type galaxies (8; 9).

The work of Emden (2) also got the attention of physicists outside the field of astrophysics
who investigated the generalized polytropic forms of the Lane-Emden equation (1) for specific
polytropic indices r. Some singular solutions for r = 3 were produced by Fowler (4; 5) and
the Emden-Fowler equation in the literature was established, while the works of Thomas
(10) and Fermi (11) resulted in the Thomas-Fermi equation, used in atomic theory. Both of
these equations, even today, are being investigated by physicists and mathematicians. Other
applications of Eq. (1) can be found in the works of Meerson et al (12), Gnutzmann and
Ritschel (13), and Bahcall (14; 15).

Many methods, including numerical and perturbation, have been used to solve Eq. (1). The
reader is referred to the works of Horedt (16; 17), Bender (18) and Lema (19; 20), Roxbough
and Stocken (21), Adomian et al (22), Shawagfeh (23), Burt (24), Wazwaz (25) and Liao (26)
for a sample. Exact solutions of Eq. (1) for r = 0, 1 and 5 have been obtained (see for
example Chandrasekhar (7), Davis (27), Datta (28) and Wrubel (29)). Usually, for r = 5, only
a one-parameter family of solutions is presented. A more general form of (1), in which the
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2 Will-be-set-by-IN-TECH

coefficient of y′ is considered an arbitrary function of x, was investigated for first integrals by
Leach (30).

Many problems in mathematical physics and astrophysics can be formulated by the
generalized Lane-Emden equation

d2y

dx2
+

n

x

dy

dx
+ f (y) = 0, (2)

where n is a real constant and f (y) is an arbitrary function of y. For n = 2 the approximate
analytical solutions to the Eq. (2) were studied by Wazwaz (25) and Dehghan and Shakeri
(31).

Another form of f (y) is given by

f (y) = (y2 − C)3/2. (3)

Inserting (3) into Eq. (1) gives us the "white-dwarf" equation introduced by Chandrasekhar
(7) in his study of the gravitational potential of degenerate white-dwarf stars. In fact, when
C = 0 this equation reduces to Lane-Emden equation with index r = 3.

Another nonlinear form of f (y) is the exponential function

f (y) = ey. (4)

Substituting (4) into Eq. (1) results in a model that describes isothermal gas spheres where the
temperature remains constant.

Equation (1) with
f (y) = e−y

gives a model that appears in the theory of thermionic currents when one seeks to determine
the density and electric force of an electron gas in the neighbourhood of a hot body in thermal
equilibrium was thoroughly investigated by Richardson (32).

Furthermore, the Eq. (1) appears in eight additional cases for the function f (y). The interested
reader is referred to Davis (27) for more detail.

The equation

d2y

dx2
+

2

x

dy

dx
+ eβy = 0, (5)

where β is a constant, has also been studied by Emden (2). In a recent work (33) an
approximate implicit solution has been obtained for Eq. (5) with β = 1.

Furthermore, more general Emden-type equations were considered in the works (34–38). See
also the review paper by Wong (39), which contains more than 140 references on the topic.

The so-called generalized Lane-Emden equation of the first kind

x
d2y

dx2
+ α

dy

dx
+ βxνyn = 0, (6)

and generalized Lane-Emden equation of the second kind

x
d2y

dx2
+ α

dy

dx
+ βxνeny = 0, (7)
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The Lane-Emden-Fowler Equation and its Generalizations; Lie Symmetry Analysis 3

where α, β, ν and n are constants, have been recently studied in (40; 41). In Goenner (41),
the author uncovered symmetries of Eq. (6) to explain integrability of (6) for certain values
of the parameters considered in Goenner and Havas (40). Recently, the integrability of
the generalized Lane-Emden equations of the first and second kinds has been discussed in
Muatjetjeja and Khalique (42).

In this chapter, firstly, a generalized Lane-Emden-Fowler type equation

x
d2y

dx2
+ n

dy

dx
+ xν f (y) = 0, (8)

where n and ν are real constants and f (y) is an arbitrary function of y will be studied. We
perform the Lie and Noether symmetry analysis of this problem. It should be noted that Eq.
(8) for the power function F(y) = yr is related to the Emden-Fowler equation y′′ + p(X)yr = 0
by means of the transformation on the independent variable X = x1−n, n �= 1 and X = ln x,
n = 1.

Secondly, we consider a generalized coupled Lane-Emden system, which occurs in the
modelling of several physical phenomena such as pattern formation, population evolution
and chemical reactions. We perform Noether symmetry classification of this system and
compute the Noether operators corresponding to the standard Lagrangian. In addition
the first integrals for the Lane-Emden system will be constructed with respect to Noether
operators.

2. Lie point symmetry classification of (8)

We start by determining the equivalence transformations of Eq. (8). We recall (43) that an
equivalence transformation

x̄ = x̄(x, y), ȳ = ȳ(x, y)

is a nondegenerate change of variables such that the family of Eqs. (8) remains invariant, i.e.,
Eq. (8) becomes

x̄
d2ȳ

dx̄2
+ n

dȳ

dx̄
+ x̄ν f̄ (ȳ) = 0

with f̄ depending on ȳ. Equivalence transformations are essential for simplifying the
determining equation and for obtaining disjoint classes.

For Eq. (8) the equivalence transformations are

x̄ = ea2 x,

ȳ = ea3 y + a1,

f̄ = ea3−(1+ν)a2 f , (9)

where a1, a2 and a3 are constants. For details of computations see (44).

If X, given by

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
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4 Will-be-set-by-IN-TECH

is an admitted generator of a symmetry group of Eq. (8), then

X[2]
(

x
d2y

dx2
+ n

dy

dx
+ xν f (y)

)∣

∣

∣

∣

(8)

= 0, (10)

where X[2] is the second prolongation of X, gives the determining equations for the symmetry.
This gives rise to

ξ = b(x),

η = c(x)y + d(x),

xν−1(cy + d) f ′(y) +

[

xν−1(2b′ − c) + (ν − 1)xν−2b

]

f (y)

+

(

n

x
c′ + c′′

)

y +

(

n

x
d′ + d′′

)

= 0. (11)

If f is an arbitrary function, the above system yields ξ = 0, η = 0, meaning that the principal
Lie algebra of Eq. (8) is trivial.

The function f depends upon y only. Thus Eq. (11) only holds if its coefficients identically
vanish or they are proportional to a function α = α(x), i.e.,

c = rα, d = qα, 2b′ − c + (ν − 1)x−1b = pα,

c′′x−ν+1 + nx−νc′ = hα, d′′x−ν+1 + nx−νd′ = gα, (12)

where r, q, p, h and g are constants. Thus Eq. (11) becomes

(ru + q)F′(u) + pF(u) + hu + g = 0, (13)

which is our classifying relation. This relation is invariant under the equivalence
transformations (9) if

r̄ = r, q̄ = (ra1 + q)e−a3 , p̄ = p,

h̄ = he(ν+1)a2 , ḡ = e−a3+(ν+1)a2 (ha1 + g). (14)

The relations in (14) are used to find the non-equivalent forms of f and this leads to the
following eight cases.

Case 1. n �= (1 − ν)/2, f (y) arbitrary but not of the form contained in Cases 3, 4, 5 and 6.

No Lie point symmetry exits in this case.

Case 2. n = (1 − ν)/2, f (y) arbitrary but not of the form contained in Cases 4, 5 and 6.

We obtain one Lie point symmetry

X = x(1−ν)/2 ∂

∂x
(15)

for the corresponding Eq. (8).
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The Lane-Emden-Fowler Equation and its Generalizations; Lie Symmetry Analysis 5

Case 3. f (y) is linear in y.

This case is well known and the corresponding Eq. (8) has sl(3, ℜ) symmetry algebra. (See, for
example, (45)).

Case 4. f (y) = K − δy2/2, where δ = ±1 and K is a constant.

Here we have six subcases:

4.1. n = 2ν + 3, K = 0. The corresponding Eq. (8) admits a single Lie point symmetry

X1 = x
∂

∂x
− (ν + 1)y

∂

∂y
. (16)

Note that this is subsumed in Case 5.1 below.

4.2. n = 12ν + 13, K = 0. Here the corresponding Eq. (8) admits the same symmetry as in
Case 4.1.

4.3. n = (ν + 4)/3, K = 0. In this subcase the corresponding Eq. (8) admits a two-dimensional
symmetry Lie algebra which is spanned by the operators (16) and

X2 = x(2−ν)/3 ∂

∂x
−

ν + 1

3
x−(ν+1)/3y

∂

∂y
.

Note that this is contained in Case 5.2 below.

4.4. n = 7ν + 8, K = 0. The corresponding Eq. (8) admits the symmetry operator (16) and in
addition, the symmetry operator

X2 = xν+2 ∂

∂x
−

[

3(ν + 1)xν+1y +
24(ν + 1)3

δ

]

∂

∂y
.

4.5. n = (7ν + 13)/6, K = 0. In this subcase the corresponding Eq. (8) admits two Lie point
symmetries, namely, the symmetry given by (16) and the symmetry

X2 = x(5−ν)/6 ∂

∂x
−

[

2

3
(ν + 1)x−(ν+1)/6y −

(ν + 1)3

9δ
x−7(ν+1)/6

]

∂

∂y
.

4.6. n = (1 − ν)/2, K = 0. The corresponding Eq. (8) admits two Lie point symmetries and
they are (15) and (16).

Case 5. f (y) = −δ1/σ − yδ2/(σ + 1) + Ky−σ, where δ1, δ2 = 0,±1, σ �= −1, 0 and K is a
constant.

Three subcases arise:

5.1. n =
σ − 2ν − 1

σ + 1
, σ �= 3, δ1, δ2 = 0. In this subcase we have one Lie point symmetry

generator

X1 = x
∂

∂x
+

ν + 1

σ + 1
y

∂

∂y
(17)

admitted by the corresponding Eq. (8).
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5.2. n =
σ − ν − 2

σ − 1
, σ �= 3, δ1, δ2 = 0. Here the corresponding Eq. (8) admits a

two-dimensional symmetry Lie algebra spanned by the operators (17) and

X2 = x
σ+ν
σ−1

∂

∂x
+

ν + 1

σ − 1
x

ν+1
σ−1 y

∂

∂y
. (18)

5.3. n =
1 − ν

2
, (This subcase corresponds to σ = 3), δ1, δ2 = 0. The corresponding Eq. (8)

in this case admits three Lie point symmetry generators and these are given by (17), (18) with
σ = 3 and (15).

Case 6. f (y) = Ke−δ1y + δ2y + δ3, where δ1 = ±1, δ2, δ3 = 0,±1 and K is a constant.

We have three subcases.

6.1. For all values of n �= 1, (1 − ν)/2, δ2, δ3 = 0 one Lie point symmetry generator

X1 = x
∂

∂x
+

ν + 1

δ1

∂

∂y
(19)

is admitted by the corresponding Eq. (8).

6.2. n = 1, δ2, δ3 = 0. In this subcase the corresponding Eq. (8) admits the Lie point symmetry
(19) and in addition the Lie point symmetry

X2 = x ln x
∂

∂x
+

1

δ1
[2 + (ν + 1) ln x]

∂

∂y
.

6.3. n = (1 − ν)/2, δ2, δ3 = 0. The corresponding Eq. (8) admits two Lie point symmetries.
These symmetries are given by (15) and (19).

Case 7. f (y) = −δ1 ln y − δ2y + K, where δ1, δ2 = 0,±1 and K is a constant.

This reduces to Case 2.

Case 8. f (y) = −δ1y ln y + Ky + δ2, where δ1, δ2 = 0,±1 and K is a constant.

This also reduces to Case 2.

2.1 Integration of (8) for different f s

The main purpose for calculating symmetries is to use them to solve or reduce the order
of differential equations. Here we use the symmetries calculated above to integrate Eq.
(8) for three functions f . Other cases can be dealt in a similar manner. We recall that
for any two-dimensional Lie algebra with symmetries G1 and G2 satisfying the Lie bracket
relationship [G1, G2] = λG1, for some constant λ, the usual reduction of order is through the
normal subgroup G1 (46). We first consider Case 4.4. The corresponding Eq. (8) admits the
two symmetries

X1 = x
∂

∂x
− (ν + 1)y

∂

∂y
, X2 = xν+2 ∂

∂x
−

[

3(ν + 1)xν+1y +
24(ν + 1)3

δ

]

∂

∂y
.
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The Lane-Emden-Fowler Equation and its Generalizations; Lie Symmetry Analysis 7

Since [X1, X2] = (ν+ 1)X2, we may use X2 to reduce the corresponding Eq. (8) to quadratures.
The invariants of X2 are found from

dx

xν+2
=

dy

−[3(ν + 1)xν+1y + 24(ν + 1)3/δ]
=

dy′

−[3(ν + 1)2xνy + (4ν + 5)xν+1y′]

and are

t = x3ν+3y +
12

δ
(ν + 1)2x2ν+2, s = x4ν+5y′ + 3(ν + 1)x4ν+4y +

24

δ
(ν + 1)3x3ν+3.

This leads to the first-order equation

ds

dt
=

δt2

2s

which can be immediately integrated to give

s2 =
δ

3
t3 + C1,

where C1 is an arbitrary constant of integration. Reverting to the x and y variables we obtain
a first-order differential equation whose solution can be written as

y = x−3(ν+1)t −
12

δ
(ν + 1)2x−(ν+1),

where t is given by

∫

dt

±
√

C1 + δt3/3
= −

1

ν + 1
x−(ν+1) + C2,

in which C1 and C2 are integration constants. Hence we have quadrature of Eq. (8) for given
f .

We now consider Case 5.2. The two symmetries admitted by the corresponding Eq. (8) are

X1 = x
∂

∂x
+

ν + 1

σ + 1
y

∂

∂y
, X2 = x

σ+ν
σ−1

∂

∂x
+

ν + 1

σ − 1
x

ν+1
σ−1 y

∂

∂y

with [X1, X2] =
(ν + 1)

σ − 1
X2. Following the above procedure we find that the solution of the

corresponding Eq. (8) is

y = tx(ν+1)/(σ−1),

where t is defined by

∫

dt

±
√

C1 + 2Kt1−σ/(1 − σ)
=

1 − σ

1 + ν
x(1+ν)/(1−σ) + C2,

in which C1 and C2 are arbitrary constants of integration.
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Finally for Case 6.2 the corresponding Eq. (8) admits the two symmetries

X1 = x
∂

∂x
+

ν + 1

δ1

∂

∂y
, X2 = x ln x

∂

∂x
+

1

δ1
[2 + (ν + 1) ln x]

∂

∂y

with [X1, X2] = X1. In this case the solution of the corresponding Eq. (8) is

y =
1

δ1
ln

(

xν+1

t

)

,

where t is given by

∫

dt

±
√

2δ1Kt3 + t2[(ν + 1)2 − 2δ1C1]
= ln x + C2,

in which C1 and C2 are arbitrary integration constants.

3. Noether classification and integration of (8) for different f s

In this section we perform a Nother point symmetry classification of Eq. (8) with respect to the
standard Lagrangian. We then obtain first integrals of the various cases, which admit Noether
point symmetries and reduce the corresponding equations to quadratures.

It can easily be verified that the standard Lagrangian of Eq. (8) is

L =
1

2
xny′2 − xn+ν−1

∫

f (y)dy. (20)

The determining equation (see (47)) for the Noether point symmetries corresponding to L in
(20) is

X[1](L) + LD(ξ) = D(B), (21)

where X given by

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(22)

is the generator of Noether symmetry and B(x, y) is the gauge term and D is the total
differentiation operator defined by (48)

D =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · · . (23)

The solution of Eq. (21) results in
ξ = a(x),

η =
1

2
[a′ − nx−1a]y + b(x), (24)

B =
1

4
xn

[

a′′ − n

(

a

x

)′]

y2 + b′xny + c(x), (25)
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The Lane-Emden-Fowler Equation and its Generalizations; Lie Symmetry Analysis 9

[−(n + ν − 1)xn+ν−2a − a′xn+ν−1]
∫

f (y)dy + [−
1

2
xn+ν−1a′y

+
1

2
nxn+ν−2ay − xn+ν−1b] f (y) =

1

4
a′′′xny2 +

1

2
nxn−2a′y2

−
1

2
nxn−3ay2 −

1

4
n2xn−1

(

a

x

)′

y2 + b′′xny + b′nxn−1y + c′(x). (26)

The analysis of Eq. (26) leads to the following eight cases:

Case 1. n �=
1 − ν

2
, f (y) arbitrary but not of the form contained in cases 3, 4, 5 and 6.

We find that ξ = 0, η = 0, B = constant and we conclude that there is no Noether point
symmetry.

Noether point symmetries exist in the following cases.

Case 2. n =
1 − ν

2
, f (y) arbitrary.

We obtain ξ = x
1−ν

2 , η = 0 and B = constant. Therefore we have a single Noether symmetry

generator X = x
1−ν

2 ∂/∂x. For this case the integration is trivial even without a Noether
symmetry. The Noetherian first integral (47) is

I =
1

2
x1−ν y′2 +

∫

f (y)dy

from which, setting I = C, one gets quadrature.

Case 3. f (y) is linear in y.

We have five Noether point symmetries associated with the standard Lagrangian for
the corresponding differential equation (8) and sl(3,ℜ) symmetry algebra. This case is
well-known, see, e.g., (45).

Case 4. f = αy2 + βy + γ, α �= 0

There are four subcases. They are as follows:

4.1. If n = 2ν + 3, β = 0 and γ = 0, we obtain ξ = x, η = −(ν + 1)y and B = constant. This
is contained in Case 5.1 below.

4.2. If n = 2ν + 3, ν �= −1, β2 = 4α γ, we get ξ = x, η = −(ν + 1)(y + β/2α) and B =
βγ

6α
x3ν+3. We have

X = x
∂

∂x
− (ν + 1)(y + β/2α)

∂

∂y
.

In this case the Noetherian first integral (47) is

I = −
1

2
x2ν+4y′2 −

1

3
αx3ν+3y3 −

1

2
βx3ν+3y2 − γx3ν+3y − (ν + 1)x2ν+3yy′

−(ν + 1)
β

2α
x2ν+3y′ −

βγ

6α
x3ν+3.

139The Lane-Emden-Fowler Equation and Its Generalizations – Lie Symmetry Analysis
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Thus the reduced equation is

1

2
x2ν+4y′2 +

1

3
αx3ν+3y3 +

1

2
βx3ν+3y2 + γx3ν+3y + (ν + 1)x2ν+3yy′

+(ν + 1)
β

2α
x2ν+3y′ +

βγ

6α
x3ν+3 = C, (27)

where C is an arbitrary constant. We now solve Eq. (27). For this purpose we use an invariant
of X (see (49)) as the new dependent variable. This invariant is obtained by solving the
Lagrange’s system associated with X, viz.,

dx

x
=

dy

−(ν + 1)(y + β/2α)
,

and is

u = xν+1y +
β

2α
xν+1.

In terms of u Eq. (27) becomes

C =
1

2
(ν + 1)2u2 −

1

2
x2u′2 −

1

3
αu3,

which is a first-order variables separable ordinary differential equation. Separating the
variables we obtain

du

±
√

(ν + 1)2u2 − (2/3)αu3 − 2C
=

dx

x
.

Hence we have quadrature or double reduction of our Eq. (8) for the given f .

4.3. If n = (ν + 4)/3, n �= (1 − ν)/2,−1, β = 0 and γ = 0, we find ξ = x(2−ν)/3, η =

−
ν + 1

3
x−(ν+1)/3y and B =

(ν + 1)2

18
y2 + k, k a constant. This is subsumed in Case 5.2 below.

4.4. If n = (1 − ν)/2, n �= (ν + 4)/3, β and γ are arbitrary, we obtain ξ = x
1−ν

2 , η = 0. This
reduces to Case 2.

Case 5. f = αyr, α �= 0, r �= 0, 1.
Here we have two subcases.

5.1. If n =
r + 2ν + 1

r − 1
, we obtain ξ = x, η =

ν + 1

1 − r
y and B = constant. The solution of Eq. (8)

for the above n and f is given by

y = ux
ν+1
1−r , (28)

where u satisfies
∫

du

±
√

(ν + 1)2(1 − r)−2u2 − 2α(1 + r)−1u1+r − 2C1

= ln xC2, (29)

in which, C1 and C2 are arbitrary constants of integration.

We note that when r = 5 and ν = 1, we get n = 2. This gives us the Lane-Emden equation y′′+
(2/x)y′ + y5 = 0. Its general solution is given by Eq. (29) and we recover the solution given
in (50). Only a one-parameter family of solutions is known in the other literature, namely,
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The Lane-Emden-Fowler Equation and its Generalizations; Lie Symmetry Analysis 11

y = [3a/(x2 + 3a2)]1/2, a = constant (see, e.g., (27) or (51)). Here we have determined a
two-parameter family of solutions. Another almost unknown exact solution of y′′ + (2/x)y′ +
y5 = 0, which is worth mentioning here, is given by

xy2 =

[

1 + 3 cot2

(

1

2
ln

x

c

)]−1

, (30)

where c is an arbitrary constant.

5.2. If n =
r + ν + 2

r + 1
, with r �= −1, we have ξ = x

r−ν
r+1 , η = −

(

ν + 1

r + 1

)

x−
ν+1
r+1 y and B =

(ν + 1)2

2(r + 1)2
y2 + k, where k is a constant.

In this case the solution of the corresponding Eq. (8) is

y = ux−
ν+1
r+1 , (31)

where u is given by

∫

du

±
√

C1 − 2α(r + 1)−1ur+1
=

(

r + 1

ν + 1

)

x
ν+1
r+1 + C2, (32)

in which, C1 and C2 are arbitrary constants.

5.3. If n =
1 − ν

2
, we obtain ξ = x

1−ν
2 , η = 0 and B = constant. This reduces to Case 2.

Case 6. f = α exp(βy) + γy + δ, α �= 0, β �= 0.
Here again we have two subcases.

6.1. If n =
1 − ν

2
, we obtain ξ = x

1−ν
2 , η = 0 and B = k, k a constant. This reduces to Case 2.

6.2. If n = 1, ν �= −1, γ = 0 and δ = 0, we deduce that ξ = x, η = −(ν + 1)/β and B = k, k a
constant.

The solution of the corresponding Eq. (8) for this case is

y =
ν + 1

β
ln

(

u

x

)

, (33)

where u is defined by

∫

du

±u
√

1 − 2αβ(ν + 1)−2uν+1 + 2C1β2(ν + 1)−2
= ln xC2, (34)

in which, C1 and C2 are integration constants.

Case 7. f = α ln y + γy + δ, α �= 0.

If n =
1 − ν

2
, we obtain ξ = x

1−ν
2 , η = 0 and B = k, k a constant. This reduces to Case 2.

Case 8. f = αy ln y + γy + δ, α �= 0.

If n =
1 − ν

2
, we obtain ξ = x

1−ν
2 , η = 0 and B = k, k a constant. This reduces to Case 2.
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4. Systems of Lane-Emden-Fowler equations

The modelling of several physical phenomena such as pattern formation, population
evolution, chemical reactions, and so on (see, for example (52)), gives rise to the systems of
Lane-Emden equations, and have attracted much attention in recent years. Several authors
have proved existence and uniqueness results for the Lane-Emden systems (53; 54) and other
related systems (see, for example (55–57) and references therein). Here we consider the
following generalized coupled Lane-Emden system (58)

d2u

dt2
+

n

t

du

dt
+ f (v) = 0, (35)

d2v

dt2
+

n

t

dv

dt
+ g(u) = 0, (36)

where n is real constant and f (v) and g(u) are arbitrary functions of v and u, respectively.
Note that system (35)-(36) is a natural extension of the well-known Lane-Emden equation. We
will classify the Noether operators and construct first integrals for this coupled Lane-Emden
system.

It can readily be verified that the natural Lagrangian of system (35)-(36) is

L = tnu̇v̇ − tn
∫

f (v)dv − tn
∫

g(u)du. (37)

The determining equation (see (58)) for the Noether point symmetries corresponding to L in
(37) is

X[1](L) + LD(τ) = D(B), (38)

where X is given by

X = τ(t, u, v)
∂

∂t
+ ξ(t, u, v)

∂

∂u
+ η(t, u, v)

∂

∂v
, (39)

with first extension (59)

X[1] = X + (ξ̇ − u̇τ̇)
∂

∂u̇
+ (η̇ − v̇τ̇)

∂

∂v̇
, (40)

where τ̇, ξ̇ and η̇ denote total time derivatives of τ, ξ and η respectively. Proceeding as in
Section 3, (see details of computations in (58)) we obtain the following seven cases:

Case 1. n �= 0, f (u) and g(v) arbitrary but not of the form contained in cases 3, 4, 5 and 6.

We find that τ = 0, ξ = 0, η = 0, B = constant and we conclude that there is no Noether point
symmetry.

Noether point symmetries exist in the following cases.

Case 2. n = 0, f (u) and g(v) arbitrary.

We obtain τ = 1, ξ = 0, η = 0 and B = constant. Therefore we have a single Noether
symmetry generator

X1 =
∂

∂t
(41)
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with the Noetherian integral given by

I = u̇v̇ +
∫

f (u)du +
∫

g(v)dv.

Case 3. f (v) and g(u) constants. We have eight Noether point symmetries associated with the
standard Lagrangian for the corresponding system (35)-(36) and this case is well-known.

Case 4. f = αv + β, g = γu + λ, where α, β, γ and λ are constants, with α �= 0 and γ �= 0.

There are three subcases, namely

4.1. For all values of n �= 0, 2, we obtain τ = 0, ξ = a(t), η = l(t) and B = tn l̇u + tn ȧv −

λ
∫

tna dt − β
∫

tnldt + C1, C1 a constant. Therefore we obtain Noether point symmetry

X1 = a(t)
∂

∂u
+ l(t)

∂

∂v
, (42)

where a(t) and l(t) satisfy the second-order coupled Lane-Emden system

l̈ +
n

t
l̇ + γa = 0, ä +

n

t
ȧ + αl = 0. (43)

The first integral in this case is given by

I1 = tn l̇u + tn ȧv − λ
∫

tna dt − β
∫

tnldt − atn v̇ − ltnu̇.

4.2. n = 2. In this subcase the Noether symmetries are X1 given by the operator (42) and

X2 =
∂

∂t
− ut−1 ∂

∂u
− vt−1 ∂

∂v
. (44)

The value of B for the operator X2 is given by B = uv.

The associated first integral for X2 is given by

I2 = uv +
α

2
t2v2 +

γ

2
t2u2 + utv̇ + vtu̇ + t2u̇v̇.

In this subcase, we note that the first integral corresponding to X1 is subsumed in Case 4.1
above with β, λ = 0.

4.3. n = 0. Here the Noether operators are X1 given by the operator (42) and

X2 =
∂

∂t
, with B = C2, C2 a constant. (45)

This reduces to Case 2.

We note also that the first integral associated with X1 is contained in Case 4.1 above where
a(t) and l(t) satisfy the coupled system

l̈ + γa = 0, ä + αl = 0. (46)
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Case 5. f = αvr, g = βum, m �= −1 and r �= −1 where α, β are constants, with α �= 0 and
β �= 0.

There are three subcases,viz.,

5.1. If n =
2m + 2r + mr + 3

rm − 1
, rm �= 1, m �= −1, m �= 1 and r �= −1, we obtain τ = t, ξ =

−
(1 + n)

m + 1
u, η = −

(1 + n)

r + 1
v and B = constant.

Thus we obtain a single Noether point symmetry

X = t
∂

∂t
−

(1 + n)

m + 1
u

∂

∂u
−

(1 + n)

r + 1
v

∂

∂v
(47)

with the associated first integral

I = βtn+1 um+1

m + 1
+ αtn+1 vr+1

r + 1
+

(n + 1)

m + 1
tnuv̇ +

(n + 1)

r + 1
tnvu̇ + tn+1u̇v̇.

We now consider the case when m = −1 and r = −1, in Case 5. Here we have two subcases

Case 5.2. n = 0, (m = −1, r = −1).

This case provides us with two Noether symmetries namely,

X1 = u
∂

∂u
− v

∂

∂v
and X2 =

∂

∂t
with B = 0 for both cases. (48)

We obtain the Noetherian first integrals corresponding to X1 and X2 as

I1 = u̇v − uv̇, I2 = u̇v̇ + ln u + ln v,

respectively.

Case 5.3. n = −1 (m = −1, r = −1).

Here we obtain two Noether symmetry operators, viz.,

X1 = u
∂

∂u
− v

∂

∂v
with B = 0 and X2 = t

∂

∂t
+ 2u

∂

∂u
with B = −2 ln t (49)

and first integrals associated with X1 and X2 are given by

I1 = u̇vt−1 − uv̇t−1, I2 = −2 ln t + ln u + ln v − 2uv̇t−1 + u̇v̇,

respectively.

Case 6. f = α exp(βv) + λ, g = δ exp(γu) + σ, α, β, λ, γ, δ, and σ are constants, with α �=
0, β �= 0, δ �= 0, γ �= 0.

There are two subcases. They are
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6.1. If n = 1, λ = 0 and σ = 0, we obtain τ = t, ξ = −
2

γ
, η = −

2

β
and B = C3, C3 a constant.

Therefore we have a single Noether point symmetry

X1 = t
∂

∂t
−

2

γ

∂

∂u
−

2

β

∂

∂v
(50)

and this results in the first integral

I = t2u̇v̇ +
αt2

β
exp(βv) +

δt2

γ
exp(γu) +

2

γ
tv̇ +

2

β
tu̇.

6.2. If n = 0, λ = 0 and σ = 0, we deduce that τ = 1, ξ = 0, η = 0 and B = C4, C4 a constant.
The Noether operator is given by

X1 =
∂

∂t
. (51)

This reduces to Case 2.

Case 7. f = α ln v + β, g = γ ln u + λ, where α, β, γ and λ are constants with α �= 0, γ �= 0.
If n = 0, we obtain τ = 1, ξ = 0, η = 0 and B = C5, C5 a constant. This reduces to Case 2.

5. Concluding remarks

In this Chapter we gave a brief history of the Lane-Emden-Fowler equation and its
applications in various fields. Several methods have been employed by scientists to solve the
Lane-Emden-Fowler equation. Various generalizations of the Lane-Emden-Fowler equations
were given which can be found in the literature. Also we gave the extension of the
Lane-Emden equation to the System of Lane-Emden equations. We presented the complete Lie
symmetry group classification of a generalized Lane-Emden-Fowler equation and performed
the Lie and Noether symmetry analysis of this problem. It should be noted that Lie symmetry
method is the most powerful tool to solve nonlinear differential equations. Finally, we
classified a generalized coupled Lane-Emden system with respect to the standard first-order
Lagrangian according to its Noether point symmetries and obtained first integrals for the
corresponding Noether operators.
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