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by Using Fuzzy Optimization Methods 
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Turkey 

1. Introduction 

This study aims to reveal the studies on design optimization of trusses using fuzzy logic. In 
literature there are many surveys on truss optimization or on fuzzy logic, but, none of them 
is focused on fuzzy design optimization of truss. We believe that this study will help the 
researcher willing to study on this area by drawing a framework of the studies and by 
showing the lack of the area. 

Firstly, a brief information fuzzy logic and optimization will be given. Then, studies will be 
classified under the topics related with the type of optimization problem and used method. 
In each topic, application area of fuzzy logic and main difference of the study will be 
explained. Classifications will also be shown as tables to show the overall picture. Lack of 
the area will be given in conclusion. 

2. Fuzzy logic 

Fuzzy sets are generalized sets introduced by Professor Zadeh as a mathematical way to 
represent and deal with vagueness in everyday life (Zadeh, 1965). Indeed, Zadeh informally 
states what he calls the principle of incompatibility: “As the complexity of a system 
increases, our ability to make precise and yet significant statements about its behavior 
diminishes until a threshold is reached beyond which precision and significance (or 
relevance) become almost mutually exclusive characteristics”. 

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle 
the concept of partial truth – the truth values between “completely true” and “completely 
false”. A type of logic that recognizes more than simple true and false values. With fuzzy 
logic, propositions can be represented with degrees of the truthfulness and falsehood. For 
example, the statement, today is sunny, might be 100% true if there are no clouds, 80% true 
if there are a few clouds, 50% true if it’s hazy and 0% true if it rains all day. 

Even though fuzzy sets were introduced in their modern form by Zadeh (1965), the idea of a 
multi-valued logic in order to deal with vagueness has been around from the beginning of 
the century. Peirce was one of the first thinkers to seriously consider vagueness; he did not 
believe in the separation between true and false and believed everything in life is a 
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continuum. In 1905 he stated: “I have worked out the logic vagueness with something like 
completeness” (Peirce, 1935). Other famous scientists and philosophers probed this topic 
further. Russell (1923) claimed, “All language is vague” and went further saying; “vagueness 
is a matter of degree” (e.g., a blurred photo is vaguer than a crisp one, etc.). Einstein said that 
“as far as the laws of mathematics refer to reality, they are not certain, and as far as they are 
certain, they do not refer to reality” (Black, 1937). Lukasiewicz took the first step towards a 
formal model of vagueness, introducing in 1920 a three-valued logic based on true, false, and 
possible (Lukasiewicz, 1970). In doing this he realized that the laws of the classical two-valued 
logic might be misleading because they address only a fragment of the domain. A year later 
Post outlined his own three-valued logic, and soon after many other multi-valued logics 
proliferated (Godel, von Neumann, Kleene etc.) (McNeill & Freiberger, 1993). A few years 
later, Black (1937) outlined his precursor of fuzzy sets. He agreed with Peirce in terms of the 
continuum of vagueness and with Russell in terms of the degrees of vagueness. Therefore, he 
outlined a logic based on degrees of usage, based on probability that a certain object will be 
considered belonging to a certain class. Finally, Zadeh (1965) elaborated a multi-valued logic 
where degrees of truth (rather than usage) are possible. 

Fuzzy set theory generalizes classical set theory in that the membership degree of an object 
to a set is not restricted to the integers 0 and 1, but may take on any value in [0,1]. By 
elaborating on the notion of fuzzy sets and fuzzy relations we can define fuzzy logic 
systems (FLS). FLSs are rule-based systems in which an input is first fuzzified (i.e. converted 
from a crisp number to a fuzzy set) and subsequently processed by an influence engine that 
retrieves knowledge in the form of fuzzy rules contained in a rule-base. The fuzzy sets 
computed by the fuzzy inference as the output of each rule are then composed and 
defuzzified (i.e., converted from a fuzzy set to a crisp number). A fuzzy logic system is a 
nonlinear mapping from the input to the output space. 

 
                                 (a)                                                                           (b) 

Fig. 1. Representation of set of heights from 1.5 to 2 meter for crisp (a) and fuzzy (b) 

As Figure 1 shows, crisp set is defined by membership of element X of set A . Fuzzy set 
contain objects that satisfy imprecise properties of membership . 

3. Optimization problem types 

An optimization or a mathematical programming problem can be stated as follows: 

 Find  which minimizes f(X) (1) 

Subject to the constraints: 
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 gj(X)≤0, j=1,2,…,m     and      lj(X)=0, j=1,2,…,p (2) 

where X is an n-dimensional vector called the design vector, f(X) is called the objective 
function and gj(X) and lj(X) are, respectively, the inequality and the equality constraints. The 
number of variables n and the number of constraints m and/or p need not be related in any 
way. 

Design vector. Any engineering system or component is described by a set of quantities 
some of which are viewed as variables during the design process. In general certain 
quantities are usually fixed at the outset and these are called preassigned parameters. All 
the other quantities are treated as variables in the design process and are called design or 
decision variables xi, i=1,2,…,n. 

Design constraints. In many practical problems, the design variables cannot be chosen 
arbitrarily; rather they have to satisfy certain specified functional and other requirements. 
The restrictions that must be satisfied in order to produce an acceptable design are 
collectively called design constraints. 

Objective functions. The conventional design procedure aim at finding an acceptable or 
adequate design, which merely satisfies the functional and other requirements of the problem. 
In general, there will be more than one acceptable designs and the purpose of optimization is 
to choose the best one out of the many acceptable design available. Thus a criterion has to be 
chosen for comparing the different alternate acceptable designs and for selecting the best one. 
The criterion with respect to which design is optimized, when expressed as a function of the 
design variables is known as criterion or merit or objective function. 

Optimization problems can be classified in several ways as described below. This classification 
is extremely useful from the computational point of view since there are many methods 
developed solely for the efficient solution of a particular class of problems. This will, in many 
cases, dictate the types of solution procedures to be adopted in solving the problem. 

3.1 Classification based on the existence of constraints  

As indicated earlier, any optimization problem can be classified as a constrained or an 
unconstrained one depending upon whether the constraints exist or not in the problem. 
Previously defined problem is called a constrained optimization problem. Used methods 
will differ according to problem type and at each following topic, appropriate methods will 
be given. Some optimization problems do not involve any constraints and can be stated as: 

 Find  which minimizes f(X)  (3) 

Such problems are called unconstrained optimization problems. Mostly known methods are 
Hooke-Jeeves Pattern Search Method and Powell’s Conjugate Gradient Method. Some 
methods (Penalty Function etc.) transform the constrained problem into unconstrained 
problem and then use mentioned methods (Rao, 1984). 

3.2 Classification based on the nature of equations involved  

Another important classification of optimization problems is based on the nature of 
expressions for the objective function and the constraints. According to this classification, 
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optimization problems can be classified as linear, nonlinear and dynamic programming 
problems. 

Nonlinear Programming Problem: If any functions among objective and constraints 
functions are nonlinear, the problem is called a nonlinear programming (NLP) problem. 
This is the most general programming problem and all other problems can be considered as 
special cases of the NLP problem. There are several type methods. Complex method is using 
only the function value to find optimum. On the other hand, feasible direction algorithm 
uses the derivative of the objective and constraints. 

Linear Programming Problem: If the objective function and all the constraints are linear 
functions of the design variables, the mathematical programming problem is called a linear 
programming (LP) problem. A linear programming problem is often stated in the following 
standard form: 

 Find  which minimizes  (4) 

 subject to the constraints                      ,  j=1,2,….,m  (5) 

and                            xi≥0, i=1,2,…,n where c,ajk and bj are constants. 

Although allocating resources to activities is the most common type of application, linear 
programming has numerous other important applications as well. Furthermore, a 
remarkably efficient solution procedure called the Simplex method, is available for solving 
linear programming problems of even enormous size. 

The Simplex method is a general procedure for solving linear programming problems and 
developed by George Dantzig in 1947 (Dantzig, 1963). It has proved to be a remarkably 
efficient method that is used routinely to solve huge problems on today’s computers. 

Dynamic Programming: In most practical problems, decisions have to be made sequentially 
at different points in time, at different points in space, and at different levels, say, for a 
component, for a subsystem, and/or for a system. The problems in which the decisions are 
to be made sequentially are called sequential decision problems. Since these decisions are to 
be made at a number of stages, they are also referred to as multistage decision problems. 
Dynamic programming is a mathematical technique well suited for the optimization of 
multistage decision problems. This technique was developed by Richard Bellman in the 
early 1950s. 

3.3 Classification based on the permissible values of the design variables 

Depending on the values permitted for the design variables, optimization problem is called 
a real-valued programming problem. 

Integer Programming Problem: If some or all of the design variables x1,x2,…xn of an 
optimization problem are restricted to take on only integer (or discrete) values, the problem 
is called an integer programming problem. Branch-and-Bound methods are widely used in 
this area. Local Search methods (GA etc.) are also used for this problem type. Moreover, 
there are hybrid applications like GA+ANN. The genetic algorithm (GA) is an optimization 
and search technique based on the principles of genetics and natural selection. The method 
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was developed by John Holland over the course of the 1960s and 1970s and finally 
popularized by one of his students, David Goldberg, who was able to solve a difficult 
problem involving the control of gas-pipeline transmission for his dissertation. Holland’s 
original work was summarized in his book (Holland, 1995). 

3.4 Classification based on the number of objective functions 

Depending on the number of objective functions to be minimized, optimization problem can 
be classified as single and multi-objective programming problem. 

Multiobjective Programming Problem: Multiobjective optimization in last two decades has 
been acknowledged as an advanced design technique in structural optimization 
(Eschenawer et.al., 1990). The reason is that most of the real-world problems are 
multidisciplinary and complex, as there is always more than one important objective in each 
problem. To accommodate many conflicting design goals, one needs to formulate the 
optimization problem with multiple objectives. One important reason for the success of the 
multiobjective optimization approach is its natural property of allowing the designer to 
participate in the design selection process even after the formulation of the mathematical 
optimization model.  The main task in structural optimization is determining the choice of 
the design variables, objectives, and constraints. Sometimes only one dominating criterion 
may be a sufficient objective for minimization, especially if the other requirements can be 
presented by equality and inequality constraints. But generally the choice of the constraint 
limits may be a difficult task in a practical design problem. These allowable values can be 
rather fuzzy, even for common quantities such as displacements, stresses, and natural 
frequencies. If the limit cannot be determined, it seems reasonable to treat that quantity as 
an objective. In addition, usually several competing objectives appear in a real-life 
application, and thus the designer is faced with a decision-making problem in which the 
task is to find the best compromise solution between the conflicting requirements. 

A multiobjective optimization problem can be formulated as follow: 

 Min  [f1(x), f2(x),..., fn(x)] (6) 

subject to 

 gj(x) ≥ 0j = 1,2,…,m (7) 

 hj(x) = 0j = 1,2,...,p< n (8) 

where x is n-dimensional design variable vector, fi(x) is objective function. 

A variety of techniques and applications of multiobjective optimization have been 
developed over the past few years. The progress in the field of multicriteria optimization 
was summarized by Hwang and Masud (1979) and later by Stadler (1984). Stadler inferred 
from his survey that if one has decided that an optimal design is to be based on the 
consideration of several criteria, then the multicriteria theory (Pareto theory) provides the 
necessary framework. In addition, if the minimization or maximization is the objective for 
each criterion, then an optimal solution should be a member of the corresponding Pareto set. 
Only then does any further improvement in one criterion require a clear tradeoff with at 
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least one other criterion. Radfors, et al (1985) in their study has explored the role of Pareto 
optimization in computer-aided design. They used the weighting method, noninferior set 
estimation (NISE) method, and constraint method for generating the Pareto optimal. The 
authors discussed the control and derivation of meaning from the Pareto sets. 

Pareto optimality serves as the basic multicriteria optimization concept in virtually all of the 
previous literature (Grandhi & Bharatram, 1993). A general multiobjective optimization 
problem is to find the vector of design variables X = ( x1, x2, …, xn )T that minimize a vector 
objective function F(X) over the feasible design space X. It is the determination of a set of 
nondominated solutions (Pareto optimum solutions or noninferior solutions) that achieves a 
compromise among several different, usually conflicting, objective functions. The Pareto 
optimal is stated in simple words as follows: A vector X* is Pareto optimal if there exists no 
feasible vector X which would increase some objective function without causing a 
simultaneous decrease in at least one objective function. This definition can be explained 
graphically. An arbitrary collection of feasible solutions for a two-objective maximization 
problem is shown in Figure 2. The area inside of the shape and its boundaries are feasible. 
The axes of this graph are the objectives F1 and F2. It can be seen from the graph that the 
noninferior solutions are found in the portion of the boundary between points A and B. 
Thus, here arises the decision-making problem from which a partial or complete ordering of 
the set of nondominated objectives is accomplished by considering the preferences of the 
decision maker. Most of the multiobjective optimization techniques are based on how to 
elicit the preferences and determine the best compromise solution. 

 
Fig. 2. Graphical Interpretation of Pareto Optimum 

Nearly all of the solution schemes used in multiobjective optimization involve some sort of 
scalarization of the vector optimization problem. The vector problem is replaced by some 
equivalent scalar minimization problem. Because the Pareto set is generally infinite, an 
additional use of scalarization is the selection of a unique member of the Pareto set as the 
optimum for the vector optimization problem. Usually, a problem is scalarized either by 
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defining an additional supercriterion function or by considering the criteria sequentially. 
There are various techniques for generating noninferior solutions (Stadler, 1984;Radford 
et.al., 1985; Grandhi & Bharatram, 1993). 

Weighting Method: This technique is based on the preference techniques of the weights’ 
prior assessment for each objective function. It transforms the multicriteria function to a 
single criterion function through a parameterization of the relative weighting of the 
criteria. With the variation of the weights, the entire Pareto set can be generated.  Because 
the results of solving an optimization problem can vary significantly as the weighting 
coefficients change, and very little is usually known about how to choose these 
coefficients, a necessary approach is to solve the same problem for many different values 
of weighting factors. However, because the shape and distribution characteristics of the 
Pareto set are unknown, it is difficult to determine beforehand the nature of the variations 
required in the weights so as to produce a new solution at each pass. The second 
important disadvantage of the method is that it will not identify the Pareto solutions in a 
nonconvex part of the set. 

The idea of this technique consists in adding all the objective functions together using 
different coefficients for each. It means that we change our multicriteria optimization 
problem to a scalar optimization problem by creating one function of the form 

  (9) 

where wi ≥ 0 are the weighting coefficients representing the relative importance of the 
criteria. It is usually assumed that 

  (10) 

Since the results of solving an optimization model using Eq. (9) can vary significantly as the 
weighting coefficients change and since very little is usually known about how to choose 
these coefficients, a necessary approach is to solve the same problem for many different 
values of wi. 

Note that the weighting coefficients do not reflect proportionally the relative importance of 
the objectives but are only factors which when varied locate points in the domain. For the 
numerical methods of seeking the minimum of Eq. (10) this location depends not only on 
values of wi but also on units in which the functions are expressed.  

The best results are usually obtained if objective functions are normalized. In this case the 
vector function is normalized to the following form 

   (11) 

where   
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Here, fio is generally the maximum value of ith objective function. A condition fio≠0 is 
assumed and if it is not satisfied which rarely happens; another value of normalizing 
function must be chosen by the decision maker.  

Game Theory: Game theory deals with decision situations in which two intelligent 
opponents with conflicting objectives are trying to outdo one another. It is a mathematical 
theory that deals with the general features of competitive situations like these in a formal, 
abstract way. It places particular emphasis on the decision-making processes of the 
adversaries. Typical examples include launching advertising campaigns for competing 
products and planning strategies for warring armies. 

In a game conflict, two opponents, known as players, will each have a (finite or infinite) 
number of alternatives or strategies. Associated with each pair of strategies is a payoff that 
one player receives from the other. Such games are known as two-person zero-sum games 
because a gain by one player signifies an equal loss to the other. It suffices, then, to 
summarize the game in terms of the payoff to one player. 

Because games are rooted in conflict of interest, the optimal solution selects one or more 
strategies for each player such that any change in the chosen strategies does not improve the 
payoff to either player. These solutions can be in the form of a single pure strategy or several 
strategies mixed according to specific probabilities (Frederick & Gerald, 2001). 

Goal Programming: Goal programming was proposed by Charnes & Cooper (1961) for a 
linear model. It has been further developed by others (Ijiri, 1965; Charnes & Cooper, 1977). 
This method requires the decision maker (DM) to set goals for each objective that he wishes 
to attain. A preferred solution is then defined as the one, which minimizes the deviations 
from the set goals. Thus a simple GP formulation of the multiobjective optimization 
problem is given by 

 Min   (12) 

Subject to: 

 

 (13) 

where bj’s are the goals set by the DM for the objectives,  and  are respectively the under-
achievement and over-achievement of the jth goal. The value of p is based on the utility 
function of the DM. Other than p = 1 results in a nonlinear goal programming problem. 

The most common form of GP requires that the DM, in addition to setting the goals for 
objectives, also be able to give an ordinal ranking of the objectives. This may result in a 
nonlinear goal-programming problem if objectives or constraints are nonlinear. 
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Goal Attainment Method, Global Criterion Method and Utility Function Method are also 
used to solve multiobjective optimization problems. 

4. Fuzzy optimization 

The available general model of a programming with fuzzy resources can be formulated as: 

 min f(X) (14) 

 subject to , i=1,2,…,n (15) 

 XL ≤X ≤XU (16) 

where the objective function and the ith in-equality constrained function are indicated as f 
(X) and gi(X) , respectively. The fuzzy number ,∀i  are in the fuzzy region of [bi , bi + pi] with 
given fuzzy tolerance pi. Assume the fuzzy tolerance pi for each fuzzy constraint is known, 
then, , will be equivalent to (bi + θ  pi) ,∀i where θ is in [0 , 1]. Several methods are described 
in the following section. All methods, except the first one (R.E. Bellman and L.A. Zadeh’s 
approach), are derivatives of the level cuts method and generally using ordinary crisp 
optimization methods by converting problem into crisp optimization problem. 

4.1 R.E. Bellman and L.A. Zadeh’s approach 

In Bellman and Zadeh (1970) approach, the problem in fuzzy environment can be stated as, 

 Find X which minimizes f(X) (17) 

 subject to gj(X) ∈ Gj   j=1,2,…,n (18) 

where ordinary subset Gj denotes the allowable interval for the constraint function gj, Gj 
=[gj(l) , gj(u)] the bold face symbols indicate that the operations or variables contain fuzzy 
information. The constraint gj(X) ∈ Gj means that gj is a member of a fuzzy subset Gj in the 
sense of µGj(gj) > 0. The fuzzy feasible region is defined by considering all the constraints as  

   (19) 

And the membership degree of any design vector X to fuzzy feasible region S is given by  

   (20) 

i.e., the minimum degree of satisfaction of the design vector X to all of the constraints. 

A design of vector X is considered feasible provided µS(X) > 0 and the differences in the 
membership degrees of two design vectors X1 and X2 imply nothing but variations in the 
minimum degrees of satisfaction of X1 and X2 to the constraints. Thus the optimum solution 
will be a fuzzy domain D in S with f(X). The fuzzy domain D is defined by 

  (21) 

that is 
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  (22) 

If the membership function of D is unimodal and has a unique maximum, then the 
maximum solution X* is one for which the membership function is maximum: 

  (23) 

4.2 Verdegay’s approach: α-cuts method 

Verdegay (1982) considered that if the membership function of the fuzzy constraints has the 
following form: 

  (24) 

Simultaneously, the membership functions of µgi(X), ∀I, are continuous and monotonic 
functions, and trade-off between those fuzzy constraints are allowed; then problem is 
equivalent to the following formulation: 

 Min f(X) (25) 

 Subject to X ε Xα  (26) 

where Xα= {x ¡ µgi(X) ≥α, ∀i X ≥ 0}, for each αε [0, 1]. This is the fundamental concepts of α-
level cuts method of fuzzy mathematical programming. The membership function indicates 
that if gi(X) ε(bi,bi + pi); then the memberships functions are monotonically decreasing. That 
also can means, the more resource consumed, the less satisfaction the decision maker thinks. 
One can then obtain the following formulation: 

 Min f(X) (27) 

 subject to gi(X) ≤bi + (1-α) pi, ∀i (28) 

where XL ≤X ≤XU and αε[0, 1]. Thus, the problem is equivalent to a crisp parametric 
programming formulation while α= 1-θ. For each α, one will have an optimal solution;  
therefore, the solution with αgrade of membership function is fuzzy. This model was 
applied by Wang & Wang (1985) and Rao (1987a) in structural design problems. 

4.3 Werner’s approach: Max-α method 

Werner’s (1987) proposed the objective function should be fuzzy due to the fuzziness 
existing in fuzzy inequality constraints. For solving equations, one needs to define fmax and 
fmin as follows: 

 fmax = Min f(X), s.t. gi(X) ≤bi ∀i , and XL ≤X ≤XU (29) 
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 fmin= Min f(X), s.t gi(X) ≤bi + pi, ∀i, and XL ≤X ≤XU (30) 

The membership function mf(X) of the objective function is stated as: 

  (31) 

One can consequently apply the max-min operator to obtain the optimal decision. Then, 
equations can be solved by the strategy of max-α, where 

α= min[µf(X), µg1(X), µg2(X),…,µgm(X)]. That is: 

Max α 

 Subject to α≤µf(X) (32) 

α≤µgi(X), ∀i 

where α ε 0, 1] and XL ≤X ≤XU. This model is similar to the model proposed by 
Zimmermann (1978) and applied in structural design by Rao (1987b) and Rao et.al. (1992). 

4.4 Xu’s approach: Bound search method 

Suppose there are a fuzzy goal function f and a fuzzy constraint C in a decision space X, 
which are characterized by their membership functions µf(X) and µC(X), respectively. The 
combined effect of those two can be represented by the intersection of the membership 
functions and the following formulation. 

   (33) 

Then Bellman & Zadeh (1970) proposed that a maximum decision could be defined as: 

  (34) 

If µD(X) has a unique maximum at XM, then the maximizing decision is a uniquely defined 
crisp decision. From equations and following the procedure given, one can obtain the 
particular optimum level α* corresponding to the optimum point XM such that: 

  (35) 

where Cα* is the fuzzy constraint set C of α*-level cut. 

Xu (1989) used a goal membership function of f(X) as following: 

   (36) 
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where fmin has been defined as before. It is apparent that the upper and lower bound of this 
goal membership function is between 1 and fmin /fmax. As a result, the optimum α* can be 
achieved through an iteration computation. This method has been called the 2nd phase of α-
cuts method in his paper(Xu, 1989). 

4.5 Single level cuts method 

It is observed in Xu’s approach where maximizing µf(X) is similar to maximizing α in 
Werner’s approach; therefore, it is predicted the final result of those two approaches have 
the similar tendency, even though the form of their membership function is not the same, in 
which Werner’s approach uses the linear function and Xu’s approach uses the nonlinear 
function. 

For obtaining the unique solution of the original α-level cuts approach in nonlinear 
programming problem with fuzzy resources, another alternative single level-cut approach 
called the single level-cut approach of the second kind is proposed (Shih et.al., 2003). This 
approach contains both linear membership function and nonlinear membership function of 
objective function. 

  (37) 

The mathematical formulation of the fuzzy problem with unique α−cut level can be written 
in the following: 

Find [X, α]T 

min f(X) 

subject to f(X)-[fmax-α(fmax-fmin)]=0 (for linear αf(X)) 

 f(X)-(fmin/α)=0 (for nonlinear αf(X))  (38) 

gi(X)≤bi+(1-αpi), ∀i 

α∈[0,1] (for linear αf(X)) 

α∈ [fmin/fmax] (for linear αf(X)) 

where XL ≤ X ≤ XU and f(X) can be nonlinear or linear membership functions. 

There are also new approaches in literature, based on fuzzy set theory like Evidence Theory. 
Evidence theory is based on the Belief (Bel) and Plausibility (Pl) fuzzy measures. Fuzzy 
measures provide the foundation of fuzzy set theory. 

5. Fuzzy design optimization applications 

This section will classify the applications using previously mentioned methods. As 
mentioned earlier, optimization can be classified according to how many objectives problem 
have. Investigated literature studies are shown in Table 1 from objective perspective. 
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Table 1. Investigated Literature 

Shih et.al. (2003) developed and proposed three alternative α-level-cuts approaches: single-
cut, double-cuts, and multiple-cuts, for solving nonlinear programming design problems of 
structuring engineering with fuzzy resources. The approaches have performed better than 
that of conventional α-level-cuts method. 

Hsu et.al. (1995) considered the optimization process as a closed-loop control system. 
Traditional "controllers", the numerical optimization algorithms, are usually "crisply" 
designed for well defined mathematical models. However, when applied to engineering 
design optimization problems in which function evaluations can be expensive and 
imprecise, very often the crisp algorithms will become impractical or will not converge. 
They presented how the heuristics of this human supervision can be modeled into the 
optimization algorithms using fuzzy control concept. 

Shih (1997) employed three fuzzy models to combine with an improved imposed-on penalty 
approach for attacking a nonlinear multiobjective in the mixed-discrete optimization 
problem. He presented a penalty method, including the forms of penalty function and the 
values of each parameter. The presented strategy is suggested as appropriate for solving a 
generalized mixed-discrete optimization problem. 

Arakawa et.al. (1999) showed the effectiveness of the use of fuzzy members as design 
variables, by comparing with the other robust design methods. They proposed a way to 
raise certainties in estimating robustness by using approximation concepts in operation of 
fuzzy function. 

Fang et.al. (1998) considered an approach to the optimum design of structures, in which 
uncertainties with a fuzzy nature in the magnitude of the loads. The optimization process 
under fuzzy loads is transformed into a fuzzy optimization problem based on the notion 
of Werners’ maximizing set by defining membership functions of the objective function 
and constraints. An example of a ten-bar truss is used to illustrate the present 
optimization process. The results are compared with those yielded by other optimization 
methods. 
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Mohandas et.al. (1990) has combined Zadeh’s approach in Eq. (20) with goal programming. 
They implemented this approach to single objective optimization problems. As example 
problems, optimization of four bar and ten bar truss are selected. No comparison is made in 
this work. 

Yang and Soh (2000) proposed a fuzzy logic integrated genetic programming (GP) based 
methodology to increase the performance of the GP based approach for structural 
optimization and design. Fuzzy set theory is employed to deal with the imprecise and vague 
information, especially the design constraints, during the structural design process. 

Joghataie and Ghasemi (2001) implemented fuzzy membership functions in the multistage 
optimization technique to improve its performance for the minimum weight design of truss 
structures of fixed topology. It has been found that this technique has significantly 
improved the convergence speed at the expense of increasing the minimum weight by a 
negligible amount. 

Shih et.al. (2004) presented new method (Two single level cut approach). Also, new method 
is implemented on three bar, ten bar and 25 bar truss optimization problems and objective 
function values are compared with Verdegay’s approach in section IV.2, Werner’s approach 
in section IV.3 and Xu’s approach in section IV.4.  

Shih and Lee (2006) presented the modified double-cuts approach for large-scale fuzzy 
optimization, typically in 25-bar and 72-bar truss design problems. The proposed approach 
is better than the single-cut approach and easy programming for use to instead of multiple-
cuts approach. 

Maglaras et.al. (1997) compared probabilistic and fuzzy set based approaches in designing a 
damped truss structure.  

Sarma (2001) developed a fuzzy discrete multicriteria cost optimization model by 
considering three criteria 1) minimum cost 2) minimum weight and 3) minimum number of 
section types. In the design, the uncertainty of fuzziness of the AISC code based design 
constraints is considered. 

Sarma and Adeli (2000a, 2000b) presented a fuzzy augmented Lagrangian GA for 
optimization of steel structures subjected to the constraints of the AISC allowable stress 
design specifications taking into account the fuzziness in the constraints. The algorithm is 
applied to two space axial-load structures including a large 37-story structure with 1310 
members. 

Rao and Xiong (2005) presented a new method in which the fuzzy lambda-formulation and 
game theory techniques are combined with a mixed-discrete hybrid genetic algorithm for 
solving mixed-discrete fuzzy multiobjective programming problems. They dealt with three 
example problems: the optimal designs of a two-bar truss, a conical convective spine and a 
twenty-five bar truss. 

Wang et.al. (2005) studied the principle of solving multiobjective optimization problems 
with fuzzy sets theory. Membership functions based on functional-link net have been used 
in multiobjective optimization. 
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Yoo and Hajela (2001) have dealt with a genetic algorithm based optimization procedure for 
solving multicriterion design problems where the objective or constraint functions may not 
be crisply defined. 

Forouraghi et.al. (1994) introduced a new methodology in which multiobjective 
optimization is formulated as unsupervised learning through induction of multivariate 
regression trees. In particular, they showed that learning of Pareto-optimal solutions can be 
eficiently accomplished by using a number of fuzzy tree-partitioning criteria. The widely 
used problem of design of a three-bar truss is presented. 

Shih et.al. (1997) introduced a design method using fuzzy logic to find the best stochastic 
design by maximizing Hasofer-Lind's (H-L's) reliability and simultaneously optimizing 
design goals. The objective weighting strategy in multiobjective fuzzy formulation is 
adopted to represent the importance among the design goals. 

Rao (1987b) has used Werner’s approach in section IV.3. This approach is presented to solve 
multiobjective optimization problems. Sample problems are three bar and 25 bar truss 
optimization problems. No comparison is made in this work. 

Shih & Chang (1995) has combined Werner’s approach in section IV.3 with Global Criterion 
method and implemented on multiobjective optimization problems. As sample cases, three 
bar truss and 11 bar truss are solved and results (objective function values) are compared. 

Chen and Wang (1989) proposed a general fuzzy programming with wide generality in 
order to consider the overall fuzzy factors and fuzzy information in optimum design of 
engineering structures. 

Shih & Lai (1994) has used two weighting strategies to get Pareto optimum values: objective 
weighting and membership weighting strategies. Three bar truss optimization problem is 
selected as sample multiobjective optimization problem. Objective function values are 
presented as comparison criteria. 

Rao et.al. (1992) have used two methods: Verdegay’s approach in section IV.2 and Werner’s 
approach in section IV.3 for multiobjective optimization problems. As sample cases, 
optimization of three bar and 25 bar truss systems are selected. Objective function values are 
used to compare methods. 

Kiyota et.al. (2001, 2003) described a fuzzy satisficing method for multiobjective 
optimization problems using Genetic Algorithm (GA). A multiobjective design problem 
with constraints is expressed as a satisficing problem of constraints by introducing an 
aspiration level for each objective.  

Kelesoglu & Ulker (2005a) optimized space truss systems by using fuzzy sets. The algorithm 
of multi-objective fuzzy optimization was formed using the macros of Ms-Excel. 

Cheng and Li (1997) presented a constrained multiobjective optimization methodology by 
integrating Pareto Genetic algorithm with fuzzy penalty function method. A 72-bar space 
truss with two criteria and a 4-bar truss with three criteria were investigated. 

Kelesoglu & Ulker (2005b) presented a general algorithm for nonlinear space truss system 
optimization with fuzzy constraints and fuzzy parameters. The analysis of the space truss 
system is performed with the ANSYS program. 
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Kelesoglu (2007) proposed a genetic algorithm to solve fuzzy multiobjective optimization of 
space truss. This method enables a flexible method for optimal system design by applying 
fuzzy objectives and fuzzy constraints. An algorithm was developed by using MATLAB 
programming. The algorithm is illustrated on 56-bar space truss system design problem. 

At following pages, these studies will be classified according to used methods and 
application area. 

5.1 Single objective applications 

Table 2 shows the objectives in literature. It is seen that minimizing weight is the most 
common objective for single objective optimization studies. Minimizing failure possibility 
and natural frequency are also used even though found rarely. 

 

 
 

Table 2. Objectives in single objective problems 

Used methods differ at each study. But, generally there are two different applications: Direct 
methods and Hybrid Methods. Also, hybrid methods differ according to at where fuzzy 
logic is applied. Sometimes, fuzzy logic assists to another optimization method and 
sometimes vises versa. Table 3 shows the studies in literature according to used method 
type. Table 4 shows the hybrid methods. 

 
 

Direct Hybrid 
(Maglaraset.al., 1997; Fang et.al., 
1998; Arakawa et.al., 1999; Jensen, 
2001; Shih et.al., 2003; Shih & Lee, 
2004; Marler et.al., 2004; Shih & 
Lee, 2006)  

(Yeh & Hsu, 1990; Mohandas et.al., 1990; Hsu et.al., 
1995; Shih, 1997; Tonona & Bernardini, 1998; Sarma 
& Adeli, 2000b; Yang & Soh, 2000; Joghataie & 
Ghasemi, 2001; Sarma, 2001; Xiong, 2002; Xiong & 
Rao, 2005; Liu, 2006; Khorsand & Akbarzadeh, 2007) 

 

Table 3. Used methods in single objective problems 
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Table 4. Hybrid methods in single objective problems 

Mentioned methods are applied to different truss structures. These structures are listed in 
Table 5. 

 
 PLANAR (2D) SPACE(3D) 
2 bar: (Khorsand & Akbarzadeh, 2007)  
3 bar: (Yeh & Hsu, 1990; Hsu et.al., 1995; 

Shih, 1997; Arakawa et.al., 1999; 
Shih et.al., 2003; Shih & Lee, 2004; 
Liu, 2006) 

 

4 bar: (Mohandas et.al., 1990; Fang et.al., 
1998; Xiong, 2002; Xiong & Rao, 
2005) 

 

10 bar: (Mohandas et.al., 1990; Tonona & 
Bernardini, 1998; Yang & Soh, 2000; 
Joghataie & Ghasemi, 2001; Shih & 
Lee, 2004) 

 

25 bar:  (Jensen, 2001; Shih & Lee, 2004; 
Marler et.al., 2004; Shih & Lee, 2006) 

30 bar:  (Maglaraset.al., 1997) 
46 bar: (Joghataie & Ghasemi, 2001)  
72 bar:  (Sarma & Adeli, 2000b; Sarma, 2001; 

Shih & Lee, 2006) 
135 bar: (Joghataie & Ghasemi, 2001)  
1310 bar:  (Sarma & Adeli, 2000b; Sarma, 2001) 

Table 5. Truss structures in single objective problems 

5.2 Multi objectives applications 

Table 6 shows the objectives in literature. It is seen that minimizing weight is still the most 
common objective for single objective optimization studies. Minimizing deflection and 
natural frequency are also used. 
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Table 6. Objectives in multi objective problems 

Table 7 shows the studies in literature according to used method type. Table 8 shows the 
hybrid methods. 

 
 

Direct Hybrid 
(Rao, 1987b; Chen & Wang, 1989; Rao et.al., 
1992; Yu & Xu, 1994; Forouraghi et.al., 1994; 
Shih & Chang, 1995; Shih & Wangsawidjaja, 
1995; Shih & Wangsawidjaja, 1996; Shih et.al., 
1997; Yoo, 2000; Kelesoglu & Ulker, 2005a; 
Kelesoglu & Ülker, 2005b) 

(Shih & Lai, 1994; Cheng & Li, 1997; Sarma 
& Adeli, 2000a; Sarma, 2001; Kiyotaet.al., 
2001; Yoo & Hajela, 2001; Xiong, 2002; 
Kiyotaet.al., 2003; Wang et.al., 2005; Rao & 
Xiong, 2005a; Rao & Xiong, 2005b; 
Kelesoglu, 2007) 

 

Table 7. Used methods in multiobjective problems 
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Table 8. Hybrid methods in multi objective problems 

Mentioned methods are applied to different truss structures. These structures are shown in 
Table 9. 

 
 
 

 PLANAR (2D) SPACE (3D) 

2 bar: (Xiong, 2002; Rao & Xiong, 2005a; 
Rao & Xiong, 2005b) 

 

3 bar: (Rao, 1987b; Chen & Wang, 1989; 
Rao et.al., 1992; Yu & Xu, 1994; Shih 
& Lai, 1994; Forouraghi et.al., 1994; 
Shih & Chang, 1995; Shih & 
Wangsawidjaja, 1995; Shih & 
Wangsawidjaja, 1996; Shih et.al., 
1997; Yoo, 2000; Yoo & Hajela, 2001; 
Wang et.al., 2005) 

 

4 bar: (Kiyota et.al., 2001; Kiyota et.al., 
2003) 

(Cheng & Li, 1997; Kelesoglu & 
Ülker, 2005b) 

9 bar:  (Kelesoglu & Ulker, 2005a) 

10 bar: (Shih, 1997)  

11 bar: (Yoo & Hajela, 2001)  

25 bar:  (Rao, 1987b; Rao et.al., 1992; Xiong, 
2002; Rao & Xiong, 2005a; Rao & 
Xiong, 2005b; Kelesoglu & Ülker, 
2005b) 

56 bar:  (Kelesoglu, 2007) 

72 bar:  (Cheng & Li, 1997) 

120 bar:  (Kelesoglu & Ulker, 2005a) 

244 bar:  (Kelesoglu & Ulker, 2005a) 

1310 bar:  (Sarma & Adeli, 2000a; Sarma, 2001) 

Table 9. Truss structures in multi objective problems 
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6. Conclusions 

Design of structural systems has always been one of the most important topics to study. But, 
over the years, optimization of structural system has gained popularity. Today, there are a 
few conferences and journals concerning only the optimization of structural systems. This 
study aimed to summarize the studies on using fuzzy logic in optimization of structural 
systems. Following results has been found as remarkable to notice: 

*Fuzzy logic is applied to different variety of structural design problems (single and 
multiobjective problems, simple and complex problems etc.) 

*Most important objectives in designing optimal structures are minimizing weight and 
deflection.  

*Both direct and hybrid methods are used. Especially using GA together with fuzzy logic 
has given better performance. It is recommended to the researchers to use also other 
evolutionary algorithms (Simulated Annealing, Particle Swarm Optimization etc.) 

*Mostly used case examples are 3 bar and 25 bar truss systems. 
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