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1. Introduction 

Restoration from peripheral nerve injury requires both neuronal cell survival and axonal 

regeneration across the site of injury and along the distal nerve stump as well as 

functional reconnection with the appropriate targets. It is no doubt that the concerted 

interplay of regenerating axons, non-neuronal cells (e.g. Schwann cells and macrophages), 

neurotrophic factors and cytokines, cell adhesion molecules, and extracellular matrix 

components is essential for successful nerve regeneration (Zochodne, 2008). A plenty of 

molecules have been implicated in the regenerative response to nerve injury (Terenghi, 

1999; Yasuda et al., 2003) and the therapeutic approaches using the delivery systems for 

the target genes have been receiving increasing attention (Mason et al., 2011); however, 

the signals that prompt neurons to extend processes in peripheral nerves after injury are 

not fully understood. 

We have established three-dimensional collagen gel culture system of ganglion explants, in 

which adult peripheral ganglia (mainly dorsal root ganglia (DRG)) with nerve fibers are 

embedded in collagen gel and the number and length of regenerating neurites from nerve-

transected terminals are measured under a phase-contrast microscope (Fig.1, right; 

reproduced from Sango et al., 2006). Since the cell-cell interactions are maintained in the 

explanted ganglia, it is fair to state that the explant culture system mimics nerve 

regeneration in vivo better than the dissociated cell culture system (Fig.1, left). By employing 

the explant models, we showed that various kinds of neurotrophic factors (Horie et al., 

1991a; Akahori et al., 1997), cytokines (Horie et al., 1997; Shuto et al., 2001), co-cultured 

tissues (Horie et al., 1991b; Saito et al., 2002) and experimental diabetes (Saito et al., 1999; 

Sango et al., 2002) enhanced neurite regeneration. 
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Fig. 1. Schematic representation of the methods for dissociated cell culture and explant culture 
of peripheral ganglia. In the former, each of the ganglion neurons is mechanically and 
enzymatically isolated, and seeded onto culture dishes precoated with extracellular 
substrate(s). In the latter, peripheral ganglia with nerve fibers are embedded in collagen gel. 
The number and length of regenerating neurites from nerve-transected terminals are 
measured under a phase-contrast microscope (Reproduced from Sango et al., Current Diabetes 
Reviews, 2006, Vol.2, No.2, pp.169-183, with permission from Bentham Science Publishers Ltd.). 

Furthermore, we searched for novel axonal regeneration-promoting factors from the culture 
supernatants of COS1 cells (a cell line derived from the kidneys), and purified the protein 
with molecular weight of around 14 kDa. The analysis of the internal amino acid sequences 
of the active protein indicated that it was identical to galectin-1 (GAL-1) (Horie et al., 1999). 

GAL-1 is a member of the galectins, a family of -galactoside binding animal lectin 
(Barondes et al., 1994) and has been shown to play roles in a wide variety of biological 
functions such as cell growth and differentiation, apoptosis, cell adhesion, tumor spreading, 
and inflammatory response (Camby et al., 2006; Rabinovich et al., 2007). Most of the studies 
on the biological activities of GAL-1 were performed under reducing conditions, and the 
effects of GAL-1 were inhibited by lactose. However, the 14 kDa protein secreted from COS1 
cells exists as an oxidized form of GAL-1 (GAL-1/Ox), containing three intramolecular 
disulfide bonds (Cys2-Cys130, Cys16-Cys88, and Cys42-Cys60) as shown in Fig. 2. (reproduced 
from Kadoya & Horie, 2005). 

In contrast to the concept that GAL-1 is biologically active only in the reduced form, we 
introduced GAL-1/Ox as a novel factor enhancing axonal regeneration in peripheral nerves 
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(Inagaki et al., 2000; Horie et al., 1999, 2004, 2005). The potent activity of recombinant human 
GAL-1/Ox on axonal regeneration has been confirmed by several in vivo experiments (Horie 
et al., 1999; Fukaya et al., 2003; Kadoya et al., 2005). 

 

Fig. 2. Bubble map of reduced and oxidized GAL-1. GAL-1 having -galactoside-binding 
activity exists in a reduced form, whereas oxidized GAL-1 contains three intramolecular 
disulfide bonds (Reproduced from Kadoya & Horie, Current Drug Targets, 2005, Vol.6, No.4, 
pp. 375-383, with permission from Bentham Science Publishers Ltd.) 

The growing evidence suggests that both reduced and oxidized forms of GAL-1 are 
involved in the repair process after nerve injury (Camby et al., 2006), but there is a marked 
difference in the structural and functional properties between the two forms; GAL-1 in the 
reduced form acts on nervous tissue as a lectin (Sasaki et al., 2004; Plachta et al., 2007), 
whereas GAL-1/Ox lacks lectin activity and acts as a cytokine-like molecule (Horie et al., 
1999; Inagaki et al., 2000; Kadoya et al., 2005). In this chapter, we further characterize GAL-1 
as a multi-functional molecule in the peripheral nervous system, focusing on its distribution, 
regulation of synthesis, extracellular release and oxidation, and possible action mechanisms 
for neuroprotection and axonal regeneration after injury. 

2. Localization of GAL-1 in the peripheral nervous system 

GAL-1 is encoded by the LGALS1 gene located on the human chromosome 22q13.1. The 0.6 kb 
transcript results from the splicing of four exons and encodes for a protein of 135 amino acids. 
It exists as a monomer as well as a non-covalent homodimer with a subunit molecular weight 
of 14.5 kDa (Barondes et al., 1994; Sango et al., 2004). GAL-1 is highly expressed in peripheral 
nervous tissues of adult rodents, with immunoreactivity localized to cell bodies of sensory and 
motoneurons, axons and Schwann cells (Fukaya et al., 2003; Akazawa et al., 2004). GAL-1 
mRNA persists in DRG neurons at later developmental stages and is maintained in adult DRG 
neurons. Using in situ hybridization histochemistry, GAL-1 mRNA has been detected in nearly 

all neurons of the DRG. In general, the staining intensity in smaller diameter (<30 m) neurons  
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was higher than that in larger diameter neurons (Sango et al., 2004). The small DRG neurons 
are reported to have small myelinated (A) and unmyelinated (C) fibers, which can play an 
essential role in thermoreception and nociception; whereas the large neurons have large 
myelinated (A) fibers and are known to be mostly sensitive mechenoreceptors (Salt & Hill, 
1983). Therefore, predominant expression of GAL-1 mRNA/protein in subpopulations of 
small diameter neurons (Regan et al., 1986, Hynes et al., 1990, Imbe et al., 2003, Sango et al., 
2004, McGraw et al., 2005a) suggests that this molecule is involved in the transmission of 
nociceptive and thermoceptive information. In fact, mice lacking GAL-1 showed reduced 
sensitivity to noxious thermal stimuli (McGraw et al., 2005b). 

2.1 Predominant expression of GAL-1 in small IB4-binding DRG neurons in vivo 

Adult DRG neurons can be broadly divided into three principal subgroups by their soma 
size and characteristic markers (Fig.3; modified from McMahon & Bennett, 2000): 

1. large neurons; immunoreactive for 200 kD neurofilaments (NF200), 
2. small peptidergic neurons; immunoreactive for calcitonin gene-related peptide (CGRP) 

and high-affinity NGF receptor (trkA), and 
3. small non-peptidergic neurons; immunoreactive for GDNF receptors (Ret, GFR) and 

binding to isolectin B4 (IB4). 

 

Fig. 3. Three principal subgroups of adult DRG neurons. Large neurons, immunoreactive for 
200 kDa neurofilament, are known to possess large myelinated fibers. Small neurons are 
divided into peptidergic and non-peptidergic neurons; peptidergic neurons are 
immunoreactive for CGRP and high affinity NGF receptor trkA, whereas non-peptidergic 
neurons bind the lectin IB4 and express GDNF receptors. Both groups of small neurons are 
known to possess small myelinated and unmyelinated fibers (modified from McMahon & 
Benette, Molecular Basis of Pain Induction, 2000, pp. 65-86, with permission from John Wiley & 
Sons, Inc.). 
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Both small peptidergic and non-peptidergic neurons are responsible for the transmission of 

nociception and thermoreception, and whether these two groups of neurons have distinct 

functions has been the subject of controversy (McMahon & Bennett, 2000; Ernsberger, 2009).  

 

Fig. 4. Predominant expression of GAL-1 in small non-peptidergic neurons of adult rat DRG. 
Immunofluorescence micrographs of adult rat DRG sections, stained with antibodies to 
GAL-1 (red) and CGRP, IB4, or NF200 (green). The merged pictures are on the right. Almost 
all GAL-1 intensely labeled neurons are IB4-binding neurons, and distinguished from CGRP 
intensely labeled neurons and NF200 intensely labeled neurons. 

Our immunohistochemical analysis revealed intense immunoreactivity for GAL-1 in a subset 

of small diameter neurons in the sections of adult rat lumbar DRG (Fig.4, left). The ratio of 

GAL-1-immunoreactive (IR) neurons was 31.6±5.4 (mean±SD from nine sections, 1717 

neurons from three animals). By double immunofluorescent staining, 96.5±1.3 of the GAL-1-

IR neurons were IB4-binding, whereas 3.7±1.2% and 0% were CGRP-IR and NF200-IR, 

respectively (Fig.4, center and right). These findings agree with the previous study by Imbe et 

al. (2003); they performed immunohistochemistry and in situ hybridization using two pairs of 

consecutive sections of lumbar DRG, and observed that 93.9% and 6.8% of the intensely GAL-

1-IR neurons displayed mRNA for c-RET and trkA, respectively. On the other hand, the 

double immunofluorescent staining with the sections of cervical DRG (McGraw et al., 2005a) 
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showed that 33% and 28% of the GAL-1-IR neurons were IB4-binding and CGRP-IR. Such 

differences may arise from variations in the distribution of GAL-1 at different spinal levels 

and/or different evaluation of the intensity for GAL-1-IR among the investigators. The finding 

that mice lacking GAL-1 showed reduced proportion of IB4-binding DRG neurons (McGraw 

et al., 2005b) indicates the involvement of GAL-1 in the proper phenotypic differentiation of 

the non-peptidergic DRG neurons during development. 

2.2 GDNF upregulates protein expression of GAL-1 in cultured DRG cells 

Our immunohistochemical analyses revealed that almost all the GAL-1 intensely stained 

DRG neurons were IB4-binding small non-peptidergic neurons (Figs.3&4). Since NGF and 

GDNF are likely to exert their major effects on small peptidergic and non-peptidergic 

neurons, respectively (Molliver et al., 1997), it seems plausible that GDNF regulates 

synthesis and/or distribution of GAL-1 in non-peptidergic DRG neurons. Following 

peripheral axotomy, GAL-1 expression was downregulated in small DRG neurons but was 

upregulated in NF200-IR large neurons (Imbe et al., 2003; McGraw et al., 2005a). These 

findings imply that retrogradely transported NGF and/or GDNF play a role in the 

dominant expression of GAL-1 in small DRG neurons (Lindsay & Harmar, 1989; Bennett et 

al., 1998). 

By employing the dissociated cell culture model (Fig.1, left), we examined the effects of 

recombinant NGF and GDNF on neurite outgrowth and GAL-1 expression in adult rat 

DRG. As shown in previous studies (Lindsay, 1988; Gavazzi et al., 1999; Sango et al., 

2008), both NGF and GDNF promoted neurite outgrowth from small DRG neurons 

(Fig.5). 

 

Fig. 5. Adult rat DRG neurons after 2 days in culture were immunostained with anti–III 
tubulin. An application of NGF or GDNF to culture medium (50 ng/ml) enhanced neurite 
outgrowth, and their effects were small neuron-dominant. 

Immunocytochemical analysis showed intense GAL-1-IR in almost all neurons from a very 

early stage (3 h) to an end of the observation period (> 7 days) in culture in the absence of 

NGF or GDNF (Fig.6). This finding is in contrast to the predominant expression of GAL-1 in 

small non-peptidergic neurons in vivo. Enzymatic and mechanical treatments for the 

dissociation of DRG cells, together with disruption of interactions between neurons and 

non-neuronal cells are detrimental to neurons. Therefore, GAL-1 expressed in cultured 

neurons may function as a stress marker protein (Iwamoto et al., 2010) and/or a 

cytoprotective molecule (Lekishvili et al., 2006) during in vivo-in vitro replacement. 
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Fig. 6. Immunohistochemical localization of GAL-1 in adult rat DRG neurons after 5 days in 
culture. Intense GAL-1 immunoreactivity was observed at the surface of almost all neurons. 

 

Fig. 7. GDNF, but not NGF, upregulates the expression of GAL-1 in cultured DRG cells: 
Western blot analysis. The neuron–enriched culture of DRG 12 h after seeding was 
incubated with serum-free medium containing 50 ng/ml of NGF or GDNF for 36 h. 
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The abundant expression of GAL-1 in cultured DRG neurons under the basal conditions 

(Ham’s H12 /B27 supplement in the absence of NGF or GDNF) made it difficult to evaluate 

the effects of NGF or GDNF on the GAL-1-IR by immunocytochemistry. Then we prepared 

the neuron–enriched DRG culture (>5  103 cells/cm2 at seeding) for Western blot analysis 

as previously described (Sango et al., 2007). The blot showed that GDNF, but not NGF, 

upregulated protein expression of GAL-1 (Fig.7). This finding suggests that GAL-1 is one of 

the downstream target molecules of GDNF in cultured DRG neurons. Our current study is 

aimed at elucidating the signaling molecules and pathways involved in the GDNF-induced 

neurite outgrowth and upregulation of GAL-1 (Sango et al., in preparation). 

3. Externalization of GAL-1 from neurons and Schwann cells 

Despite lacking a signal leading peptide, GAL-1 is subject to externalization via non-classical 
pathway from various kinds of cells (Cooper & Barondes, 1990; Avellana-Adalid et al., 1994; 
Hughes, 1999). Our immunocytochemical and Western blot analyses showed the 
externalization of GAL-1 from primary cultured adult rat DRG neurons and Schwann cells, 
and immortalized adult mouse Schwann cells IMS32 (Watabe et al., 1995; Sango et al., 2004). 
In addition to these cells, we have recently established spontaneously immortalized 
Schwann cell lines from long-term cultures of adult Fischer 344 rat DRG and peripheral 
nerves. One of these cell lines, designated IFRS1, showed distinct Schwann cell phenotypes, 
such as spindle-shaped morphology under phase-contrast microscopy (Fig.8A), intense 
immunoreactivity for Schwann cell markers (e.g. S100 and p75 low affinity neurotrophin 
receptor(p75NTR)), mRNA expression for neurotrophic factors (NGF, GDNF, CNTF), cell 
adhesion molecules (L1, NCAM, N-cadherin), transcription factors (Sox10, Oct6, Krox20) and 
myelin proteins (P0, PMP22, MAG)(Sango et al., 2011). Moreover, IFRS1 cells are capable of 
myelinating neurites in coculture with adult rat DRG neurons (Sango et al., 2011) and NGF-
primed PC12 cells (Sango et al., submitted). We observed the intense immunoreactivity for 
GAL-1 in the cell bodies and processes of IFRS1 cells (Fig.8B). Further, Western blot analysis 
revealed the intense immunoreactivity for GAL-1 in both IFRS1 cells and culture medium 
(supernatant) (Fig.8C). These findings suggest that IFRS1 cells synthesize and secrete GAL-1, 
in a similar manner to DRG neurons and IMS32 cells (Sango et al., 2004). 

Following externalization, some of the galectin molecules are suggested to associate with 
surface or extracellular matrix glycoconjugates where lectin activity is stabilized, whereas 
the others free from glycoconjugate ligands are rapidly oxidized in the non-reducing 
extracellular environment (Tracey et al., 1992). 

 

Fig. 8. Localization and externalization of GAL-1 in immortalized adult rat Schwann cells 
IFRS1. (A) A phase-contrast micrograph of IFRS1 cells. (B) Immunocytochemical localization 
of GAL-1 in IFRS1 cells. (C) Western blot analysis of IFRS1 cells and supernatant for GAL-1. 
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4. Biological roles of GAL-1 in the nervous tissue after injury 

As described above, GAL-1 exists in both an oxidized and reduced state and only shows the 

lectin activity in its reduced state. Several studies have been conducted on the bioactivity of 

the reduced form of GAL-1 on the nervous tissue after injury, whereas we have been 

focusing on the axonal regeneration-promoting activity of GAL-1/Ox. 

4.1 GAL-1 in the reduced form 

The bioactivity of recombinant reduced GAL-1 was examined in vitro. When used as a 

coating substrate, it promoted adhesion, aggregation and neurite fasciculation of newborn 

rat DRG neurons (Outenreath & Jones, 1992) and olfactory neurons (Mahanthappa et al., 

1994; Puche et al., 1996). In contrast, however, we saw no significant effects of GAL-1 on 

adhesion or neurite outgrowth of adult rat DRG neurons (Sango et al., unpublished data). 

When applied to culture medium, it induced differentiation of primary cultured rat 

cerebellar astrocytes and production of brain-derived neurotrophic factor (BDNF) (Sasaki et 

al., 2004; Endo, 2005). Since these changes were inhibited by lactose, the lectin activity of 

GAL-1 appears to be essential for the induction of astrocyte differentiation. These findings 

suggest that GAL-1 in the reduced form is involved in the neuroprotective function via 

acting on astrocytes after brain injury. 

Using embryonic stem cell–derived neurons engineered with a p75NTR cDNA, Plachta et al. 

(2007) identified GAL-1 in the reduced form as an inducible factor for the degeneration of 

neuronal processes. They also showed the delayed elimination of peripheral nerve endings 

after sciatic nerve injury in GAL-1 deficient mice. These finding suggest that GAL-1 play a 

major role in the process of Wallerian degeneration and subsequent functional re-

innervation after peripheral nerve injury. 

4.2 GAL-1 in the oxidized form (GAL-1/Ox) 

The bioactivity of recombinant GAL-1/Ox was initially evaluated by DRG explant culture 

models, as shown in Fig.1. GAL-1/Ox did not show the lectin activity, but enhanced neurite 

outgrowth from transected nerve terminals of DRG explants in a dose-dependent manner 

(pg/ml range). We prepared a GAL-1 mutant CSGAL-1, in which all six cysteine residues 

were replaced by serine. CSGAL-1 did not promote neurite outgrowth, but showed lectin 

activity even under non-reducing conditions (Inagaki et al., 2000). These findings indicate 

that the axonal regeneration-promoting activity of GAL-1/Ox is unrelated to its lectin 

properties. 

In stark contrast to the neurotrophic factors (e.g. NGF, GDNF, and CNTF), recombinant 

GAL-1/Ox does not directly work on isolated DRG neurons to promote neurite outgrowth 

(Horie et al., 1999, 2005; Inagaki et al., 2000). Application of fluorescence-conjugated GAL-

1/Ox to DRG neurons, Schwann cells, and peritoneal macrophages, showed that only the 

surface of macrophages was clearly labeled (Horie et al., 2004). This finding suggests that 

macrophages are a target cell of GAL-1/Ox. Consistently, recombinant GAL-1/Ox induced 

tyrosine phosphorylation of proteins in macrophages. Furthermore, conditioned medium 

from GAL-1/Ox-stimulated macrophages enhanced neurite regeneration and Schwann cell 
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migration from DRG explants greater than that from non-activated macrophages. These 

findings suggest that GAL-1/Ox binds to macrophages to activate their signal transduction 

pathways and secrete some neurotrophic molecules. Taking these findings together with 

those described above, we proposed a possible action mechanism of GAL-1/Ox for the 

promotion of axonal regeneration after injury (Fig.9). First, cytosolic GAL-1 is released from 

growing axons and Schwann cells into the extracellular space upon axonal injury. Next, 

some of the molecules in the extracellular milieu is converted to the oxidized form (GAL-

1/Ox). Finally, GAL-1/Ox stimulates macrophages to release some neurotrophic molecules, 

which in turn enhance neurite regeneration and Schwann cell migration. This hypothesis 

will be further strengthened by identification of specific receptors for GAL-1/Ox on the 

macrophages and neurotrophic molecules secreted from macrophages. A recent study by 

Echigo et al. (2010) showed that GAL-1/Ox acts on the macrophage cell line RAW264.7 to 

induce phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). This 

cell line can be a valuable tool for the elucidation of the precise mechanisms underlying the 

promotion of axonal regeneration by GAL-1/Ox. 

 

Fig. 9. A possible action mechanism of GAL-1 for the promotion of axonal regeneration. 

Some of the GAL-1 molecule released from neurons and Schwann cells are converted to the 

oxidized form with intramolecular disulfide bonds, which lacks lectin activity but could 

promote axonal regeneration and Schwann cell migration via activating macrophages. 

Gaudet et al. (2009) precisely investigated a role for GAL-1 in the accumulation of 

macrophages following peripheral nerve injury. They observed that the axotomy-induced 

accumulation of macrophages in normal mouse sciatic nerve distal to ligation was inhibited 
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by injection of anti-GAL-1 antibody. Consistently, mice lacking GAL-1 exhibited delayed 

and diminished macrophage accumulation by sciatic nerve injury. Further, injection of 

GAL-1/Ox into uninjured sciatic nerve enhanced the accumulation of macrophages in 

normal mice. These findings indicate the implication of GAL-1/Ox, as well as GAL-1 in the 

reduced from (Plachta et al., 2007), in the prompt response of macrophages to nerve injury, 

which is essential for Wallerian degeneration. 

5. Conclusion 

Since we introduced GAL-1/Ox as a novel axonal regeneration-promoting factor after injury 

(Horie et al, 1999), a considerable number of studies have been made on the biological 

properties of GAL-1 in the nervous system. GAL-1 is a multifunctional protein and plays 

different roles dependent on whether it is in the reduced or oxidized form. It is noteworthy 

that both reduced and oxidized forms of GAL-1 participate in the process of Wallerian 

degeneration (Plachta et al., 2007; Gaudet et al., 2009), although the precise mechanisms 

underlying it remain unclear. The growing evidence from both in vivo and in vitro studies 

suggests that GAL-1/Ox may be useful as a novel therapeutic agent for functional 

restoration after peripheral nerve injury. 
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