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Localization of Buried Objects in Sediment Using
High Resolution Array Processing Methods
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1. Introduction

Non-invasive range and bearing estimation of buried objects, in the underwater acoustic

environment, has received considerable attention (Granara et al., 1998).

Many studies have been recently developed. Some of them use acoustic scattering to localize

objects by analyzing acoustic resonance in the time-frequency domain, but these processes are

usually limited to simple shaped objects (Nicq & Brussieux, 1998). In (Guillermin et al., 2000)

the inversion of measured scattered acoustical waves is used to image buried object, but the

frequencies used are high and the application in a real environment should be difficult. The

acoustic imagery technique uses high frequencies that are too strongly attenuated inside the

sediment therefore it is not suitable. Another method which uses a low frequency synthetic

aperture sonar (SAS) has been applied on partially and shallowly buried cylinders in a sandy

seabed (Hetet et al., 2004). Other techniques based on signal processing such as time reversal

technic (Roux & Fink, 2000), have been also developed for object detection and localization but

their applicability in real life has been proven only on cylinders oriented in certain ways and

point scatterers. Furthermore, having techniques that operate well for simultaneous range

and bearing estimation using wideband and fully correlated signals scattered from nearfield

and farfield objects, in a noisy environment, remains a challenging problem.

In this chapter, the proposed method is based on array processing methods combined with

an acoustic scattering model. Array processing techniques, as the MUSIC method, have been

widely used for acoustic point sources localization. Typically these techniques assume that

the point sources are on the seabed and are in the farfield of the array so that the measured

wavefronts are all planar. The goal then is to determine the direction of arrival (bearing) of

these wavefronts. These techniques have not been used for bearing and range estimation of

buried objects and in this chapter we are interested to extend them to this problem. This

extension is a challenging problem because here the objects are not point sources, are buried

in the seabed and can be everywhere (in the farfield or in the nearfield array). Thus the

knowledge of the bearing is not sufficient to localize the buried object. Furthermore, the

signals are correlated and the Gaussian noise should be taken into account. In addition we

consider that the objects have known shapes. The principal parameters that disturb the object

localization problem, are the noise, the lack of knowledge of the scattering model and the

presence of correlated signals. In the literature there is any method able to solve all those

parameters. However we can found a satisfying method to cope with each parameter (noise,
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correlated signals and lack of knowledge of the scattering model) alone, thus we have selected

the following methods,

• High order statistics are famous by their power to remove the additive Gaussian noise

and then to clean the data. It consists in using the slice cumulant matrix instead of

using the spectral matrix and operate at a fixed frequency (narrowband signal). It has

been employed in the MUSIC method in order to estimate the bearing sources (Gönen &

Mendel, 1997), (Mendel, 1991),

• The frequential smoothing is a technique which allows us to decorrelate the wideband

signals (Valaee & Kabal, 1995) by means of an average of the focused spectral matrices

formed for all the frequencies of the frequency band. It has been employed also in the

MUSIC method in order to estimate the bearing sources,

• The exact solution of the acoustic scattering model has been addressed in many published

work for several configurations, as single (Doolittle & Uberall, 1966),

(Goodman & Stern, 1962) or multiple objects (Prada & Fink, 1998), (Zhen, 2001), buried or

partially buried objects (Lim et al., 1993), (Tesei et al., 2002), with cylindrical (Doolittle &

Uberall, 1966), (Junger, 1952), or spherical shape (Fawcett et al., 1998), (Goodman & Stern,

1962), (Junger, 1952),

In this chapter we propose to adapt array processing methods and acoustic scattering model

listed above in order to solve the problem of burried object with known shape by estimating

their bearing and range, considering wideband correlated signals in presence of Gaussian

noise. The fourth-order cumulant matrix (Gönen & Mendel, 1997), (Mendel, 1991) is used

instead of the cross-spectral matrix to remove the additive Gaussian noise. The bilinear

focusing operator is used to decorrelate the signals (Valaee & Kabal, 1995) and to estimate

the coherent signal subspace (Valaee & Kabal, 1995), (Wang & Kaveh, 1985). From the exact

solution of the acoustic scattered field (Fawcett et al., 1998), (Junger, 1952), we have derived

a new source steering vector including both the range and the bearing objects. This source

steering vector is employed in MUSIC (MUltiple SIgnal Classification) algorithm (Valaee &

Kabal, 1995) instead of the classical plane wave model.

The organization of this chapter is as follows : the problem is formulated in Section 2. In

Section 3, the scattering models are presented. In Section 4, the cumulant based coherent

signal subspace method for bearing and range estimation is presented. Experimental setup

and the obtained results supporting our conclusions and demonstrating our method are

provided in Sections 5 and 6. Finally, conclusions are presented in Section 7.

Throughout the chapter, lowercase boldface letters represent vectors, uppercase boldface

letters represent matrices, and lower and uppercase letters represent scalars. The symbol

"T" is used for transpose operation, the superscript "+" is used to denote complex conjugate

transpose, the subscript "*" is used to denote conjugate operation, and ||.|| denotes the L2 norm

for complex vectors.

2. Problem formulation

We consider a linear array of N sensors which received the wideband signals scattered from

P objects (N > P) in the presence of an additive Gaussian noise. The received signal vector, in
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Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods 3

the frequency domain, is given by (Gönen & Mendel, 1997), (Mendel, 1991)

r( fn) = A( fn)s( fn) + b( fn), for n = 1, ..., L (1)

where,

A( fn) = [a( fn, θ1, ρ1), a( fn, θ2, ρ2), ..., a( fn, θP, ρP)] , (2)

s( fn) = [s1( fn), s2( fn), ..., sP( fn)]
T , (3)

b( fn) = [b1( fn), b2( fn), ..., bN( fn)]
T . (4)

r( fn) is the Fourier transforms of the array output vector, s( fn) is the vector of zero-mean

complex random non-Gaussian source signals, assumed to be stationary over the observation

interval, b( fn) is the vector of zero-mean complex white Gaussian noise and statistically

independent of signals and A( fn) is the transfer matrix (steering matrix) of the source sensor

array systems computed by the a( fn, θk, ρk) for k = 1, ..., P, object steering vectors, assumed to

have full column rank, it is given by:

a( fn, θk, ρk) = [a( fn, θk1, ρk1), a( fn, θk2, ρk2), ..., a( fn, θkN , ρkN)]T , (5)

where θk and ρk are the bearing and the range of the kth object to the first sensor of the array,

thus, θk = θk1 and ρk = ρk1. In addition to the model equation (1), we also assume that the

signals are statistically independent. In this case, a fourth order cumulant is given by

Cum(rk1
, rk2

, rl1 , rl2 ) = E{rk1
rk2

r∗l1 r∗l2} − E{rk1
r∗l1}E{rk2

r∗l2} − E{rk1
r∗l2}E{rk2

r∗l1}

where rk1
is the k1 element in the vector r and where E[.] denotes the expectation operator.

The indices k1, k2, l1, l2 are similarly defined. The cumulant matrix consisting of all possible

permutations of the four indices {k1, k2, l1, l2} is given in (Yuen & Friedlander, 1997) as

C( fn) =
P

∑
k=1

(

a( fn, θk, ρk)⊗ a
∗( fn, θk, ρk)

)

uk( fn)
(

a( fn, θk, ρk)⊗ a
∗( fn, θk, ρk)

)+
(6)

where uk( fn) is the source kurtosis (i.e., fourth order analog of variance) defined by

uk( fn) = Cum
(

sk( fn), s∗k ( fn), sk( fn), s∗k ( fn)
)

(7)

of the kth complex amplitude source and ⊗ is the Kronecker product. When there are N

array sensors, C( fn) is (N2 × N2) matrix. The rows of C( fn) are indexed by (k1 − 1)N + l1,

and the columns are indexed by (l2 − 1)N + k2. In terms of the vector r( fn), the cumulant

matrix C( fn) is organized compatibly with the matrix, E{
(

r( fn)⊗ r∗( fn)
)(

r( fn)⊗ r∗( fn)
)+

}.

In other words, the elements of C( fn) are given by:

C
(

(k1 − 1)N + l1, (l2 − 1)N + k2

)

(8)
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for k1, k2, l1, l2 = 1, 2, ..., N and

C
(

(k1 − 1)N + l1, (l2 − 1)N + k2

)

= Cum(rk1
, rk2

, rl1 , rl2 ) (9)

where ri is the ith element of the vector r. In order to reduce the calculating time, instead of

using the cumulant matrix C( fn), a cumulant slice matrix (N × N) of the observation vector

at frequency fn can be calculated and it offers the same algebraic properties of C( fn). This

matrix is denoted C1( fn) (Gönen & Mendel, 1997), (Yuen & Friedlander, 1997). If we consider

a cumulant slice, for example, by using the first row of C( fn) and reshape it into an (N × N)
hermitian matrix (Bourennane & Bendjama, 2002), i.e.

C1( fn) =Cum
(

r1( fn), r∗1( fn), r( fn), r
+( fn)

)

=

⎡

⎢

⎢

⎢

⎣

c1,1 c1,N+1 · · · c1,N2−N+1

c1,2 c1,N+2 · · · c1,N2−N+2
...

...
...

...

c1,N c1,2N · · · c1,N2

⎤

⎥

⎥

⎥

⎦

=A( fn)Us( fn)A
+( fn) (10)

where c1,j is the (1, j) element of the cumulant matrix C( fn) and Us( fn) is the diagonal kurtosis

matrix, its ith element is defined as, Cum
(

si( fn), s∗i ( fn), si( fn), s∗i ( fn)
)

with i = 1, ..., P.

C1( fn) can be reported as the classical covariance or spectral matrix of received data

Γr( fn) = E
[

r( fn)r
+( fn)

]

= A( fn)Γs( fn)A
+( fn) + Γb( fn) (11)

where Γb( fn) = E
[

b( fn)b+( fn)
]

is the spectral matrix of the noise vector and

Γs( fn) = E
[

s( fn)s
+( fn)

]

(12)

is the spectral matrix of the complex amplitudes s( fn).
If the noise is white then:

Γb( fn) = σ2
b ( fn)I, (13)

where σ2
b ( fn) is the noise power and I is the (N × N) identity matrix. The signal subspace

is shown to be spanned by the P eigenvectors corresponding to P largest eigenvalues of

the data spectral matrix Γr( fn). But in practice, the noise is not often white or its spatial

structure is unknown, hence the interest of the high order statistics as shown in equation

(4) in which the fourth order cumulants are not affected by additive Gaussian noise (i.e.,

Γb( fn) = 0), so as no noise spatial structure assumption is necessary. If the eigenvalues and

the corresponding eigenvectors of C1( fn) are denoted by {λi( fn)}i=1..N and {vi( fn)}i=1..N .

Then, the eigendecomposition of the cumulant matrix C1( fn) is exploited so as

C1( fn) =
N

∑
i=1

λi( fn)vi( fn)v
+
i ( fn) (14)
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Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods 5

In matrix representation, equation (14) can be written

C1( fn) = V( fn)Λ( fn)V
+( fn) (15)

where

V( fn) = [v1( fn), ..., vN( fn)] (16)

and

Λ( fn) = diag(λ1( fn), ..., λN( fn)). (17)

Assuming that the columns of A( fn) are all different and linearly independent it follows that

for nonsingular C1( fn), the rank of A( fn)Us( fn)A+( fn) is P. This rank property implies that:

• the (N − P) multiplicity of its smallest eigenvalues : λP+1( fn) = . . . = λN( fn) ∼= 0.

• the eigenvectors Vb( fn) = {vP+1( fn) . . . vN( fn)} corresponding to the minimal

eigenvalues are orthogonal to the columns of the matrix A( fn), namely, the steering vectors

of the signals

Vb( fn) = {vP+1( fn) . . . vN( fn)}⊥{a( fn, θ1, ρ1) . . . a( fn, θP, ρP)}
The eigenstructure based techniques are based on the exploitation of these properties. The

spatial spectrum of the conventional MUSIC method can be modified as follows in order to

estimate both the range and the bearing of objects at the frequency fn,

Z( fn, θk, ρk) =
1

a+( fn, θk, ρk)Vb( fn)V
+
b ( fn)a( fn, θk, ρk)

(18)

Then the location (θk, ρk) for k = 1, ..., P, maximizing the modified MUSIC spectrum in

(18) is selected as the estimated object center to the first sensor of the array. Because a two

dimensional search requires that the exact solution of the scattered field be calculated at each

point in order to fill the steering vector a( fn, θk, ρk).

3. The scattering model

In this section we present how to fill the steering vector used in equation (18) at a fixed

frequency fn. Consider the case in which a plane wave is incident, with an angle θinc, on P

infinite elastic cylindrical shells or elastic spherical shells of inner radius βk and outer radius

αk for k = 1, ..., P, located in a free space at (θk, ρk) the bearing and the range of the kth object,

associated to the first sensor of the array S1 (see figure 1). The fluid outside the shells is labeled

by 1, thus, the sound velocity c1 and the wavenumber

Kn1 =
2π fn

c1
.

3.1 Cylindrical shell

We consider the case of infinitely long cylindrical shell. In order to calculate the exact solution

for the acoustic scattered field acyl( fn, θk1, ρk1) a decomposition of the different fields is used,

according to the Bessel functions Jm, Nm and the Hankel function (Hm).

45Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods
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The scattered pressure in this case is given by (Doolittle & Uberall, 1966),(Junger, 1952),

acyl( fn, θk1, ρk1) = pc0

∞

∑
m=0

jmǫmbm H
(1)
m (Kn1ρk1) cos(m(θk1 − θinc)), (19)

where pc0 is a constant, ǫ0 = 1, ǫ1 = ǫ2 = ... = 2, bm is a coefficient depending on conditions

limits and m is the number of modes (Doolittle & Uberall, 1966).

3.2 Spherical shell

The analysis is now extended to the case where the scatterer is a spherical shell. The scattered

pressure is given by (Fawcett et al., 1998), (Goodman & Stern, 1962), (Junger, 1952)

asph( fn, θk1, ρk1) = ps0

∞

∑
m=0

Bm H
(1)
m (Kn1ρk1)Pm(cos(θk1 − θinc)), (20)

where ps0 is a constant and Pm(cos(θk1 − θinc)) is the Legendre polynomials

(Goodman & Stern, 1962). Equations (19) and (20) give the first component of the steering

vector, then, in a similar manner the other component acyl( fn, θki, ρki) and asph( fn, θki, ρki)
for i = 2, ..., N, associated to the ith sensor, can be formed, where all the couples (θki, ρki)
are calculated using the general Pythagore theorem and are function of the couple (θk1, ρk1).
Thus, the configuration used is shown in figure 1. The obtained θki, ρki are given by

ρki =

√

ρ2
ki−1 − d2 − 2ρki−1d cos(

π

2
+ θki−1) (21)

θki = cos−1[
d2 + ρ2

ki − ρ2
ki−1

2ρki−1d
], (22)

where d is the distance between two adjacent sensors. Finally the steering vector is filled with

the cylindrical scattering model in the case of cylindrical shells and filled with the spherical

scattering model in the case of spherical shells. For example, when the considered objects are

cylindrical shells, the steering vector is written as:

a( fn, θk, ρk) =
[

acyl( fn, θk1, ρk1), ... , acyl( fn, θkN , ρkN)
]T

, (23)

By using the exact solution of the scattered field (Doolittle & Uberall, 1966), we can fill the

direction vector in the MUSIC algorithm equation (18) with non planar scattered field to locate

the objects. The location (ρ̂, θ̂) maximizing the MUSIC spectrum in (18) is selected as the

estimated object center.

Because a two dimensional search requires that the exact scattered field be calculated at

each point. The modified MUSIC algorithm presented in this section, is limited to one or

multiple objects localization where the interactions are ignored. So, the localization problem

is approached as if these objects are independently scattering the incident plane wave.

46 Underwater Acoustics
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Fig. 1. Geometry configuration of the kth object localization.

4. The cumulant based coherent signal subspace method for bearing and range

estimation

In the previous section, a modified MUSIC algorithm has been proposed in order to estimate

both the range and the bearing objects at a fixed frequency. In this section, the frequency

diversity of wideband signals is considered. The received signals come from the reflections

on the buried objects thus these signals are totally correlated and the MUSIC method looses

its performances if any preprocessing is used before as the spatial smoothing (Pillai & Kwon,

1989) or the frequential smoothing (Frikel & Bourennane, 1996), (Valaee & Kabal, 1995). It

appears clearly that it is necessary to apply any preprocessing to decorrelate the signals.

According to the published results (Pillai & Kwon, 1989), the spatial smoothing needs a greater

number of sensors than the frequential smoothing.

In this section, the employed signals are wideband. This choice is made in order to decorrelate

the signals by means of an average of the focused spectral matrices. Therefore the objects can

be localized even if the received signals are totally correlated. This would have not been

possible with the narrowband signals without the spatial smoothing. Among the frequential

smoothing based processing framework (Maheswara & Reddy, 1996), (Pillai & Kwon, 1989),

we have chosen the optimal method which is the bilinear focusing operator (Frikel &

Bourennane, 1996), (Valaee & Kabal, 1995), in order to obtain the coherent signal subspace.

This technique divides the frequency band into L narrowbands (Frikel & Bourennane, 1996),

(Valaee & Kabal, 1995), then, transforms the received signals in the L bands into the focusing

frequency f0. The average of the focused signals is then calculated and consequently

decorrelates the signals (Hung & Kaveh, 1988), (Wang & Kaveh, 1985). Here, f0 is the center

frequency of the spectrum of the received signal and it is chosen as the focusing frequency.

The following is the step-by-step description of the technique:

1. use an ordinary beamformer to find an initial estimate of P, θk and ρk for k = 1, ..., P,

47Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods
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2. fill the transfer matrix,

Â( fn) = [a( fn, θ1, ρ1), a( fn, θ2, ρ2), ..., a( fn, θP, ρP)] , (24)

where each component of the directional vector a( fn, θk, ρk) for k = 1, ..., P, is filled using

equation (19) or (20) considering the object shape,

3. estimate the cumulant slice matrix output sensors data C1( fn) at frequency fn,

4. calculate object cumulant matrix at each frequency fn using equation (10):

Us( fn) = (Â+( fn)Â( fn))
−1

Â
+( fn)[C1( fn)]Â( fn)(Â

+( fn)Â( fn))
−1, (25)

5. calculate the average of the cumulant matrices associated to the objects,

Ūs( f0) =
1

L

L

∑
n=1

Us( fn), (26)

6. calculate Ĉ1( f0) = Â( f0)Ūs( f0)Â
+( f0)

7. form the focusing operator using the eigenvectors,

T( f0, fn) = V̂s( f0)V
+
s ( fn) (27)

where Vs( fn) and V̂s( f0) are the eigenvectors associated with the largest eigenvalues of

the cumulant matrix C1( fn) and Ĉ1( f0), respectively.

8. form the average slice cumulant matrix C̄1( f0) and perform its eigendecomposition,

C̄1( f0) =
1

L

L

∑
n=1

T( f0, fn)C1( fn)T
+( f0, fn) (28)

The modified spatial spectrum of MUSIC method for wideband correlated signals is given by

Zwb( f0, θk, ρk) =
1

a+( f0, θk, ρk)V̄b( f0)V̄
+
b ( f0)a( f0, θk, ρk)

, (29)

where V̄b( f0) is the eigenvector matrix of C̄1( f0) associated to the smallest eigenvalues.

5. Experimental setup

An underwater acoustic data have been recorded in an experimental water tank (figure 2) in

order to evaluate the performances of the developed method. This tank is fill of water and

homogeneous fine sand, where are buried three cylinder couples and one sphere couple, full

of water or air, between 0 and 0.005 m, of different dimensions (see table 1). The considered

sand has geoacoustic characteristics near to those of water. Consequently, we can make the

assumption that the objects are in a free space. The experimental setup is shown in figure

3 where all the dimensions are given in meter. The considered cylindrical and spherical

shells are made of dural aluminum with density D2 = 1800 kg/m3, the longitudinal and

transverse-elastic wave velocities inside the shell medium are cl = 6300 m/s and ct = 3200

48 Underwater Acoustics
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Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods 9

Fig. 2. Experimental tank

Fig. 3. Experimental setup

m/s, respectively. The external fluid is water with density D1 = 1000 kg/m3 and the the

internal fluid is water or air with density D3air = 1.2 10−6 kg/m3 or D3water = 1000 kg/m3.

We have done eight experiments where the transmitter is fixed at an incident angle θinc = 60˚

and the receiver moves horizontally, step by step, from the initial to the final position with a

step size d = 0.002 m and takes 10 positions in order to form an array of sensors with N = 10.

The distance, between the transmitter, the RR′ axis and the receiver, remains the same. First

time, we have fixed the receiver horizontal axis at 0.2 m from the bottom of the tank, then, we

have done four experiments, Exp. 1, Exp. 2, Exp. 3 and Exp. 4, associated to the following

49Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods
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❅
❅❅

1st couple 2nd couple

Outer radius αk (m) α1,2 = 0.30 α3,4 = 0.01

Filled of air air

Separated by (m) 0.33 0.13

❅
❅❅

3rd couple 4th couple

Outer radius αk (m) α5,6 = 0.018 α7,8 = 0.02

Filled of water air

Separated by (m) 0.16 0.06

Table 1. characteristics of the various objects (the inner radius βk = αk − 0.001 m, for
k = 1, ..., P)

configuration; the RR′ axis is positioned on the sphere couple, the 1st, the 2nd and the 3rd

cylinder couple, respectively. Second time, the receiver horizontal axis is fixed at 0.4 m and

in the same manner we have done four other experiments Exp. 5, Exp. 6, Exp. 7 and Exp. 8

associated to each position of the RR′. Thus, for each experiment, only one object couple is

radiated by the transmitter, where the transmitted signal has the following properties; impulse

duration is 15 μs, the frequency band is [ fL = 150, fU = 250] kHz, the mid-band frequency is

f0 = 200 kHz and the sampling rate is 2 MHz. The duration of the received signal is 700 μs.

5.1 Experimental data

At each sensor, time-domain data is collected and the typical sensor output signals

corresponding to one experiment are shown in figure 4. The power spectral density of the

sensor output signal is presented in figure 5.

Fig. 4. Observed sensor output signals

50 Underwater Acoustics
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Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods 11

Fig. 5. Power spectral density of sensor output signal.

6. Results and discussion

The steps listed above in section 4, are applied on each experimental data, thus, an

initialization of θ, ρ and P has been done using the conventional beamformer and for example

for Exp. 1, those three parameters have been initialized by P = 1, θ1 = 15˚ and ρ1 = 0.28 m.

Moreover, the average of the focused slice cumulant matrices is calculated using L = 50

frequencies chosen in the frequency band of interest [ fL, fU ]. Moreover, a sweeping on the

bearing and the range have been applied ([−90˚,90˚] for the bearing with a step 0.1˚ and

[0.2, 1.5] m for the range with a step 0.002 m). The obtained spatial spectrum of the modified

MUSIC method are shown in figures 6 to 13. On each figure, we should have two peaks

associated to one object couple and that is what appears on the majority of figures.

Table 2 summarizes the expected and the estimated range and bearing objects obtained using

the MUSIC algorithm alone, then using the modified MUSIC algorithm with and without a

frequential smoothing. The indexes 1 and 2 are the 1st and the 2nd object of each couple of

cylinders or spheres. Note that the obtained bearing objects after applying the conventional

MUSIC algorithm are not exploitable. Similar results are obtained when we apply the

modified MUSIC algorithm without a frequential smoothing, because the received signals

are correlated due to the small distance that separate the objects each other and the use of

a single transmitter sensor. However, satisfying results are obtained when we apply the

modified MUSIC algorithm with a frequential smoothing, thus the majority of bearing and

range objects are successfully estimated. Furthermore, the difference between the estimated

value (θ(1,2)est, ρ(1,2)est) and the expected value (θ(1,2)exp, ρ(1,2)exp) is very small and only two

cylinders were not detected in Exp. 6 and Exp. 8, because, the received echoes, associated

to these cylinders, are rather weak. Thus, it is important to realize that there is some

phenomenons which complicate the object detection in experimental tank, for example, the

attenuation of high frequencies in sediment is much higher than the low frequencies and due

to the small dimensions of the experimental tank, the frequencies used here are [150, 250] kHz

which represent high frequencies.
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Fig. 6. Spatial spectrum of the developed method for air sphere couple (Exp.1.).

Fig. 7. Spatial spectrum of the developed method for small air cylinders couple (Exp.2).

52 Underwater Acoustics

www.intechopen.com



Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods 13

Fig. 8. Spatial spectrum of the developed method for big water cylinders couple (Exp.3).

Fig. 9. Spatial spectrum of the developed method for big air cylinders couple (Exp.4.).
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Fig. 10. Spatial spectrum of the developed method for Air sphere couple (Exp.5.).

Fig. 11. Spatial spectrum of the developed method for small air cylinders couple (Exp.6).
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Fig. 12. Spatial spectrum of the developed method for big water cylinders couple (Exp.7).

Fig. 13. Spatial spectrum of the developed method for big air cylinders couple (Exp.8.).

55Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods

www.intechopen.com



16 Will-be-set-by-IN-TECH

❅
❅❅

Exp.1 Exp.2 Exp.3 Exp.4

θ1exp(˚) −26.5 −23 −33.2 −32.4

ρ1exp(m) 0.24 0.24 0.26 0.26

θ2exp(˚) 44 9.2 −20 5.8
ρ2exp(m) 0.31 0.22 0.24 0.22

MUSIC
θ1est(˚) −18 −30 −40 −22
θ2est(˚) 30 −38 −48 −32

MUSIC NB
θ1,2est(˚) 15 −12 −28 −10

ρ1,2est(m) 0.28 0.23 0.25 0.24

MUSIC WB
θ1est(˚) −26 −23 −33 −32

ρ1est(m) 0.22 0.25 0.29 0.28
θ2est(˚) 43 9 −20 6

ρ2est(m) 0.34 0.25 0.25 0.23

❅
❅❅

Exp.5 Exp.6 Exp.7 Exp.8

θ1exp(˚) −50 −52.1 −70 −51.6

ρ1exp(m) 0.65 0.65 1.24 0.65

θ2exp(˚) −22 −41 −65.3 −49
ρ2exp(m) 0.45 0.56 1.17 0.64

MUSIC
θ1est(˚) −58 25 −40 −
θ2est(˚) −12 −40 −45 −

MUSIC NB
θ1,2est(˚) −35 −45 −70 −50

ρ1,2est(m) 0.52 0.63 1.2 0.65

MUSIC WB
θ1est(˚) −49 −52 −70 −52

ρ1est(m) 0.65 0.63 1.21 0.63
θ2est(˚) −22 − −65 −

ρ2est(m) 0.44 − 1.2 −

Table 2. The expected (exp) and estimated (est) values of range and bearing objects. (negative
bearing is clockwise from the vertical), NB: Narrowband, WB: Wideband)

7. Conclusion

In this chapter we have proposed a new method to estimate both the bearing and the range

of buried objects in a noisy environment and in presence of correlated signals. To cope with

the noise problem we have used high order statistics, thus we have formed the slice cumulant

matrices at each frequency bin composed of clean data. Then, we have applied the coherent

subspace method which consists in a frequential smoothing in order to cope with the signal

correlation problem and to form the focusing slice cumulant matrix. To estimate the range and
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the bearing objects, the focusing slice cumulant matrix is used instead of using the spectral

matrix and the exact solution of the acoustic scattered field is used instead of the plane wave

model, in the MUSIC method. We considered objects with known shapes as cylindrical or

spherical shells, buried in an homogeneous sand. Our method can be applied when the

objects are located in the nearfield and rather in the farfield region of the sensor array. The

performances of this method are investigated through real data associated to many spherical

and cylindrical shells buried under the sand. The proposed method is superior in terms of

performance to the conventional method. The range and the bearing objects are estimated

with a significantly good accuracy due to the free space assumption.
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