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1. Introduction   

Despite the fact that people have very different and ambiguous concepts and knowledge, 

they are able to talk to one another. How does human mind work? How can people give 

answers to questions? Modelling human conversation and knowledge demands to deal with 

uncertainty and deductions.  

Human knowledge consists of static and dynamic knowledge chunks. The static ones 

include the so called lexical knowledge or the ability to sense similarities between facts and 

between predicates. Through dynamic attainments one can make deductions or one can give 

answers to a question. There are several and very different approaches to make a model of 

human knowledge, but one of the most common and widespread fields of research is based 

on fuzzy logic.  

Fuzzy sets theory, proposed by Zadeh (1965), is a realistic and practical means to describe 

the world that we live in. The method has successfully been applied in various fields, among 

others in decision making, logic programming, and approximate reasoning. In the last 

decade, a number of papers have dealt with that subject, e.g. (Formato et al 2000, Sessa 2002, 

Medina et al 2004, Straccia et al 2009). They deal with different aspects of modelling and 

handling uncertainty. (Straccia 2008) gives a detailed overview of this topic with widespread 

references. Our investigations have begun independently of these works, and have run 

parallel to them. Of course there are some similar features, but our model differs from the 

others detailed in literature.   

As a generalization of fuzzy sets, intuitionistic fuzzy sets were presented by Atanassov 
(Atanassov 1983), and have allowed people to deal with uncertainty and information in a 
much broader perspective. Another well-known generalization of an ordinary fuzzy set is 
the interval-valued fuzzy set, which was first introduced by Zadeh (Zadeh 1975). These 
generalizations make descriptions and models of the world more realistic, and practical. 

In the beginning, our knowledge-base model was based on the concept of fuzzy logic, later on 
it was extended to intuitionistic and interval-valued logic. In this model, the static part is a 
background knowledge module, while the dynamic part consists of a Datalog based deduction 
mechanism. To develop this mechanism, it was necessary to generalize the Datalog language 
and to extend it into fuzzy and intuitionistic direction. (Achs 1995, 2007, 2010). 
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In many frameworks, in order to answer a query, we have to compute the whole intended 
model by a bottom-up fixed-point computation and then answer with the evaluation of the 
query in this model. This always requires computing a whole model, even if not all the facts 
and rules are required to determine answer. Therefore a possible top-down like evaluation 
algorithm has been developed for our model. This algorithm is not a pure top-down one but 
the combination of top down and bottom up evaluations. Our aim is to improve this 
algorithm and perhaps to develop a pure top down evaluation based on fuzzy or 
multivalued unification algorithm. There are fuzzy unification algorithms described for 
example in (Alsinet et al 1998, Formato et al 2000, Virtanen 1994), but they are inappropriate 
for evaluating our knowledge-base.  

However, the concept of (Julian-Iranzo et al 2009, 2010) is similar but not identical with one 

of our former ideas about evaluating of special fuzzy Datalog programs (Achs 2006). 

Reading these papers has led to the assumption that this former idea may be the base of a 

top-down-like evaluation strategy in special multivalued cases as well. Based on this idea, a 

multivalued unification algorithm was developed and used for to determine the conclusion 

of a multivalued knowledge-base. 

In this chapter this possible model for handling uncertain information will be provided. This 

model is based on the multivalued extensions of Datalog. Starting from fuzzy Datalog, the 

concept of intuitionistic Datalog and bipolar Datalog will be described. This will be the first 

pillar of the knowledge-base. The second one deals with the similarities of facts and 

concepts. These similarities are handled with proximity relations. The third component 

connects the first two with each other. In the final part of the paper, an evaluating algorithm 

is presented. It is discussed in general, but in special cases it is based on fuzzy, or 

multivalued unification, which is also mentioned. 

2. Extensions of datalog 

When one builds a knowledge-base, it is very important to deal with a database 
management system. It is based on the relational data model developed by Codd in 1970. 
This model is a very useful one, but it can not handle every problem. For example, the 
standard query language for relational databases (SQL) is not Turing-complete, in particular 
it lacks recursion and therefore concepts like transitive closure of a relation can not be 
expressed in SQL. Along with other problems this is why different extensions of the 
relational data model or the development of other kinds of models are necessary. A more 
complete one is the world of deductive databases. A deductive database consists of facts and 
rules, and a query is answered by building chains of deductions. Therefore the term of 
deductive database highlights the ability to use a logic programming style for expressing 
deductions concerning the contents of a database. One of the best known deductive 
database query languages is Datalog. 

As any deductive database, a Datalog program consists of facts and rules, which can be 
regarded as first order logic formulas. Using these rules, new facts can be inferred from the 
program's facts so that the consequence of a program will be logically correct. This means 
that evaluating the program, the result is a model of the formulas belonging to the rules. On 
the other hand, it is also important that this model will contain only those true facts, which 
are the consequences of the program; that is, the minimality of this model is expected, i.e. in 
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this model it is impossible to make any true fact false and still have a model consistent with 
the database. 

An interpretation assigns truth or falsehood to every possible instance of the program's 

predicates. An interpretation is a model, if it makes the rules true, no matter what 

assignment of values from the domain is made for the variables in each rule. Although there 

are infinite many implications, it is proved that it is enough to consider only the Herbrand 

interpretation defined on the Herbrand universe and the Herbrand base. 

The Herbrand universe of a program P (denoted by HP) is the set of all possible ground 

terms constructed by using constants and function symbols occurring in P. The Herbrand 

base of P (BP) is the set of all possible ground atoms whose predicate symbols occur in P and 

whose arguments are elements of HP.  

In general, a term is a variable, a constant or a complex term of the form f(t1, …, tn), where f 

is a function symbol and t1, …, tn are terms. An atom is a formula of the form p(t), where p is 

a predicate symbol of a finite arity (say n) and t is a sequence of terms of length n 

(arguments). A literal is either an atom (positive literal) or its negation (negative literal). A 

term, atom or literal is ground if it is free of variables. As in fuzzy extension, we did not deal 

with function symbols, so in our case the ground terms are the constants of the program. 

In the case of Datalog programs there are several equivalent approaches to define the 

semantics of the program. In fuzzy extension we mainly rely on the fixed-point base aspect. 

The above concepts are detailed in classical works such as (Ceri et al 1990, Loyd 1990, 

Ullman 1988).  

2.1 Fuzzy Datalog 

In fuzzy Datalog (fDATALOG) the facts can be completed with an uncertainty level, the 

rules with an uncertainty level and an implication operator. With the use of this operator 

and these levels deductions can be made. As in classical cases, logical correctness is 

extremely important as well, i.e., the consequence must be a model of the program. This 

means that for each rule of the program, the truth-value of the fuzzy implication following 

the rule has to be at least as large as the given uncertainty level.  

2.1.1 Syntax and semantics of fuzzy datalog 

More precisely, the notion of fuzzy rule is the following: 

Definition 1. An fDATALOG rule is a triplet r; β; I, where r is a formula of the form  

A ← A1,…,An  (n ≥ 0), 

where A is an atom (the head of the rule), A1,…,An are literals (the body of the rule); I is an 

implication operator and β ∈ (0,1] (the level of the rule).  

For getting a finite result, all the rules in the program must be safe. An fDATALOG rule is 

safe if all variables occurring in the head also occur in the body, and all variables occurring 

in a negative literal also occur in a positive one. An fDATALOG program is a finite set of 

safe fDATALOG rules.  
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There is a special type of rule, called fact. A fact has the form A ←; β; I. From now on, the 
facts are referred as (A,β), because according to implication I, the level of A easily can be 
computed and in the case of the implication operators detailed in this chapter it is β.  

For defining the meaning of a program, we need again the concepts of Herbrand universe 
and Herbrand base, but this time they are based on fuzzy logic. Now a ground instance of a 
rule r; β; I in P is a rule obtained from r by replacing every variable in r with a constant of 
HP. The set of all ground instances of r; β; I is denoted by ground(r); β; I. The ground instance 
of P is ground(P) = ∪ (r; I; β)∈P (ground(r); I; β).  

An interpretation of a program P is a fuzzy set of the program's Herbrand base, BP, i.e. it is: 
∪ A∈BP (A; αA). An interpretation is a model of P if for each (A ← A1,…,An; β; I) ∈ ground(P)  

I(α A1∧...∧ An  ,αA) ≥ β. 

A model M is least if for any model N, M ≤ N. A model M is minimal if there is not any 
model N, where N ≤ M. 

To be short α A1∧...∧ An will be denoted as αbody and αA as αhead. 

In the extensions of Datalog several implication operators are used, but all cases are 
restricted to min-max conjunction and disjunction, and to the complement to 1 as negation. 
So: αA∧B = min(αA, αB), αA∨B = max(αA, αB) and α¬A = 1 − αA. 

The semantics of fDATALOG is defined as the fixed points of consequence transformations. 
Depending on evaluating sequences two semantics can be defined: a deterministic and a 
nondeterministic one. Further on only the nondeterministic semantics will be discussed, the 
deterministic one is detailed in (Achs 2010). It was proved that the two semantics are 
equivalent in the case of negation- and function-free fDatalog programs, but they differ if 
the program has any negation. In this case merely the nondeterministic semantics is 
applicable. The nondeterministic transformation is as follows: 

Definition 2. Let BP be the Herbrand base of the program P, and let F(BP) denote the set of 
all fuzzy sets over BP. The consequence transformation NTP : F(BP) → F(BP) is defined as  

 NTP(X) = {(A, αA )} ∪ X , (1) 

where 

(A ← A1,…,An; β; I ) ∈ ground(P), (|Ai|, αAi) ∈ X, (1 ≤ i ≤ n); 

αA = max(0, min{γ | I(αbody, γ) ≥ β}). 

|Ai| denotes the kernel of the literal Ai, (i.e., it is the ground atom Ai, if Ai is a positive 
literal, and ¬Ai, if Ai is negative) and αbody = min(αA1 ,…, αAn). 

It can be proved that this transformation has a fixed point. To prove it, let us define the 
powers of a transformation:  

For any T : F(BP) → F(BP) transformation let  

T0 = { ∪{(A,αA)} | (A ← ; I; β) ∈ ground(P), αA= max(0, min{γ | I(1, γ) ≥ β}) } ∪ 

{(A, 0) | ∃ (B ← ...¬ A...; I; β) ∈ ground(P)} 
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and let  

T1 = T(T0) 

Tn = T(Tn-1) 

... 

Tω = least upper bound of { Tn | n < ω } if ω is a limit ordinal. 

An ordering relation can be defined over F(BP). For G; H : BP → [0; 1]; G ≤ H iff (∀d ∈ BP) 

G(d) ≤ H(d). It easily can be seen that L = (F(BP), ≤ ) is a complete lattice.  

It is clear that NTP is inflationary transformation over L, and if P is negation-free, then NTP is 

monotone as well. (A transformation T is inflationary if X ≤ T(X) for every X ∈ L and it is 

monotone if T(X) ≤ T(Y) if X ≤ Y). 

In (Ceri et al 1990) it is shown that an inflationary transformation over a complete lattice has 
a fixed point and if it is monotone then it has a least fixed point (Loyd 1990). Therefore NTP 

has a fixed point, i.e. there exists an X ∈  F(BP) for which NTP(X) = X. If P is positive, then X 

is the least fixed point. (That is for any Z=T(Z) : X ≤ Z.) 

The fixed point of the transformation will be denoted by lfp(NTP). It can be shown (Achs 
1995) that this fixed point is a model of P.  

Theorem 1. lfp(NTP) is a model of P. 

Proof In ground(P) there are rules in the next forms: 

a/ (A ←; β; I). 

b/ (A ← A1, ..., An; β; I); (A, αA) ∈ lfp(NTP) and (|Ai|, αAi ) ∈ lfp(NTP), 1≤ i ≤ n. 

c/ (A ← A1, ..., An; β; I); ∃i : (|Ai|, αAi) ∉ lfp(NTP). 

In the case of a, b because of the construction of αA the condition I(αbody, αA ) ≥ β is realized. 
In the case of c because of the construction of T0 Ai is not negative, that is Ai is not among the 

facts, so αAi= 0, therefore αbody = 0, so I(αbody, αA ) = 1 ≥ β, namely lfp(NTP) is a model. 

Moreover, the next proposition is true as well. 

Proposition 1. For negation-free fDATALOG program P lfp(NTP) is the least model.  

Proof In the case of a positive Datalog program, the least fixed point is the least model (Ceri 

et al 1990, Ullman 1988). In the case of fuzzy Datalog, according to the definition of the 

consequence transformation, the level of the rule's head is the least value satisfying the 

criterion of modelness. The application of the transformations may arise only one problem. 

A lower level would be ordered to the same rule's head, but according to the definitions we 

should accept the higher value. But such a case can arise only in the case of programs 

containing any negation. Therefore the proposition is true. 

According to the above statements, the meaning of the programs can be defined by this 
fixed point: 

Definition 3. lfp(NTP) is the nondeterministic semantics of fDATALOG P program. 
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To compute the level of rule-heads, we need the concept of uncertainty level function. 

Definition 4. The uncertainty-level function is: 

f(I, α, β) = min ({ γ | I (α, γ ) ≥ β }). 

According to this function the level of a rule-head is: αhead = f(I,αbody, β). 

It is an extremely important question whether the fixed-point algorithm terminates or not. It 
depends on the feature of uncertainty level function: 

Proposition 2. If f(I, α, β) ≤ α for∀α ∈ [0; 1] then the fixed point algorithm terminates. 

Proof As P is finite, therefore in the fixed point there are only finite many ground atoms. 
The only problem may occur with the level of recursive predicates, but according to the 
above property of the uncertainty-level function, the level of the rule's head cannot be 
greater than any former one, so this algorithm must terminate. 

In former papers (Achs 1995, Achs 2006) several implications were detailed (the operators 
are detailed in (Dubois et al, 1991)), for now three are chosen from these. The values of their 
uncertainty-level functions can be easily computed. They are the following: 
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It is obvious that IG and IL satisfy the condition of Proposition 2, and it is easy to see that in 
the case of IK the fixed point algorithm terminates as well. (Among the operators of (Dubois 
et al, 1991) there is one for which the algorithm does not terminate and one for which the 
uncertainty-level function does not exists.) 

Example 1. Let us consider the next program: 

(p(a), 0.8). 
(r(b), 0.6). 

q(x, y) ← p(x), r(y); 0.7; IG. 

q(x, y) ← q(y, x); 0.9; IL. 

s(x) ← q(x, y); 0.7; IK. 

Then T0 = {(p(a), 0.8), (r(b), 0.6) } and the computed atoms are: 

(q(a, b), min(min(0.8, 0.6), 0.7) = 0.6); 
(q(b, a), max(0, 0.6 + 0.9 - 1) = 0.5); 

0    0.6 +0.7  1
( ( ), 0.7);

0.7  0.6 0.7 1
s a
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0    0.5+0.7  1
( ( ), 0.7);
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So lfp(NTP) = {(p(a), 0.8), (r(b), 0.6), (q(a, b), 0.6), (q(b, a), 0.5), (s(a), 0.7), (s(b), 0.7) }. 

As the next examples show, there some problems would arise if the program had any 
negation. 

Example 2. Look at the next one-rule program: 

p(a) ← ¬ q(b); IG; 0.7. 

This program has no least model, only two minimal ones:  

M1 = {(p(a), 0.7) } and M2 = {(q(b), 1) }. 

(The result of the above fixed point algorithm is M1.) 

Example 3. This example shows that there is a difference between the fixed points. 

1. (r(a), 0.8). 

2. p(x) ← r(x),¬ q(x); 0.6; IG. 

3. q(x) ← r(x); 0.5; IG. 

4. p(x) ← q(x); 0.8; IG. 

The result depends on the evaluation order. If it is 1., 2., 3., 4., then  

lfp(NTP) = {(r(a), 0.8), (p(a), 0.6), (q(a), 0.5)}, 

while in the order 1., 3., 2., 4. 

lfp(NTP) = {(r(a), 0.8), (p(a), 0.5), (q(a), 0.5)}. 

According to the above examples, in the case of programs containing negation there are 
problems with the model’s minimality. However, the nondeterministic semantics – lfp(NTP) 
– is minimal under certain conditions. These conditions are referred to as stratification. 
Stratification gives an evaluating sequence in which the literals are evaluated before 
negating them. 

2.1.2 Stratified fuzzy datalog  

To stratify a program, it is necessary to define the concept of dependency graph. This is a 
directed graph, whose nodes are the predicates of P. There is an arc from predicate p to 
predicate q if there is a rule whose body contains p or ¬p and whose head predicate is q. A 
program is recursive, if its dependency graph has one or more cycles. A program is 
stratified if whenever there is a rule with head predicate p and a negated body literal ¬q, 
there is no path in the dependency graph from p to q. 

The stratification of a program P is a partition of the predicate symbols of P into subsets 

P1,..., Pn such that the following conditions are satisfied: 

a/ if p ∈ Pi and q ∈ Pj and there is an edge from q to p then i ≥ j; 

b/ if p ∈ Pi and q ∈ Pj and there is a rule with the head p whose body contains ¬q, then i > j. 

Stratification specifies an order of evaluation. The rules whose head-predicates are in P1 are 

evaluated first, then those whose head-predicates are in P2 and so on. The sets P1,..., Pn are 
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called the strata of the stratification. A program P is called stratified if and only if it admits 

stratification. There is a very simple method for finding stratification for a stratified program 

in (Ceri et al 1990, Ullman 1988). Because this algorithm groups the predicates of the 

program, this is suitable for the fDATALOG programs as well. 

The first of the following Datalog programs is not stratified, the other one has more distinct 

stratifications. 

Example 4. Consider the one-rule program: 

p(x) ← ¬p(x). 

This is not stratified. 

The next program has more stratification (Abiteboul et al 1995): 

1. s(x) ← r1(x), ¬r(x). 

2. t(x) ← r2(x), ¬r(x). 

3. u(x) ← r3(x), ¬t(x). 

4. v(x) ← r4(x), ¬s(x), ¬u(x). 

The program has five distinct stratifications, namely: 

 {1.}, {2.}, {3.}, {4.} 

 {2.}, {1.}, {3.}, {4.} 

 {2.}, {3.}, {1.}, {4.} 

 {1., 2.}, {3.}, {4.} 

 {2.}, {1., 3.}, {4.} 

These lead to five different ways of reading the program. As will be seen later, each of them 

yields the same semantics. 

Let P be a stratified fDATALOG program with stratification P1,..., Pn. Let Pi* denote the set of 

all rules of P corresponding to stratum Pi , that is the set of all rules whose head-predicate is 

in Pi. Let 

L1 = lfp(NTP1
*), 

where the starting point of the computation is T0 defined earlier. 

L2 = lfp (NTP2
*), 

where the starting point of the computing is L1. 

 Ln = lfp (NT Pn
*), 

where the starting point is Ln-1. 

In other words: the least fixed point - L1 - corresponding to the first stratum of P is 

computed at first. Once this fixed point has been computed, we can take a step to the next 

strata.  
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By induction it will be shown that Ln is a minimal model of P. For this purpose, we need the 
next definition and lemma. 

Definition 5. An fDATALOG program P is semi-positive if its negated predicates are solely 
facts. 

Lemma 1. A semi-positive program P has a minimal model: L = lfp(NTP). 

Proof. A semi-positive program is almost the same as a positive one, because if p is a 

negated predicate of a rule-body, then it can be replaced by the fact q = ¬p. As p is a fact 
predicate, therefore the uncertainty level of q may be easily calculated. So the negation can 
be eliminated from the program and this program has a least fixed point which is the least 
model.  

According to the lemma, L1 is the least fixed point for P1*. Generally Li-1 ∪ Pi* is semi-positive, 
because according to the stratification each negative literal of the i-th strata belongs to a 
predicate of a lower level strata. So Li is the least fixed point for Pi* , which is minimal model 
for the given stratification. Therefore the next theorem is true: 

Theorem 2. If P is a stratified fDATALOG program then Ln is a minimal model of P. 

This means that evaluating the rules in the order of stratification, the least fixed point of the 
program’s nondeterministic transformation is the minimal model of the program as well. So: 

Proposition 3. For stratified fDATALOG program P, there is an evaluation sequence, in 
which lfp(NTP) is a minimal model of P. 

As shown in Example 4, a program can have more then one stratification. Will the different 
stratifications yield the same semantics? Fortunately, the answer is yes. (Ceri et al 1990) 
declares, (Abiteboul et al 1995) proves the theorem, according to which for stratified Datalog 
programs the resulting minimal model is independent of the actual stratification. That is, 
two stratifications of a Datalog program yield the same semantics on all inputs. As the order 
of stratification depends only on the predicates of the program and it is not influenced by 
the uncertainty levels, therefore this theorem is true in the case of fDATALOG programs as 
well. 

Theorem 3. Let P be a stratifiable fDATALOG program. The least fixed point according to 
an arbitrary order of stratification is a unique minimal model of the program. 

Example 5. In Example 3. the right stratified order is 1., 3., 2., 4.; so the least fixed point of 
the program is: lfp(NTP) = {(r(a), 0.8), (p(a), 0.5), (q(a), 0.5) }. 

2.2 Multivalued datalog 

In fuzzy theory, uncertainty is measured by a single value between zero and one, and 
negation can be calculated as its complement to 1. However, human beings sometimes 
hesitate expressing these values, that is, there may be some hesitation degree. This 
illuminates a well-known psychological fact that linguistic negation does not always 
correspond to the logical one. Based on this observation, as a generalization of fuzzy sets, 
the concept of intuitionistic fuzzy sets was introduced and developed by Atanassov in 1983 
and later (Atanassov 1983, 1999, Atanassov & Gargov 1989). In the next paragraphs some 
possible multivalued extensions of Datalog will be discussed. 
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2.2.1 Intuitionistic- and interval-valued extensions of datalog 

In intuitionistic fuzzy systems (IFS) and interval-valued systems (IVS) the uncertainty is 

represented by two values, µ = (µ1, µ2) instead of a single one. In the intuitionistic case the 

two elements must satisfy the condition µ1+µ2 ≤ 1, while in the interval-valued case the 

condition is µ1 ≤ µ2. If µ = (µ1, µ2) belonging to a predicate p is an IFS level, then p is 

definitely true on level µ1 and definitely false on level µ2, while in IVS the truth value is 

between µ1 and µ2. It is obvious that the relation µ’1 = µ1, µ’2 = 1 − µ2 creates a mutual 

connection between the two systems. (The equivalence of IVS and IFS was stated first in 

(Atanassov & Gargov 1989).)  

The fixed point theory of programming is based on the theory of lattices. So does the theory 

of fuzzy Datalog as well, which is based on the lattice of fuzzy sets. The extension of the 

programs into an intuitionistic and interval-valued direction needs the extension of lattices 

as well.    

Definition 6. LF and LV are lattices of IFS and IVS respectively, where  

LF = {(x1, x2) ∈ [0,1]2 | x1+x2 ≤ 1}, (x1,x2) ≤F (y1,y2) ⇔ x1 ≤ y1 and x2 ≥ y2, 

LV = {(x1, x2) ∈ [0,1]2 | x1 ≤ x2}, (x1,x2) ≤V (y1,y2) ⇔ x1 ≤ y1 and x2 ≤ y2 

It can be proved that both LF and LV are complete lattices (Cornelis et al 2004), so it can be 

the base of intuitionistic Datalog (ifDATALOG) and interval-valued Datalog (ivDATALOG) 

as well. (If the distinction is not important, both of them will be denoted by iDATALOG.) 

The so called i-extended DATALOG is defined on these lattices, and the necessary concepts 

are generalizations of the ones presented in Definition 1 and Definition 2. Let us continue to 

denote by BP the Herbrand base of the program P, and let FV(BP) the set of all IFS or IVS sets 

over BP. 

Definition 7. The i-extended Datalog program (iDATALOG) is a finite set of safe 

iDATALOG rules r; β; IFV; 

- the i-extended consequence transformation iNTP : FV(BP) → FV(BP) is formally the same 

as NTP in (1) except:  

αA = maxFV (0FV, minFV{γ | IFV(αbody, γ) ≥FV β }); 

- the i-extended uncertainty-level function is  

f(IFV,α,β) = minFV({γ | IFV(α, γ ) ≥FV β }), 

where α, β, γ are elements of LF, LV respectively, IFV = IF or IV is an implication of LF or LV; 

maxFV  = maxF or maxV; minFV  = minF or minV are the max or min operator of LF or LV; 0FV is 0F 

= (0,1) or 0V = (0,0) and ≥FV is ≥F or ≥V.  

As iNTP is inflationary transformation over the complete lattices LF or LV, thus according to 

(Ceri et al 1990) it has an inflationary fixed point denoted by lfp(iNTP). If P is positive 

(without negation), iNTP is a monotone transformation, so lfp(iNTP) is the least fixed point. 
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The next question is whether this fixed point is a model of P. The fixed point is an 
interpretation of P, which is a model, if for each 

A ← A1 ,…, An; β; IFV ∈ ground(P), IFV(α, γ ) ≥FV β. 

Similarly to the proof of Theorem 1, it can easily be proved that this fixed point is a model of 
the program. For negation-free iDATALOG this is the least model of the program. (Achs 
2010).   

In fDATALOG a fact can be negated by completing its membership degree to 1. In 
iDATALOG the uncertainty level of a negated fact can be computed according to negators. 
A negator on LF or LV is a decreasing mapping ordering 0FV and 1FV together (Cornelis et al 
2004). The applied negators are relevant for the computational meaning of a program, but 
they have no influence on the stratification. So for a stratified iDATALOG program P there 
is an evaluation sequence in which lfp(iNTP) is a unique minimal model of P. Therefore 
lfp(iNTP) can be regarded as the semantics of iDATALOG. 

After defining the syntax and semantics of extended fuzzy Datalog, it is necessary to 

examine the properties of possible implication operators and the extended uncertainty-level 

functions. A number of intuitionistic implications are discussed in (Cornelis et al 2004, 

Atanassov 2005, 2006) and other papers, four of them are the extensions of the above three 

fuzzy implication operators. Now these operators will be presented and completed by the 

suitable interval-value operators and the uncertainty-level functions. The computations will 

not be shown here, only the starting points and results are presented. 

The coordinates of intuitionistic and interval-valued implication operators can be 

determined by each other. The uncertainty-level functions can be computed according to the 

applied implication. The connection between IF and IV and the extended versions of 

uncertainty-level functions are given below: For 

                       IV(α,γ) = (IV1, IV2); 

   IV1=IF1(α’,γ’); α’=(α1,1-α2); 

 IV2=1-IF2(α’,γ’); γ’=(γ1,1-γ2). 

f (IF, α, β ) = (min ({ γ1 | IF1 (α, γ ) ≥ β1 }), max ({ γ2 | IF2 (α, γ ) ≤ β2 })) 

f (IV, α, β ) = (min ({ γ1 | IV1 (α, γ ) ≥ β1 }), min ({ γ2 | IV2 (α, γ ) ≥ β2 })) 

The studied operators and the related uncertainty-level functions are the following: 

2.2.1.1 Extension of Kleene-dienes implication 

One possible extension of Kleene-Dienes implication for IFS is: 

IFK(α, γ) = (max(α2, γ1), min(α1, γ2)) 

The appropriate computed elements are the following: 

IVK(α, γ) = (max(1-α2, γ1), max(1-α1, γ2)) 
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2.2.1.2 Extension of Lukasiewicz implication 

One possible extension of Lukasiewicz implication for IFS is: 

IFL(α,γ) = (min(α2,γ1), min(α1,γ2)) 

The appropriate computed elements are as follows: 

   IVL(α, γ)      = (max(1, α2 + γ1), max(0, α1 + γ2 -1)) 

   f1(IFL, α, β)   = min(1-α2, max(0, β1-α2)) 

   f2(IFL, α, β)   = max(1-α1, min(1, 1-α1+ β2)) 

   f1(IVL, α, β)   = max(0, α2+ β1 -1) 

   f2(IVL, α, β)   = max(0, α1+ β2 -1) 

2.2.1.3 Extensions of Gödel implication 

There are several alternative extensions of Gödel implication, two of them are presented 

here: 
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f1(IFG2, α, β) = min(α1, β1)  f2(IFG2, α, β)     = max(α2, β2) 

f1(IVG2, α, β) = min(α1, β1)  f2(IVG2, α, β)     = min(α2, β2) 

An important question is whether the resulting degrees satisfy the conditions referring to 
IFS and IVS respectively. Unfortunately, for implications other than G2, the answer is “no”, 
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or rather “not in all cases”. For example, in the case of the Kleene-Dienes and the 
Lukasiewicz intuitionistic operators the levels of a rule-head satisfy the condition of 
intuitionism only if the sum of the levels of the rule-body is at least as large as the sum of 
the levels of the rule. That is, the solution is inside the scope of IFS, if the level of the rule-
body is less “intuitionistic” than the level of the rule. In the case of the first Gödel operator, 
the solution is inside the scope of IFS only if the level of the rule-body is more certain than 
the level of the rule (Achs 2010). However, for the second Gödel operator the next 
proposition can easily be proven:   

Proposition 4. For α = (α1, α2), β = (β1, β2)  

if α1+α2 ≤ 1, β1+β2 ≤ 1 then f1(IFG2, α, β) + f2(IFG2, α, β) ≤ 1 

if α1≤ α2, β1≤ β2 then f1(IVG2, α, β) ≤ f2(IVG2, α, β) 

Similarly to Proposition 2, it can be seen that the fixed-point algorithm terminates if f(IFV, α, 

β) ≤FV α  for each α ∈ LFV (Achs 2010). G2 satisfies this condition, so: 

Proposition 5. In the case of G2 operator the fixed-point algorithm terminates. 

2.2.2 Bipolar extension of datalog 

The intuitive background of intuitionistic levels is some psychological perception. 

Experiments have shown that when making decisions people deal with positive and 

negative facts in different ways (Dubois et al 2000, 2005). Continuing this idea, it can be 

stated that there would be differences not only in the scaling of truth values, but in the way 

of concluding as well. This means that in a way similar to the facts, positive and negative 

inferences can be separated. The idea of bipolar Datalog is based on the above observation: 

two kinds of ordinary fuzzy implications are used for positive and negative deduction, 

namely, a pair of consequence transformations is defined instead of a single one. Since in the 

original transformations lower bounds are used with degrees of uncertainty, therefore 

starting from IFS or IVS facts, the resulting degrees will be lower bounds of membership 

and non-membership respectively, instead of the upper bound for non-membership. 

However, if each non-membership value µ is transformed into membership value µ’ = 1 − µ, 

then both members of head-level can be deduced similarly.  So the appropriate concepts are 

as follows. 

Definition 8. The bipolar Datalog program (bDATALOG) defined on LF or LV is a finite set of 

safe bDATALOG rules r; (β1, β2); (I1,I2). 

The elements of the bipolar nondeterministic consequence transformation bNTP = (NTP1, 
NTP2) are similar to NTP in (1) except in NTP2 the level of rule’s head is:  

α’2 = max FV2 (0, min FV2 {γ’2 | I2(α’body2, γ’2) ≥ β’2}); 

where α’body2=min FV2 (α’A12,…,α’An2). 

The uncertainty-level function is: f = (f1, f2) where 

f1 = min FV2 ({γ1 | I1(α1, γ1) ≥ β1}); 
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f2 =1− min FV2 ({1 − γ2 | I2(1 −α2, 1 −γ2) ≥ 1 −β2}). 

It is evident that applying the transformation µ’1 = µ1, µ’2 = 1 - µ2, for all IFS levels of the 

program, the above definition can be applied to IVS degrees as well. As a simple 

computation can show, contrary to the results of iDATALOG, the resulting degrees for most 

variants of bipolar Datalog satisfy the conditions referring to IFS: 

Proposition 5. For α = (α1, α2), β = (β1, β2) and for implication-pairs I = (IG, IG); I = (IL, IL); 

I = (IL, IG); I = (IK, IK); I = (IL, IK);  

if α1+α2 ≤ 1, β1+β2 ≤ 1 then f1(I1, α, β) + f2(I2, α, β) ≤ 1 

From the construction of bipolar consequence transformations follows: 

Proposition 6. The nondeterministic bipolar consequence transformation has a least fixed 

point, which is a model of program P in the following sense: for each A←A1,...,An; β; I ∈ 

ground(P) 

I(αbody1, α1) ≥ β1; I(α’body2, α’2) ≥ β’2 

As the termination of the consequence transformations based on these three implication 

operators was proven in the case of fDATALOG (Achs 2006) and since this property does 

not change in bipolar case, the bipolar consequence transformations terminate as well. 

The bipolar extension of Datalog has no influence on the stratification, so the propositions 

detailed in the case of stratified fDATALOG programs are true in the case of bipolar fuzzy 

Datalog programs as well, that is, for a stratified bDATALOG program P, there is an 

evaluation sequence, in which lfp(bNTP ) is a unique minimal model of P. 

Example 6. Consider the next IFS program:  

(p(a), (0.7, 0.2)). 
(q(b), (0.65, 0.3)). 
(r(a, b), (0.7, 0.2)). 

r(x, y) ← p(x), q(y); (0.75, 0.2); I. 

Let I = IFG2, then according to the rule r(a,b) is inferred and uncertainty can be computed as 

follows: αbody = minF((0.7, 0.2), (0.65, 0.3)) = (0.65, 0.3), f1(IFG2, α, β) = min(α1, β1) = min(0.65, 

0.75) = 0.65, f2(IFG2, α, β) = max(α2, β2) = 0.3, that is, the level of the rule’s head is (0.65, 0.3). 

There is a fact for r(a,b) as well, so the resulting level is the union of the level of the rule’s 

head and the level of the fact: maxF ((0.65, 0.3), (0.7, 0.2)) = (0.7, 0.2). So the fixed point of the 

program is:  

{(p(a), (0.7, 0.2)), (q(b), (0.65, 0.3)), (r(a, b), (0.7, 0.2)) }. 

Let us see the bipolar evaluation of the program. Let I = (IL, IG). That is let the first element of 

the uncertainty level be computed according to the Lukasiewicz operator and the second 

one according to the Gödel operator. The Lukasiewicz operator defines the uncertainty level 

function f (IL, α, β) = max(0, α + β −1). Then αbody1 = min(0.7, 0.65) = 0.65, α’body2 = min(1−0.3, 

1−0.2) = 0.7; f1(IL, α1, β1) = max(0, α1+β1−1) = 0.65+0.75−1 = 0.4, f2(IG, α’2, β’2) = 1 − 
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min(α’2,1−β2) = 1 – min(0.7, 0.8) = 0.3. So the uncertainty level of rule’s head is (0.4, 0.3). 

Considering the other level of r(a,b), its resulting level is (max(0.4, 0.7), 1−max(1−0.3, 1−0.2)) = 

(0.7, 0.2), so the fixed point is:  

{(p(a), (0.7, 0.2)), (q(b), (0.65, 0.3)), (r(a,b), (0.7, 0.2)) }. 

Example 7. Consider the next (recursive) IVS program:  

(p(a, b), (0.7, 0.8)). 
(p(a, c), (0.8, 0.9)). 
(p(b, d), (0.75, 0.8)). 
(p(d, e), (0.9, 0.95)). 

q(x, y) ← p(x, y); (0.85, 0.95); I1. 

q(x, y) ← p(x, z), q(z, y); (0.8, 0.9); I2. 

Let I1 = IVG2, I2 = IVL , that is the appropriate uncertainty level functions are:  

  f1(IVG2, α, β) = min(α1, β1)                 f2(IVG2, α, β) = min(α2, β2) 

  f1(IVL, α, β) = max(0, α2+ β1 -1) f2(IVL, α, β) = max(0, α1+ β2 -1) 

Before showing the fixed point algorithm, two computations are set out. According to the 

first rule for q(x, y) the uncertainty level of q(a, b) is: f(IVG2, α, β) = (min(α1, β1), min(α2, β2)) = 

(min(0.7, 0.85), min(0.8, 0.95)) = (0.7, 0.8). 

According to the second rule, the uncertainty of q(a, d) can be computed in this way: 

The body of the rule is: p(a, b), q(b, d), so αbody = min((0.7, 0.8),(0.75, 0.8)) =(0.7, 0.8);  

f(IVL, α, β) =( max(0, α2+ β1 -1), max(0, α1+ β2 -1) = (max(0, 0.8 + 0.8-1), max(0, 0.7 + 0.9 – 1)) = 
(0.6, 0.6). 

The steps of fixed point algorithm are: 

X0 = {(p(a, b), (0.7, 0.8)), (p(a, c), (0.8, 0.9)), (p(b, d), (0.75, 0.8)), (p(d, e), (0.9, 0.95))} 

X1 =X0 ∪ { (q(a, b), (0.7, 0.8)), (q(a, c), (0.8, 0.9)), (q(b, d), (0.75, 0.8)), (q(d, e), (0.85, 0.95)),  
 (q(a, d), (0.6, 0.6), (q(b, e), (0.6, 0.65)) } 

X2 =X1 ∪ { (q(a, e), (0.45, 0.5)) } 

X2 is fixed point, so it is the result of the program.  

As fuzzy Datalog is a special kind of its multivalued extensions, so further on both 

fDATALOG and any of above extensions will be called multivalued Datalog (mDATALOG). 

3. Multivalued knowledge-base 

The facts of an mDATALOG program can be regarded as any kind of lexical knowledge 

including uncertainty as well, and from this knowledge other facts can be deduced 

according to the rules. Therefore a multivalued Datalog program is suitable to be the 

deduction mechanism of a knowledge base. Sometimes, however, it is not enough for 

getting answer to a question. For example, if there are rules describing the options of loving 

a good composer, and there is a fact declaring that Vivaldi is a good composer, what is the 
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possible answer to the question inquiring about liking Bach? Getting an answer needs the 

use of synonyms and similarities. For handling this kind of information, our model includes 

a background knowledge module.  

3.1 Background knowledge 

Some “synonyms” and “similarities” will be defined between the potential predicates and 
between the potential constants of a given problem, so it can be examined in a larger 
context. More precisely, proximity relations will be defined on the sets of the program’s 
predicates and terms. These relations will serve as the basis for the background knowledge. 

Definition 9. A multivalued proximity on a domain D is an IFS or IVS valued relation RFVD : 

D × D → [0FV, 1FV] which satisfies the following properties: 

RFD (x, y) = λF(x, y) = (λ1, λ2),  λ1 + λ2 ≤ 1 

RVD (x, y) = λV(x, y) =(λ1, λ2),  0 ≤ λ1 ≤ λ2 ≤ 1 

RFVD (x, y)= 1FV       ∀x ∈ D  (reflexivity) 

RFVD (x, y)= RFVD (y, x) ∀x ∈ D (symmetry). 

A proximity is similarity if it is transitive, that is  

RFVD (x, z) ≥FV min FV (RFVD (x, y), RFVD (y, x)) ∀x, y, z ∈ D. 

In the case of similarity, equivalence classifications can be defined over D. The effect of this 
classification is perhaps a simpler or more effective algorithm, but in many cases the 
requirement of similarity is a too strict constraint. Therefore this chapter deals only with the 
more general proximity.  

Background knowledge consists of the “synonyms” of each terms and each predicates of the 
program. The “synonyms” of any element form the proximity set of the element, and all of 
the proximity sets compose the background knowledge. More precisely: 

Definition 10. Let d ∈ D any element of domain D. The proximity set of d is an IFS or IVS 
subset over D: 

RFVd = {(d1, λFV1 ), (d2, λFV2 ),… (dn, λFVn )}, 

where di ∈ D and λFVi = RFVD (d, di)  for i = 1, … ,n. 

Definition 11. Let G be any set of ground terms and S any set of predicate symbols. Let 
RGFVG and RSFVS be any proximity over G and S respectively. The background knowledge is 

the set of proximity sets: 

Bk = {RGFVg | g ∈ G} ∪ {RSFVs | s ∈ S} 

3.2 Computing uncertainties 

Up to now, the deduction mechanism and the background knowledge of a multivalued 
knowledge-base have been defined. Now, the question remains: how can the two parts be 
connected to each other? How can we find the “synonyms”? For example, if it is known that 
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Ann loves the music of Bach very much ((love(Ann, Bach), (0.9, 0.95))) and the concept of love 
is similar to the concept of like (RSVS (“love”, “like”) = (0.8, 0.9)) and the music of Bach is 

more or less similar to the music of Vivaldi (RGVG (Bach, Vivaldi) = (0.7, 0.75)) then how 

strongly can be stated that Ann likes Vivaldi, that is, what is the uncertainty of the predicate 
like(Ann, Vivaldi)? 

To solve this problem, the concept of proximity-based uncertainty function will be 
introduced. According to this function, the uncertainty levels of “synonyms” can be 
computed from the levels of original fact and from the proximity values of actual predicates 
and its arguments. It is expectable that in the case of identity, the level must be unchanged, 
but in other cases it is should be equal or less than the original level or than the proximity 
values. Furthermore, this function is required to increase monotonically. This function will 
be ordered to each atom of a program.  

Let p be a predicate symbol with n arguments, then p/n is called the functor of the atom, 
characterized by this predicate symbol. 

Definition 12. A proximity-based uncertainty function of p/n is: 

ϕp(α, λ, λ1,…, λn) : (0FV, 1FV]n+2 → [0FV, 1FV] 

where 

ϕp(α, λ, λ1,…, λn) ≤ min FV (α, λ, λ1,…, λn) 

ϕp(α, 1FV, 1FV,…, 1FV) = α 

and ϕp(α, λ, λ1,…, λn) is monotonically increasing in each argument. 

Any triangular norm obeys the above constraints so they are appropriate proximity-based 
uncertainty functions. 

Example 8. Let (p(a), (0.7, 0.2)) be an IFS fact and RSFS(p, q) = (0.8, 0.1), RGFG(a, b) = (0.7, 

0.3) and ϕp(α, λ, λ1) = minF(α, λ⋅ λ1).  

(In IFS the product is defined as: µ ⋅ λ = (µ1⋅λ1, 1-(1-µ2)⋅(1- λ2)).)  

The uncertainty levels of p(b), q(a) and q(b) are: 

(p(b), (min((0.7, 0.2), ((1, 0)⋅(0.7, 0.3))) = (min(0.7, 0.7),  max(0.2, 0.3)) = (0.7, 0.3)); 

(q(a), (min((0.7, 0.2), ((0.8, 0.1)⋅(1, 0))) = (min(0.7, 0.8),  max(0.2, 0.1)) = (0.7, 0.2)); 

(q(b), (min((0.7, 0.2), ((0.8, 0.1)⋅(0.7, 0.3))) = (min(0.7, 0.56),  max(0.2, 0.37)) = (0.56, 0.37)); 

Example 9. Let (love(Ann, Bach), (0.9, 0.95) be an IVS fact and RSVS(“love”, “like”) = (0.8, 0.9), 

RGVG (Bach, Vivaldi) = (0.7, 0.75)) and ϕlove(α, λ, λ1, λ2) = minV(α, λ, λ1⋅λ2). Then 

(love(Ann, Vivaldi), (min(0.9, 1, 1⋅0.7), min(0.95, 1, 1⋅0.75) =  (0.7, 0.75)); 

(like(Ann, Bach), (min(0.9, 0.8, 1⋅1), min(0.95, 0.9, 1⋅1) =  (0.8, 0.9)); 

(like(Ann, Vivaldi), (min(0.9, 0.8, 1⋅0.7), min(0.95, 0.9, 1⋅0.75) = (0.7, 0.75)); 
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As the above examples show, the levels of “synonyms” can be computed according to 

proximity-based uncertainty functions. To determine all direct or indirect conclusions of the 

facts and rules of a program, a proximity based uncertainty function has to be ordered to 

each predicate of the program. The set of these functions will be the decoding-set of the 

program. 

Definition 13. Let P be a multivalued Datalog program, and FP be the set of the program's 

functors. The decoding-set of P is: ΦP = {ϕp(α, λ, λ1,…, λn) | ∀ p/n ∈ FP }. 

3.3 Deduction with background knowledge 

The original deducing mechanism makes conclusions according to the rules of the program, 
but from now on the background knowledge must be considered as well. So the original 
mechanism has to be modified. This modified deduction consists of two alternating parts: 
starting from the facts, their “synonyms” are determined, then applying the suitable rules, 
other facts are derived, followed by their “synonyms” determined, and again the rules are 
applied, etc. To define it in a precise manner the concept of modified consecution 
transformation will be introduced. 

The consequence transformation of a mDATALOG P program is defined over the set of all 
multivalued sets of P’s Herbrand base, that is, over FV(BP). To define the modified 
transformation’s domain, let us extend P’s Herbrand universe with all possible ground 
terms of the background knowledge, obtaining the so called modified Herbrand universe, 
modHP. The modified Herbrand base, modBP is the set of all ground atoms, whose predicate 

symbols occur in P ∪ Bk and whose arguments are elements of modHP.  

However, it is possible, that there are some special predicates in P, which have no 
alternatives, even if their arguments have “synonyms”. These predicates are named as 
bound predicates. For such predicates, the modified Herbrand base only includes atoms that 
are present in the original Herbrand base.  

Definition 14. The modified consequence transformation modNTP : FV(modBP) → FV(modBP ) 
is defined as 

modNTP (X) = {(q(s1,…,sn),  ϕp(αp, λq, λs1,…, λsn) )  | 

(q, λq) ∈ RSFVp ; (si, λsi) ∈ RGFVti ,  1 ≤ i ≤ n} ∪ X, 

where  

(p(t1,…,tn) ← A1,…,Ak ; β; I ) ∈ ground(P), 

(|Ai|, αAi) ∈ X, 1 ≤ i ≤ k  (|Ai| is the kernel of Ai) 

and αp is computed according to the actual extension of (1). 

This transformation is inflationary over FV(modBP) and it is monotone if P is positive. So, 

according to (Ceri et al 1990) it has a least fixed point. If P is positive, this is the least fixed 

point. This fixed point is a model of P, but because lfp(NTP) ⊆ lfp(mod NTP), it is not a 

minimal one (Achs 2010). 
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The modifying algorithm is irrelevant to the evaluation sequence, so stratification can be 

applied with the same condition. That is, the modified consequence transformation has a 

least fixed point in the case of stratified programs as well. This transformation makes 

connections between an mDATALOG program, the background knowledge and the 

decoding-set of the program. So these four components can form a knowledge-base. 

However, there should be other transformations connecting the three other parts with each 

other, therefore the universal concept of a multivalued knowledge-base can be defined with 

an arbitrary deduction algorithm:  

Definition 15. A multivalued knowledge-base (mKB) is a quadruple  

mKB = (P, Bk,ΦP, dA(P, Bk,ΦP)), 

where P is a multivalued Datalog program, Bk is a background knowledge, ΦP is a 

decoding-set of P and dA is any deduction algorithm connecting the three other part with 

each other. The least fixed point of the deduction algorithm is called the consequence of the 

knowledge-base, denoted by  

C(Bk, P, ΦP, dA) = lfp(dA(P, Bk,ΦP)). 

Because the actual deduction algorithm is the modified consequence transformation, now 
the consequence is 

C(Bk, P, ΦP, dA) = lfp(modNTP). 

Note: If it is important to underline that there are bound predicates in P, then mKB can be 

denoted by mKB = (P, Bp, Bk,ΦP, dA(P, Bp, Bk,ΦP)), where Bp is the set of bound predicates. 

Example 10. Let us suppose that an internet agent’s job is to send a message to its clients if 

the cinema (C) presents a film, which its clients like. The agent knows that people generally 

go (go) to the cinema if they can pay (cp) for the ticket and are interested in (in) the film 

presented (pr) in the cinema. It also knows that people usually want to see (ws) a film if they 

like (li) its actor (ac). Moreover it knows that Paul (P) has enough money (hm) and he enjoys 

(en) Chaplin (Ch) very much. In the cinema, a film of Stan and Pan (SP) is presented. Should 

the agent inform Paul about this film? How much will he want to go to the cinema?  

This situation can be modelled, for example, by the following multivalued knowledge-base.  

Let the IVS valued mDATALOG program and the background knowledge be as follows 

               go(x, C) ← pr(C, f), in(x, f), cp(x); (0.85, 0.95); IVL. (R1) 

   ws(f, x) ← ac(f, y), li(x, y); (0.8, 0.85); IVG2. (R2) 

   (hm(P), (0.75, 0.8)). 
   (en(P, Ch), (0.9, 0.95)). 

   (pr(C, Film), (1,1)). 
   (ac(Film, SP), (1,1)). 

According to their roll, pr(C, Film) and ac(Film, SP) have no alternatives.  
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Let the proximities be: 

   RV (in, ws)  = (0.7, 0.8). RV (Ch, SP) = (0.8, 0.9). 

   RV (li, en)   = (0.8, 0.9).  

   RV (cp, hm) = (0.9, 0.95).  

According to the connecting algorithm, it is enough to consider only the proximity-based 

uncertainty functions of head-predicates. Let these functions be the minimum function: 

ϕgo(α, λ, λ1, λ2) = ϕws(α, λ, λ1, λ2) = ϕen(α, λ, λ1, λ2) = ϕpr(α, λ, λ1, λ2) = ϕac(α, λ, λ1, λ2) :=  

minV (α, λ, λ1, λ2), 

ϕhm(α, λ, λ1) := minV (α, λ, λ1), 

The modified consequence transformation has the next steps: 

X0 = {(hm(P), (0.75, 0.8)), (en(P, Ch), (0.9, 0.95)), (pr(C, Film), (1,1)), (ac(Film, SP), (1,1))} 

   (according to the proximity) 

 X1 = modNTP(X0) = X0 ∪ 

  {(cp(P), ϕhm((0.75, 0.8), (0.9, 0.95), (1,1)) = (min(0.75, 0.9, 1), min(0.8, 0.95, 1)) = (0.75, 0.8)),  

  (en(P, SP), ϕen((0.9, 0.95), (1,1), (1,1), (0.85, 0.9)) = (0.85, 0.9)), 

  (li(P, Ch), ϕen((0.9, 0.95), (0.8, 0.9), (1,1), (1,1)) = (0.8, 0.9)), 

  (li(P, SP), ϕen((0.9, 0.95), (0.8, 0.9), (1,1), (0.85, 0.9)) = (0.8, 0.9))} 

   (applying the rules – only (R2) can be applied) 

 X2 = modNTP (X1) = X1 ∪  

  {(ws(Film, P), f(IVG2, α, β ) = f(IVG2, minV((1,1), (0.8, 0.9)), (0.8, 0.85)) =  

  minV((0.8, 0.9),(0.8, 0.85)) = (0.8, 0.85)) } 

   (according to the proximity) 

 X3 = modNTP (X2) = X2 ∪  

  {(in(Film, P), ϕws( (0.8, 0.85), (0.7, 0.8), (1,1), (1,1)) = (0.7, 0.8))}  

   (applying the rules – (R1) can be applied) 

 X4 = modNTP (X3) = X3 ∪  

  {(go(P, C), f(IVL, α, β ) = f(IVL, minV((1,1), (0.7, 0.8), (0.75, 0.8)), (0.85, 0.95)) = 
   (max(0, 0.8 + 0.85 - 1), max(0, 0.7 + 0.95 - 1)) = (0.65, 0.65))}  

X4 is a fixed point, so it is the consequence of the knowledgebase. 

According to this result, the agent will know that the message can be sent, because Paul will 

probably enjoy Stan and Pan at a likelihood level of 85-90% (level (0.85, 0.9)), and there is a 

good chance (65%) that Paul will go to the cinema.   

4. Evaluating algorithms 

The fixed point-query is a bottom-up evaluation algorithm, which may involve many 

superfluous calculations. However, very often, only a particular question is of interest and 

the answer to this question needs to be searched. If a goal (query) is specified together with 

the multivalued knowledge-base, it is not necessary to evaluate all facts and rules, and it is 
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enough to consider only a part of them. A goal is a pair (q(t1, t2, …, tn); α), where q(t1, t2, …, 

tn) is an atom, α  is the fuzzy, the intuitionistic, the interval-valued or the bipolar level of the 

atom. q may contain variables, and its levels may be known or unknown values. The 

evaluation algorithm gives answer to this query. 

In standard Datalog, the most common approach in top-down direction is called query – 
sub-query framework. A goal, together with a program, determines a query. Literals in the 
body of any one of the rules defining the goal predicate are sub-goals of the given goal. 
Thus, a sub-goal together with the program yields a sub-query. In order to answer the 
query, each goal is expanded in a list of sub-goals, which are recursively expanded in their 
turn. That is, considering a goal, all rule-heads unifying with the goal are selected and the 
literals of the rule-body are the new sub-goals of given goal, which are evaluated one by one 
in an arbitrary order. This procedure continues until the facts have been obtained.  

The situation is the same with a multivalued knowledge-base as well, but in this case the 
algorithm is completed with the computation of the unification levels. However, it is 
possible that such rules do not exist, but perhaps they do exist for the synonyms. For 
example, the goal is to know if Ann likes Bach, but there are rules only for describing the 
options of loving somebody and there are facts only about Vivaldi. In such cases, the 
synonyms are used. Therefore, the algorithm has to consider the proximities and has to 
compute the uncertainty levels. It is a bidirectional evaluation: firstly, the uncertainty-free 
rules and the proximities are evaluated in a top-down manner, obtaining the required 
starting facts, then the computing of uncertainties is executed in the opposite direction, that 
is, according to the fixed-point algorithm.  

4.1 Evaluation of a general knowledge-base 

The uncertainty levels are not required in the top-down part of the evaluation, so, this part 
of the algorithm can be based on the concept of classical substitution and unification (Ceri et 
al 1990, Ullman 1988, etc.) However other kinds of substitutions may be necessary as well: to 
substitute some predicate p or term t with their proximity sets RSFVp and RGFVt, and to 

substitute some proximity sets with their members. 

From now on, for the sake of a simpler terminology, the terms “goal”, “rule” and “fact” will 
refer to these concepts without uncertainty levels. An AND/OR tree arises during the 
evaluation, this is the searching tree. Its root is the goal; its leaves are either YES or NO. The 
parent nodes of YES are the facts, and uncertainty can be computed moving towards the 
direction of the root. This tree is built up by a periodic change of three kinds of steps: a 
proximity-based unification, a rule-based unification and a splitting step.  

Proximity-based unification unifies the predicate symbols of sub-goals and the members of 
their proximity sets. Rule-based unification unifies the sub-goals with the head of suitable 
rules, and continues the evaluating by the bodies of these rules. The splitting step splits the 
rule-body into sub-goals if the body contains more literals or splits a literal of proximity sets 
into literals of the suitable ground atoms. 

During the construction process, the edges are labelled by necessary information for 
computing the uncertainties. The searching graph according to its depth is build up in the 
following way. 
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If the goal is on depth 0, then every successor of any node on depth 3k+2 (k = 0, 1, …) is in 
AND connection, and the others are in OR connection. The step after depth 3k (k = 0, 1, …) is 
a proximity-based unification, after depth 3k+1 (k=0, 1, …) is a rule-based unification and 
after depth 3k+2 (k=0,1,…) is a splitting step. In detail:  

If the atom p(t1, t2, …, tn) is in depth 3k (k = 0, 1, …), then the successor nodes let be all 
possible p’(t1, t2, …, tn), where p' ∈ RSFVp . The edges starting from these nodes are labelled 

by the proximity-based uncertainty functions ϕp’. 

If the atom L is in depth 3k+1 (k=0, 1, …), then the successor nodes will be  

• the bodies of suitable unified rules or  
• the unified facts if L is unifiable with any fact of the program, or  
• NO, if there is not any unifiable rule or fact.  

That is, if the head of rule M ← M1,…,Mn, (n>0) is unifiable with L, then the successor of L 
will be M1θ,…,Mnθ, where θ is the most general unification of L and M. The edges starting 
from these nodes are labelled by the uncertainty functions belonging to the implication 
operator of the applied rules and by the uncertainty level of the rule.  

If n=0, that is, in the program there is any fact with the predicate symbol of L, then the 
successors will be the unified facts. If L = p(t1, t2, …, tn) and in the program there is any fact 
with predicate symbol p, then let the successor nodes be all possible p(t’1, t’2,…, t’n), where  
t’i = ti if ti is a ground term or t’i = RGFVtiθ  if ti is a variable and θ is a suitable unification. The 

edges starting from these nodes are not labelled.  

According to the previous paragraph, there are three kinds of nodes in depth 3k+2 
(k=0,1,…): a unified body of a rule; a unified fact the arguments of with are ordinary ground 
terms or proximity sets; or the symbol NO.  

In the first case, the successors are the members of the body. They are in AND connection. 
The connected edges will not be labelled, but because of the AND connection, during the 
computation, the minimum value of the successor’s levels will be regarded.  

In the second case, the successors are the so called facts-sets. This means, that if the node is 
p(t1, t2,…, tn), where ti is a ground term or a proximity set, then the facts-set is the set of all 
possible p(t’1, t’2,…, t’n), where t’i ∈ RGFVti . The edges starting from these nodes are labelled 

by the proximity-based uncertainty functions ϕp. 

The facts-set has a further successor, the symbol YES.  

The NO-node has no successor.  

A solution can be achieved in the graph along the path ending in the symbol YES. According 
to the unification algorithm, one of the literals that are located at the parent node of YES can 
also be found among the original facts of the program. Knowing its uncertainty and using the 
proximity-based uncertainty function of the label leading to this facts-set, the uncertainty of 
other members of the facts-set can be computed. However, it is not necessary to compute all of 
them, only those ones, which are appropriate for the pattern of the literal being in the parent 
node of facts-set. This means, that if the literal is p(t1, t2,…, tn), and ti is a ground term, then it is 
enough to consider only p(t’1, t’2,…, ti ,…, t’n) from the facts-set, but if ti is a proximity set, then 
it is necessary to deal with all p(t’1, t’2,…, t’i ,…, t’n), where t’i ∈ RGFVti . 
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In this way each starting fact can be appointed. Then a solution can be determined by 

connecting the suitable unifications and computing in succession the uncertainties according 

to the labels of edges in the path from the symbol YES to the root of the graph. The union of 

these solutions is the answer to the given query. 

From the construction of searching graph follows: 

Proposition 7. For a given goal and in the case of finite evaluation graph, the top-down 

evaluation terminates and gives the same answer as the fixed point query. 

Example 11. Consider the IFS program of Example 6, and let it be completed by proximities 

and proximity-based uncertainty functions  

   (p(a), (0.7, 0.2)). 

   (q(b), (0.65, 0.3)). 

   (r(a, b), (0.7, 0.2)). 

   r(x, y) ← p(x), q(y); (0.75, 0.2); IFG2. 

   RF (p, p1) = (0.7, 0.1). ϕp(α, λ, λ1)      := α⋅ λ⋅ λ1. 

   RF (q, q1) = (0.8, 0.1). ϕq(α, λ, λ1)      := minF (α, λ⋅ λ1). 

   RF (r, r1) = (0.75, 0.2). ϕr(α, λ, λ1, λ2) := minF (α, λ, λ1, λ2). 

   RF (a, a1) = (0.8, 0.1).  

   RF (b, b1) = (0.6, 0.3).  

Let the goal be: (r1(a1,x); α), where x is a variable. Then the evaluation graph is on the next 

page. 

The three facts-sets can easily be seen in the graph. From the first one, the uncertainty of  

r(a1, b) and r(a1, b1) can be computed.  

As (r(a, b), (0.7, 0.2)) is a known member of the set, so knowing this uncertainty, the 

proximity-based function and the proximities of knowledge base, the uncertainties can be 

determined: 

r (a1, b), (minF ((0.7, 0.2), (1, 0), (0.8, 0.1), (1,0))= (0.7, 0.2)). 

r (a1, b1), (minF ((0.7, 0.2), (1, 0), (0.8, 0.1), (0.6,0.3))= (0.6, 0.3)). 

Applying the next label of the path the uncertainty of r1(a1, b) and r1(a1, b1) can be found. 

They are as follows: 

(r1(a1, b), (0.7, 0.2)) 

(r1(a1, b1), (0.6, 0.3)) 
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Fig. 1. The evaluation graph of Example 11. 

In the second facts-set (p(a), (0.7, 0.2)) is the known fact, from this (p(a1), (0.56, 0.28)). 

Similarly (q(b), (0.65, 0.3)), (q(b1), (0.6, 0.3)). Applying the min, fFG2 and ϕr functions:  

(r1(a1, b), (0.56, 0.3)) 

(r1(a1, b1), (0.56, 0.3)) 

As the answer is the union of the different solutions, the final answer is: 

(r1(a1, b), (0.7, 0.2)) 

(r1(a1, b1), (0.6, 0.3)) 

4.2 Special evaluation based on multivalued unification  

The necessity of bidirectional evaluation is derived from the generality of implications and 

proximity functions, because their values can be computed only from known arguments, 

namely in bottom-up manner. However, in special cases, computation can be realized 

parallel with the evaluation of rules and proximities, so the algorithm could be a more 

efficient pure top-down evaluation. This is the situation if all of the functions are the 

minimum function. That is, all implications that are used are the second Gödel implication 

(G2) and all proximity-based uncertainty functions are the minimum function.  
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As mentioned earlier, in the case of standard Datalog, the heart of the evaluation algorithm is 
the unification process. Our special evaluation of multivalued knowledge is based on 
unification as well, but on multivalued unification. The multivalued unification consists of 
two parts, one is the alternation of a rule-based-unification and the other is a proximity-based one. 
Both of them are the extensions of the classical unification algorithm. Now, the splitting step 
is inside these unifications: evaluating a fact, the last proximity-based unification unifies the 
fact with its facts-set, and a rule-based unification splits these sets into their members. 

4.2.1 Rule-based unification 

This unification algorithm is similar to the classical one, that is, the goal can be unified with 
the body of any one of the rules defining the goal predicate – if the body is not empty. The 
level of the unification is the level of the rule defining the goal predicate. In that case, a 
variable can be substituted with other variable or with a constant; a constant can be 
substituted with itself only. The next sub-goal of the evaluation process will be the first 
member of the body. It is possible that during the evaluation a variable of a later member is 
substituted by a proximity set. In such a case, in the course of later evaluation, this 
proximity set will be substituted with itself.  

If the predicate symbol of the goal is the predicate symbol of a fact, its arguments can be 
substituted as follows: 

• The variables of the goal can be substituted with the proximity set of the constants 
being the corresponding arguments of the fact. (E.g.: if q(a,b) is a fact predicate and the 
goal is q(x, y), then x can be substituted with RFVa  and y with RFVb.)  

• The constants of the goal can be substituted 

• with themselves, if the goal contains any variable or 

• with their proximity set if the goal does not contain any variable. 

• The proximity set argument of a goal can be substituted with itself. 

The level of the unification is 1FV. 

If there is no fact with the same predicate symbol, the unification process fails.  

There is a special case of unification: the facts-set of a predicate is unified with its members 
in the following way: 

According to the previous unifications, between the literals of these facts-set there is one 
from the facts of the program. Knowing its uncertainty and the level of proximities, the 
uncertainty of other members can be computed. Then these members can be unified 
respectively: 

• with the empty clause, if there is no other literal to evaluate in the parent-node; 

•  with the remaining part of the body to be evaluated.  

The level of this unification is the level of the fitting member, and the former proximity set-
substitution of a variable is replaced by the suitable member of this set.  

(E.g. : if there is a former x|RFVa substitution for literal p(x), and RFVa = {a, b}, then the facts-

set of unification is {p(a), p(b)}, which is unified with empty clauses . The substitutions for x 
are x|a and x|b, and the levels are the computed levels of p(a) and p(b) respectively. ) 
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4.2.2 Proximity-based unification 

This unification serves for handling proximities. When these steps are implemented, the 
following substitutions can be realized: 

• A constant or a variable can be substituted with itself only.  

• A predicate symbol can be substituted with the elements of its proximity set. The level 
of the unification is the current proximity value.  

• A proximity set can be substituted with itself except in the last step of the evaluation of 
a literal. In this case, that is if each argument of the literal is a proximity set, the literal 
can be unified with its facts-set. The level of the unification is 1FV. 

4.2.3 The unification algorithm 

The evaluation algorithm combines the two kinds of unification. It starts with the proximity 

based unification and after it is finished, they alternate. The query is successful if the 

unification algorithm ends with an empty clause or a failure. In the first case the variables 

get the values defined during the substitutions. If all uncertainties are regarded as a 

minimum value, the actual level of unification can be computed as the minimum of former 

levels and when the algorithm reaches the empty clause, its level will be the level of the goal 

as well.  

If the unification algorithm ends with a failure, there is no answer on this path.  

If more answers arise during the evaluation, their union will be the resolution of the query.  

According to the construction of unifications, the following proposition is true. 

Proposition 8. For a given goal, and in the case of a finite evaluation graph, the above top-
down evaluation gives the same answer as the fixed point query. 

Notes:  

• Although this algorithm was described for a knowledge-base based on a negation free 
program, it is similar in the case of stratified programs; the only difference is the 
calculation of the uncertainty of the negated sub-goal, but the computing of minimum 
remains the same. 

• With a good depth limit this algorithm is suitable for evaluating recursive programs or 
infinite graphs as well. 

Example 12. Let us consider a part of Example 10, and let it be completed with a new rule 

and new facts. That is now the internet agent knows that people usually want to see (ws) a 

film if they like (li) its actor (ac), or they like more or less the subject (su) of the film. 

Moreover, it knows that Paul (P) enjoys (en) Chaplin (Ch) very much and mostly enjoys the 

historical films (H). In the cinema, a film (F1) of Stan and Pan (SP) is presented. There are 

two other films (F2, F3). Both films’ topics (to) are the war (W), but in different manner. The 

first one’s central message is the war, the second one play in wartime, but it is only a 

background. From the former example it is known, that the agent wants to know the interest 

of Paul. Therefore let our goal be (in(P,x); α).  

Let the IVS valued mDATALOG program and the background knowledge be as follows 
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    ws(f, x) ← ac(f, y), li(x, y); (0.8, 0.85); IVG2. (R1) 

     ws(f, x) ← su(f, y), li(x, y); (0.75, 0.85); IVG2. (R2) 

   (en(P, Ch), (0.9, 0.95)). 
   (en(P, H), (0.6, 0.7)). 

   (ac(F1, SP), (1, 1)). 
   (to(F2, W), (0.9, 0.95)). 
   (to(F3, W), (0.55, 0.6)). 

According to its roll, ac(F1, SP) has no alternatives. Let the other proximities be: 

   RV (in, ws) = (0.7, 0.8). RV (Ch, SP) = (0.8, 0.9). 

   RV (li, en)   = (0.8, 0.9). RV (H, W) = (0.6, 0.8). 

   RV (to, su ) = (0.9, 1).  

Then the evaluation graph is Fig.2.  

 

Fig. 2. The evaluation graph of Example 12. 

Let each proximity-based uncertainty function be the minimum function. 

According to the left path of the graph one can see, that (in (P, F1), (0.7, 0.8)) because the 
applied substitution is x|F1 and the minimum of levels is (0.7, 0.8). 

The other paths are only half-drawn, and they are continued in a partial graph, because this 
part of evaluation is similar in all cases. The only differences are in uncertainty levels. 
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So, according to these paths the other answers for the query are: 

(in (P, F2), (0.6, 0.7)), (in (P, F3), (0.55, 0.6)) 

 

Fig. 3. The enlarged evaluation graph of Example 12. 

5. Conclusion 

In this chapter, a possible multivalued knowledge-base was presented as a quadruple of 

background knowledge, a deduction mechanism, a decoding set and an algorithm 

connecting the background knowledge to the deduction mechanism.  

The background knowledge is based on proximity relations between terms and between 
predicates and it serves as a mechanism handling “synonyms”. 
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The deduction mechanism can be any of the extensions of Datalog. These extensions are the 
fuzzy Datalog, based on fuzzy logic, the intuitionistic- or interval-value Datalog, based on the 
suitable logics and bipolar Datalog, which is some kind of coexistence of the former ones. 

The semantics of Datalog is a fixed-point semantics, so the algorithm, which connects the 
two main pillars of the knowledge-base is the generalization of the consequence 
transformation determining this fixed-point. This transformation is defined on the extended 
Herbrand base of the knowledge-base, which is generated from the ground terms of 
knowledge base and its background knowledge.  

Applying this transformation it is necessary to compute the uncertainty levels of 
“synonyms”. The proximity-based uncertainty functions can do it, giving uncertainty values 
from the levels of the original fact and from the proximity values. The set of this kind of 
functions is the decoding set. 

Two possible evaluation strategies were presented as well. One of them evaluates a general 
knowledgebase with arbitrary proximity-based uncertainty functions and arbitrary 
implication operators. The other one allows minimum functions only as proximity based 
uncertainty functions, and the special extension of Gödel operator, but in this case a 
multivalued unification algorithm can be determined. This strategy is based on the 
alternating rule-based- and proximity-based unification. 

The improvement of this strategy and/or the deduction algorithm and/or the structure of 
background knowledge is a subject of further investigations.  

A well structured multivalued knowledge-base and an efficient evaluating algorithm 
determining its consequence could be the basis of making decisions based on uncertain 
information, or it would be useful for handling argumentation or negotiation of agents. An 
implementation of this model would be an interesting future development as well.  

6. References  

Abiteboul, S.; Hull, R. and Vianu, V. (1995). Foundations of Databases. Addison-Wesley 
Publishing Company, Reading, Massachusetts.  

Achs, A. & Kiss, A. (1995). Fuzzy extension of datalog, Acta Cybernetica Szeged, Vol.12, pp. 
153-166. 

Achs, A. (2006). Models for handling uncertainty, PhD thesis, University of Debrecen, 2006. 
Achs, A. (2007). From Fuzzy- to Bipolar- Datalog, In:  Proceedings of 5th EUSFLAT Conference, 

Ostrava, Czech Republic, pp. 221-227. 
Achs, A. (2010). A multivalued knowledge-base model, Acta Universitatis Sapientiae, 

Informatica, Vol.2, No.1, pp. 51-79.  
Alsinet, T. & Godo, L. (1998). Fuzzy Unification Degree, In: Proceedings 2nd Int Workshop on 

Logic Programming and Soft Computing ’98, in conjunction with JICSLP’98, 
Manchester, UK, pp. 23-43. 

Atanassov, K. (1983). Intuitionistic fuzzy sets, VII ITKR's Session, Sofia (deposed in Central 
Science-Technical Library of Bulgarian Academy of Science, 1697/84). 

Atanassov, K. & Gargov, G. (1989). Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and 
Systems,  Vol.31, No.3, pp. 343-349. 

Atanassov, K. (1994). Remark on intuitionistic fuzzy expert systems. BUSEFAL, Vol.59, pp. 
71-76. 

www.intechopen.com



 
Fuzzy Logic – Algorithms, Techniques and Implementations 

 

54

Atanassov, K. (2005). Intuitionistic fuzzy implications and modus ponens. Notes on 
Intuitionistic Fuzzy Sets, Vol. 11, pp. 1-5.  

Atanassov, K. (2006). On some intuitionistic fuzzy implications. Comptes Rendus de 
l'Academie Bulgare des Sciences, Tome, Vol. 59, pp. 19-24.  

Atanassov, K. (1999). Intuitionistic Fuzzy Sets, Springer-Verlag, Heidelberg 
Ceri, S.; Gottlob, G. & Tanca, L. (1990). Logic Programming and Databases, Springer-Verlag, 

Berlin 
Cornelis, C.; Deschrijver, G. & Kerre, E.E. (2004). Implication in intuitionistic fuzzy and 

interval-valued fuzzy set theory: construction, classification, application, 
International Journal of Approximate Reasoning, Vol.35, pp. 55-95. 

Dubois, D. & Prade, H. (1991). Fuzzy sets in approximate reasoning, Part 1: Inference with 
possibility distributions, Fuzzy Sets and Systems, Vol.40, pp. 143-202. 

Dubois, D.; Hajek, P. & Prade, H. (2000). Knowledge-Driven versus Data-Driven Logics, 
Journal of Logic, Language, and Information, Vol.9, pp. 65-89. 

Dubois, D.; Gottwald, S.; Hajek, P.; Kacprzyk, J. & Prade, H. (2005). Terminological 
difficulties in fuzzy set theory – The case of  Intuitionistic Fuzzy Sets, Fuzzy Sets and 
Systems, Vol.15, pp. 485-491. 

Formato, F.; Gerla, G. & Sessa, M.I. (2000). Similarity-based Unification, Fundamenta 
Informaticae, Vol.41, pp. 393-414. 

Julian-Iranzo, P. & Rubio-Manzano, C. (2009). A declarative semantics for Bousi~Prolog, 
PPDP '09: Proceedings of the 11th ACM SIGPLAN conference on Principles and practice 
of declarative programming. 

Julian-Iranzo, P. & Rubio-Manzano, C. (2010). An Efficient Fuzzy Unification Method and its 
Implementation into the BousiProlog System, WCCI2010 IEEE World Congress On 
Computational Intelligence, Barcelona. 

Lloyd, J.W. (1990). Foundations of Logic Programming, Springer-Verlag, Berlin 
Medina, J.; Ojeda-Aciego, M. & Vojtas, P. (2004). Similarity-based unification: a multi-adjoint 

approach, Fuzzy Sets and Systems, Vol.146, No.1, pp. 43-62. 
Sessa, M. I. (2002). Approximate reasoning by similarity-based SLD resolution, Theoretical 

Computer Science, Vol.275, No.1-2, pp. 389-426. 
Straccia, U. (2008). Managing Uncertainty and Vagueness in Description Logics, Logic 

Programs and Description Logic Programs, In: Reasoning Web 2008, C. Baroglio et 
al. (Eds), pp. 54-103, Springer-Verlag, Berlin 

Straccia, U.; Ojeda-Aciego, M. & Damasio, C.V. (2009). On Fixed-points of Multi-valued 
Functions on Complete Lattices and their Application to Generalized Logic 
Programs, SIAM Journal on Computing, Vol.8, pp. 1881-1911. 

Ullman, J.D. (1988). Principles of Database and Knowledge-base Systems, Computer Science 
Press, Rockville 

Virtanen, H.E. (1994) Fuzzy Unification, Proc. of IPMU’94, Paris (France), pp. 1147–1152. 
Zadeh, L. A. (1975) The concept of a linguistic variable and its application to approximate 

reasoning (I–II-III), Information Sciences, Vol.8, pp. 199-249; 301-357; Vol.9 pp. 43-80. 

www.intechopen.com



Fuzzy Logic - Algorithms, Techniques and Implementations

Edited by Prof. Elmer Dadios

ISBN 978-953-51-0393-6

Hard cover, 294 pages

Publisher InTech

Published online 28, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Fuzzy Logic is becoming an essential method of solving problems in all domains. It gives tremendous impact

on the design of autonomous intelligent systems. The purpose of this book is to introduce Hybrid Algorithms,

Techniques, and Implementations of Fuzzy Logic. The book consists of thirteen chapters highlighting models

and principles of fuzzy logic and issues on its techniques and implementations. The intended readers of this

book are engineers, researchers, and graduate students interested in fuzzy logic systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Agnes Achs (2012). From Fuzzy Datalog to Multivalued Knowledge-Base, Fuzzy Logic - Algorithms,

Techniques and Implementations, Prof. Elmer Dadios (Ed.), ISBN: 978-953-51-0393-6, InTech, Available from:

http://www.intechopen.com/books/fuzzy-logic-algorithms-techniques-and-implementations/from-fuzzy-datalog-

to-multivalued-knowledge-base



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


