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1. Introduction 

Vibrio cholerae is a Gram-negative bacterium with a single sheathed polar flagellum (Fig. 1.). 
V. cholerae causes the severe diarrheal disease cholera in humans when it colonizes the small 
intestine and expresses various virulence factors, including cholera toxin (CT) and toxin co-
regulated pilus (TCP). V. cholerae is also a natural inhabitant of the marine environment, 
where it forms biofilms on chitinous surfaces. Motility contributes to both aspects of the V. 
cholerae lifecycle. The flagellum facilitates chemotactic-directed movement toward the 
preferred colonization site within the intestine (Camilli and Mekalanos 1995; Butler and 
Camilli 2004), and also contributes to biofilm formation within the environment (Watnick 
and Kolter 1999). V. cholerae strains defective for motility are less virulent than motile strains 
(Guentzel and Berry 1975; Freter and O'Brien 1981; Richardson 1991). As flagellar synthesis, 
motility, and chemotaxis have become better understood in V. cholerae, it has also become 
clear that motility is intimately integrated into all aspects of the lifestyle of this bacterium.  

 

Fig. 1. Vibrio cholerae  

2. Structure 

The flagellum is a motor-driven organelle present in many bacteria. Different flagellar 
placement and quantity are seen in different bacteria. Monotrichous bacteria have a single 
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polar flagellum (e.g. V. cholerae), lofotrichous bacteria have multiple flagella at a single pole 
(e.g. Helicobacter pylori), amphitrichous bacteria have flagella at two poles (e.g. Campylobacter 
jejuni), and peritrichous bacteria have multiple flagella emanating from the cell in all 
directions (e.g. Escherichia coli).  

The base of the bacterial flagellum is composed of a secretion system related to the Type III 

secretion system, which facilitates export of flagellar components from the cytoplasm to the 

periplasm and the exterior of the cell. The basic components of the flagellum are the basal 

body, which extends from the cytoplasmic membrane through the periplasm and into the 

outer membrane (OM), connected to the flexible hook (composed of FliE) found exterior to 

the cell, which in turn is connected to the flagellar filament (Kojima and Blair 2004; 

Terashima, Kojima et al. 2008). The motor components that drive flagellar rotation are found 

in the cytoplasmic membrane, and the switch components (FliG, FliM, FliN) that interact 

with the chemotaxis signaling system and the motor (Francis, Sosinsky et al. 1994) extend 

into the cytoplasm from the basal body (Fig. 2.). 

 

Fig. 2. Flagellar Motor Complex 

Unlike most other bacterial flagella, the V. cholerae flagellum has a sheath composed of OM 
that coats the entire filament (Allen and Baumann 1971; Sjoblad, Emala et al. 1983; Fuerst 
and Perry 1988). Sheathed flagella are found in Vibrio spp. and a few other Gram-negative 
bacteria (e.g. H. pylori). It is hypothesized that the sheath acts as a protective covering that 
shields the antigenic flagellins from recognition by the host’s immune response (Yoon and 
Mekalanos 2008). The mechanism whereby the OM is extended to cover the filament during 

www.intechopen.com



 
Vibrio cholerae Flagellar Synthesis and Virulence 

 

61 

V. cholerae flagellar synthesis rather than the filament protruding through the OM as in other 
bacterial flagella is not understood. 

The bacterial flagellar filament is made up of thousands of flagellin subunits, with a cap 

protein (FliD) at the distal end (Ikeda, Asakura et al. 1985; Ikeda, Homma et al. 1987; 

Homma, DeRosier et al. 1990). The structure of the Salmonella typhimurium flagellin FliC has 

been solved by cryomicroscopy. FliC is composed of domains at its N- and C-termini that 

interact with each other: D0 (aa 1-45 and 456-495), D1 (aa 46-180 and 408-455), and D2 (aa 

181-190 and 285-407). The D2 domains, along with the D3 domain (aa 191-284) form the 

antigenic variable region that are present on the filament surface, (Yonekura, Maki-

Yonekura et al. 2003). Interaction of the D0 and D1 domains allows the flagellins to 

polymerize under the cap (FliD) protein into a hollow helical filament at the growing tip of 

the flagellum as they are being secreted.  

In contrast to most other bacteria which have filaments composed of a single flagellin 

subunit, V. cholerae has a filament composed of 5 different flagellins, FlaABCDE. These 

flagellins share a high degree of homology, yet only FlaA is essential for flagellar synthesis; 

the other four flagellins are not required for the synthesis of the filament (Klose and 

Mekalanos 1998). Alignment of FlaA with the other four V. cholerae flagellins, as well as with 

S. typhimurium FliC, reveals that the D0 and D1 domains are well-conserved, whereas the 

variable regions D2 and D3 are more divergent. Interestingly, the V. cholerae flagellins have a 

much shorter region corresponding to D2 and D3 (129 aa shorter) when compared to S. 

typhimurium FliC. Because this antigenic portion of the flagellins extends out from the 

hollow filament core, it may be that the presence of the flagellar sheath over the V. cholerae 

filament restricts the size of the antigenic region protruding from the filament.  

The basal body contains the rod structure (FlgB, FlgC, FlgF and FlgG) with L (FlgH), P 

(FlgI), and MS rings (FliF) localized to the OM, periplasm (peptidoglycan), and cytoplasmic 

membranes, respectively. In Vibrio spp. an additional T ring is located immediately below 

the P ring, which is composed of the Vibrio-specific components MotX, MotY, and FlgT . The 

C-ring, which extends into the cytoplasm from the MS ring and is made up of FliG, FliM, 

and FliN, is difficult to preserve during microscopy and has not been visualized in its 

entirety in Vibrio spp.(Aizawa, Dean et al. 1985; Homma, Aizawa et al. 1987; Homma, 

Ohnishi et al. 1987; Homma, DeRosier et al. 1990; Homma, Kutsukake et al. 1990; Ueno, 

Oosawa et al. 1992; Francis, Sosinsky et al. 1994; Schoenhals and Macnab 1996; Terashima, 

Koike et al. 2010). The chemotaxis protein CheY relays information from the chemotaxis 

sensory system by binding to the C ring (FliM), causing the flagellum to switch rotation 

from counterclockwise to clockwise.  

In S. typhimurium and E. coli MotA and MotB are membrane proteins that compose the 
motor that utilizes H+ motive force to drive flagellar rotation (Lloyd, Tang et al. 1996; Zhou, 
Lloyd et al. 1998; Zhou, Sharp et al. 1998; Braun, Poulson et al. 1999; Blair 2003). Vibrio spp. 
contain MotA and MotB homologues, alternately referred to as PomA and PomB (Dean, 
Macnab et al. 1984; Stader, Matsumura et al. 1986; Blair and Berg 1990; Stolz and Berg 1991; 
Asai, Kojima et al. 1997; Sato and Homma 2000; Sato and Homma 2000; Yorimitsu, Asai et 
al. 2000; Fukuoka, Yakushi et al. 2005), but they also contain Vibrio- specific motor proteins 
MotX and MotY, localized in the T ring (McCarter 1994; McCarter 1994; Okunishi, 
Kawagishi et al. 1996; Okabe, Yakushi et al. 2001; Okabe, Yakushi et al. 2002; Okabe, 
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Yakushi et al. 2005; Koerdt, Paulick et al. 2009). The Vibrio MotA and MotB form a 
membrane complex that utilizes a Na+ gradient (instead of H+ gradient) to drive flagellar 
rotation. A Na+ gradient is required to allow MotA/MotB to associate with the flagellum 
(through MotX/MotY) and open the Na+ channel; flux of Na+ through the channel provides 
the torque to generate flagellar rotation (McCarter 1994; McCarter 1994; Yorimitsu, Kojima 
et al. 2004; Terashima, Fukuoka et al. 2006).  

Two additional proteins control flagellar number and placement in Vibrio spp. FlhG contains 

an ATPase motif and controls flagellar number; Vibrio cells without flhG synthesize multiple 

polar flagella, instead of a single polar flagellum (Correa, Peng et al. 2005; Kusumoto, 

Kamisaka et al. 2006; Kusumoto, Shinohara et al. 2008). FlhF contains a GTP binding motif and 

localizes to the cell pole, thus dictating polar localization of the flagellum. Vibrio cells without 

flhF are largely non-flagellated; however a few cells will synthesize a flagellum at a site away 

from the pole (Carpenter, Hanlon et al. 1992; Zanen, Antelmann et al. 2004; Salvetti, Ghelardi 

et al. 2007; Green, Kahramanoglou et al. 2009; Kusumoto, Nishioka et al. 2009). FlhG interacts 

with FlhF, and a current model suggests that FlhG interacts with FlhF to prevent additional 

FlhF deposition at the pole (Kusumoto, Shinohara et al. 2008). A V. alginolyticus strain lacking 

both FlhF and FlhG is mostly lacking flagella (Kojima, Nishioka et al. 2011), but a few cells 

possess multiple peritrichous flagella (similar to S. typhimurium). An unidentified suppressor 

mutation can lead to virtually all flhFG V. alginolyticus cells possessing peritrichous flagella and 

being able to swim; the identification of this suppressor mutation should lead to greater 

insights into control of polar flagellar synthesis in Vibrio spp. 

Two additional outer membrane proteins, FlgO and FlgP, contribute to flagellar stability. 
FlgP homologues are restricted to Vibrio, Helicobacter, and Campylobacter spp. V. cholerae FlgP 
is a lipoprotein that affects flagellar stability; flgP mutants synthesize fragile flagella and 
appear non-motile in motility agar, presumably due to breakage of flagella during 
swimming (Morris, Peng et al. 2008; Martinez, Dharmasena et al. 2009). FlgO homologues 
are only found in Vibrio spp. V. cholerae strains lacking flgO have a similar phenotype as flgP 
strains, namely they produce fragile flagella that break easily while swimming (Morris, 
Peng et al. 2008; Martinez, Dharmasena et al. 2009). 

3. Regulation 

Transcription of the V. cholerae flagellar genes is controlled by a four-tiered transcription 
hierarchy (Fig. 3.) (Prouty, Correa et al. 2001). The V. cholerae flagellar transcription 
hierarchy is similar to that which controls flagellar transcription in Pseudomonas aeruginosa, 
another bacterium with a single polar flagellum (Dasgupta, Wolfgang et al. 2003). The 
master regulator, FlrA, is a σ54-dependent transcriptional activator. FlrA represents the sole 
Class I gene product, and it activates transcription of Class II flagellar genes (Klose and 
Mekalanos 1998). It is not clear whether environmental conditions regulate transcription of 
flrA, but flhG (which controls flagellar number) also negatively regulates flrA transcription 
(Correa, Peng et al. 2005).  

The P. aeruginosa FlrA homologue, FleQ, has been shown to bind to cyclic-di-GMP 
(cdGMP)(Hickman and Harwood 2008). Binding of cdGMP to FleQ prevents DNA binding, 
resulting in the absence of flagellar synthesis and de-repression in P. aeruginosa of genes 
involved in biofilm formation normally repressed by FleQ. Interestingly, cdGMP binds to 
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FleQ lacking the N-terminus, indicating it binds to the transcriptional activation/DNA 
binding domain, which shares high homology (63% identity) with V. cholerae FlrA. It is not 
yet known whether FlrA binds to and is modulated by cdGMP. P. aeruginosa FleQ also binds 
to FleN, the homologue of FlhG (Dasgupta and Ramphal 2001). FleN binding to FleQ does 
not inhibit DNA binding, but downregulates FleQ-dependent transcription, resulting in 
reduced (single) flagellar number. As mentioned above, FlhG has a negative effect on flrA 
transcription in V. cholerae, but it is not known whether it also binds to FlrA and negatively 
affects its activity.  

 

Fig. 3. Flagellar Transcription Regulatory Hierarchy 

FlrA positively regulates Class II flagellar genes. Both FlrA and σ54-containing RNA 
polymerase are required to activate transcription of the Class II flagellar genes (Klose and 
Mekalanos 1998; Klose, Novik et al. 1998; Prouty, Correa et al. 2001). The class II genes 
encode components of the MS ring-switch-export apparatus as well as chemotaxis and 
regulatory proteins. Two large flagellar operons (fliEFGHIJ and the flhA operon, which 
contains flhFG, mentioned above, as well as fliA (σ28) and a number of chemotaxis genes), 
and the regulatory genes flrBC, are activated by FlrA. The Class II flagellar genes are 
predicted to encode an export apparatus-basal body intermediate; it seems likely that this 
structure is required to be assembled prior to progression to Class III gene expression, as is 
the case in Campylobacter jejuni and Helicobacter pylori, which have similar classes of flagellar 
genes (Hendrixson and DiRita 2003; Niehus, Gressmann et al. 2004).  

The regulatory proteins FlrBC are a two-component system that controls Class III gene 
transcription (Prouty, Correa et al. 2001). FlrB undergoes autophosphorylation, and then 
activates FlrC activity by transferring a phosphate to the conserved aspartate-54 (D54) 
residue in the amino terminus of FlrC (FlrC-P) allowing it to activate the σ54-dependent 
transcription of Class III genes (Correa, Lauriano et al. 2000; Correa and Klose 2005). The 
class III genes encode the rest of the components of the hook-basal body, as well as the 
flagellin FlaA and the OM proteins FlgOP. FlrC binds to enhancer sites downstream of the 
σ54-dependent Class III promoters (Correa, Lauriano et al. 2000; Correa and Klose 2005). 
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Most of the Class III gene products are only required in small amounts, but the FlaA 
flagellin is transcribed at very high levels. One mechanism for achieving these different 
levels of expression is the relative binding strength of the FlrC sites, which bind FlrC 
strongly at the flaA promoter, but only weakly at other Class III promoters, e.g. the flgK 
promoter (Correa and Klose 2005).  

FlrC must be phosphorylated to activate σ54-dependent transcription, so presumably FlrB 
only phosphorylates FlrC upon assembly (not function) of the Class II export apparatus-
basal body intermediate; a similar event controls expression of σ54-dependent Class III genes 
in C. jejuni (Joslin and Hendrixson 2009). Detection of an intermediate that is not secretion 
competent may explain why the genes encoding some of the components presumably 
required for secretion (e.g. fliOPQ) are Class III (i.e. activated by FlrC) rather than Class II 
genes. FlrB is a soluble protein and could thus directly interact with the apparatus 
intermediate in the cytoplasmic membrane and phosphorylate FlrC upon assembly. 
Deletion of flhF in V. cholerae specifically downregulates Class III gene expression (Correa, 
Peng et al. 2005), suggesting that FlhF regulates FlrC-dependent transcription in addition to 
regulating polar flagellar placement (as discussed above). An inner membrane protein, FlrD, 
is also a positive regulator of class III genes. Expression of FlrD is not regulated by the 
flagellar transcription hierarchy, but the protein possesses a HAMP domain, so it may 
interact with FlrB or FlrC to influence phosphorylation and Class III transcription (Moisi, 
Jenul et al. 2009) 

The Class II gene fliA encodes σ28, which is required for transcription of Class IV flagellar 
genes (Klose and Mekalanos 1998). Similar to the checkpoint in S. typhimurium (Karlinsey, 
Tanaka et al. 2000; Chevance and Hughes 2008), the V. cholerae anti-sigma factor FlgM 
prevents σ28 transcriptional activity until it is secreted through a functional hook-basal body 
complex (Correa, Barker et al. 2004). The secretion of FlgM through the sheathed flagellum 
indicates that the sheath does not completely enclose the flagellum, at least at the tip. 
Secretion of FlgM frees σ28 to interact with RNA polymerase and activate Class IV flagellar 
genes, which encode the other four flagellins, FlaBCDE, as well as motor components 
(MotABX) and chemotaxis proteins (Klose and Mekalanos 1998). V. cholerae lacking fliA are 
non-motile and synthesize a truncated flagellum. The lack of expression of the four 
additional Class IV (σ28-dependent) flagellins (FlaBCDE) in the fliA strain is likely not the 
reason for the truncated flagellum and lack of motility, since strains lacking flaBCDE are still 
motile and synthesize a full length flagellum, whereas a strain lacking the Class III FlaA 
flagellin is non-motile and aflagellate (Klose and Mekalanos 1998). Rather, the lack of 
expression of other Class IV genes (e.g. motor genes) likely contributes to the fliA 
phenotype. The contribution of the four Class IV flagellins to flagellar synthesis and motility 
is mysterious, considering that only the Class III FlaA flagellin is essential for flagellar 
synthesis, but perhaps the other flagellins impart subtle differences to the flagellum and 
thus swimming behavior that are not obvious under laboratory growth conditions. 

4. Motility and virulence 

V. cholerae virulence has been linked to motility. Spontaneous non-motile V. cholerae strains 
were characterized as less virulent than motile strains in several in vivo and in vitro rabbit 
models of cholera. Mutations that adversely affect flagellar synthesis and motility generally 
lead to decreased intestinal colonization in infant mice (Guentzel and Berry 1975; Montie, 
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Doyle-Huntzinger et al. 1982; Carsiotis, Weinstein et al. 1984; Weinstein, Carsiotis et al. 1984; 
Schmitt, Darnell et al. 1994; Kennedy, Rosey et al. 1997; Watnick, Lauriano et al. 2001; Syed, 
Beyhan et al. 2009). Non-motile live attenuated V. cholerae vaccine strains exhibit reduced 
reactogenicity (disease symptoms) in human volunteers, when compared to motile isogenic 
strains. (Coster, Killeen et al. 1995; Kenner, Coster et al. 1995). Using a newly-developed 
infant rabbit model of cholera, Rui et al. demonstrated that flagellin expression (whether in 
motile or non-motile vaccine strains) causes reactogenicity in rabbits by inducing 
proinflammatory cytokines in the intestine (Rui, Ritchie et al. 2010).  

 

Fig. 4. Proposed Model of Flagellar-dependent Virulence Modulation 

An inverse relationship between motility and virulence had been suggested by the 
observation that spontaneous hypermotile mutants express almost no CT or TCP, while 
spontaneous non-motile mutants express increased levels of CT and TCP (Gardel and 
Mekalanos 1996). Utilizing whole genome transcription profiling of V. cholerae strains with 
mutations in the key flagellar regulatory genes (rpoN, flrA, flrC, and fliA), it was observed 
that non-flagellated strains exhibit increased transcription of known (CT, TCP) and putative 
virulence factors (T6SS, hemolysins, etc)(Syed, Beyhan et al. 2009). The results suggest 
coordinate regulation by the flagellar regulatory hierarchy over a variety of virulence factors 
whose regulation was previously thought to be unlinked (Syed, Beyhan et al. 2009).  

It had been known that non-motile V. cholerae mutants exhibited enhanced 
hemagglutinating activity and decreased hemolytic activity, but the identity of the 
respective factors was unknown (Gardel and Mekalanos 1996). The transcriptional profiling 
of the flagellar regulatory mutants identified the flagellar-regulated hemolysin as TLH, 
which is encoded adjacent to HlyA, the “El Tor” hemolysin (Syed, Beyhan et al. 2009). Also 
identified was the flagellar-regulated hemagglutinin, FrhA, which is a large cadherin-
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containing protein that enhances binding to epithelial cells in vitro and intestinal colonization 
in both infant and adult mice. The flagellar regulatory hierarchy positively regulates frhA 
transcription and negatively regulates tlh transcription. Regulation of frhA transcription by the 
flagellar hierarchy is mediated through an intermediate, CdgD, a cdGMP synthase. cdGMP is 
an important signaling molecule that modulates complex behaviors in bacteria, most notably 
biofilm formation (discussed below). The results demonstrate that the flagellar hierarchy 
controls the transcription of non-flagellar genes that contribute to other aspects of the V. 
cholerae lifecycle besides motility (Syed, Beyhan et al. 2009).  

5. Chemotaxis and virulence 

Chemotaxis controls flagellar rotation in response to environmental factors, and thus is 

intimately tied to motility. Chemoattractants stimulate the chemotaxis machinery to cause 

increased clockwise (CW) rotation of the flagellum, while chemorepellants enable increased 

counter-clockwise (CCW) rotation (Armitage 1999; Butler and Camilli 2005). The net result of 

these effects on flagellar rotation is net swimming towards chemoattractants and away from 

chemorepellants (Falke, Bass et al. 1997; Armitage 1999). V. cholerae encodes three clusters of 

chemotaxis proteins (Heidelberg, Eisen et al. 2000), but the cluster that is embedded within the 

flagellar gene cluster (within the Class II flhA operon: cheY3, cheZ, cheA2, cheB2, and cheW1) 

appears to be the major chemotaxis machinery that controls flagellar rotation under most 

conditions (Camilli and Mekalanos 1995; Hyakutake, Homma et al. 2005). Methyl-accepting 

chemotaxis proteins (MCPs) in the cytoplasmic membrane interact with 

chemoattractant/repellants and the signal is transmitted through CheA to CheY via 

phosphorylation. Phospho-CheY then interacts with the C-ring of the flagellum, which causes 

a reversion from CCW to CW rotation, resulting in a change of swimming direction. CheB and 

CheW are involved in modulating the signal transduction pathway (Freter and O'Brien 1981; 

Alm and Manning 1990; Everiss, Hughes et al. 1994; Harkey, Everiss et al. 1994; Lee, Butler et 

al. 2001; Banerjee, Das et al. 2002; Hyakutake, Homma et al. 2005).  

Interestingly, V. cholerae in stool exhibit a transient hyper-infectious phenotype predicted to 
facilitate epidemic spread of cholera, and transcription profiling revealed a transient 
repression of chemotaxis genes (specifically cheW) in these bacteria (Merrell, Butler et al. 
2002). In the infant mouse model, non-chemotactic V. cholerae are able to outcompete 
chemotactic V. cholerae for intestinal colonization, indicating that the repression of 
chemotaxis in stool bacteria enhances epidemic spread (Butler and Camilli 2004; Butler, 
Nelson et al. 2006). Preventing phosphorylation of CheY prevents chemotactic signal 
transduction to the flagellum and biases it toward CCW flagellar rotation (and hence longer 
periods of swimming in a straight direction). The flagellum can also be biased toward CW 
flagellar rotation (and shorter periods of swimming in a straight direction) by the 
introduction of mutations into CheY that inhibit its dephosphorylation. Within the intestine, 
only the CCW-biased V. cholerae dramatically outcompete chemotactic V. cholerae, whereas 
the CW-biased bacteria are defective for intestinal colonization (Butler and Camilli 2004). 
Chemotactic V. cholerae colonize the distal end of the small intestine, whereas the CCW-
biased non-chemotactic V. cholerae colonize the entire length of the small intestine. These 
results suggest that chemotaxis normally facilitates the recognition of chemoattractants 
within the distal small intestine or, alternatively, the recognition of chemorepellants within 
the proximal small intestine. 
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6. Biofilm formation 

V. cholerae readily forms biofilms in the laboratory, and it is generally thought that V. 

cholerae predominantly exists as biofilms associated with various surfaces in the aquatic 

environment, including close associations with shellfish and zooplankton (Costerton, 

Lewandowski et al. 1995; Watnick and Kolter 1999; Faruque, Biswas et al. 2006; Yildiz and 

Visick 2009). Biofilm growth on chitinous surfaces induces competence in V. cholerae, 

facilitating horizontal gene transfer and rapid evolution in the marine environment 

(Blokesch and Schoolnik 2007). V. cholerae biofilms are more resistant to environmental 

stresses such as antibiotics, chlorine, protozoan grazing, and bacteriophage infection (Vess, 

Anderson et al. 1993; Faruque, Albert et al. 1998; Watnick and Kolter 1999; Matz, 

McDougald et al. 2005). A significant amount of study has gone into understanding V. 

cholerae biofilm formation. 

Biofilm formation requires an initial phase where the bacterium associates with a solid 

surface, followed by attachment, formation of microcolonies, and finally the formation of 

the mature three-dimensional biofilm structure with characteristic pillars and water 

channels (Costerton, Lewandowski et al. 1995; Watnick and Kolter 1999). Formation of the 

mature biofilm requires the expression of the Vibrio exopolysaccharide (VPS), which is the 

polysaccharide matrix that holds the structure together (Yildiz and Schoolnik 1999; Watnick, 

Lauriano et al. 2001; Lauriano, Ghosh et al. 2004). V. cholerae expressing the VPS results in 

obviously wrinkled (“rugose”) colony morphology, and V. cholerae undergoes phase 

variation that leads to the rugose colony phenotype and enhanced biofilm formation ( Yildiz 

and Schoolnik 1999; Watnick, Lauriano et al. 2001; Lim, Beyhan et al. 2007). A number of 

regulatory factors are involved in VPS expression and biofilm formation, and one of the 

driving signals behind biofilm formation is increased expression of the signaling molecule c-

di-GMP (Tischler and Camilli 2004; Beyhan, Tischler et al. 2006; Beyhan, Bilecen et al. 2007; 

Lim, Beyhan et al. 2007; Beyhan, Odell et al. 2008; Hickman and Harwood 2008; Syed, 

Beyhan et al. 2009; Yildiz and Visick 2009).  

In an initial screen for V. cholerae mutants unable to form biofilms, Watnick and Kolter 
identified motility as a major contributor to biofilm formation (Watnick and Kolter 1999). 
These results suggested that flagellar-mediated motility was important to approach and 
colonize a surface, and also to facilitate microcolony formation. Subsequently, it was 
determined that the flagellar motor itself controls VPS expression, at least in some V. cholerae 
strains, because non-flagellated mutants switch to the rugose phenotype, and this is dependent 
on a functional motor, suggesting that the motor acts as a sensor to induce mature biofilm 
formation (Lauriano, Ghosh et al. 2004). The Vibrio Na+-driven motor functioning to sense 
environmental conditions and drive altered gene expression is not unprecedented; the V. 
parahaemolyticus Na+-driven polar flagellar motor functions as a sensor to drive lateral flagellar 
synthesis (McCarter, Hilmen et al. 1988; Kawagishi, Imagawa et al. 1996). 

In general, elevated levels of cdGMP drive V. cholerae toward enhanced VPS expression and 
down-regulate motility and virulence gene expression (Tischler and Camilli 2004; Yildiz and 
Visick 2009). Elevated cdGMP levels cause a decrease in Class III and IV flagellar transcription, 
and noticeable decreases in motility in soft agar assays(Beyhan, Tischler et al. 2006). These 
results suggest that activity of the Class III regulator FlrC may be responsive to elevated 
cdGMP levels. The effect of specific cdGMP synthases/phosphodiesterases on motility is 
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complicated by the presence of multiple paralogs of both types of enzymes in V. cholerae (Lim, 
Beyhan et al. 2006; Beyhan, Odell et al. 2008). Moreover, the flagellar hierarchy also regulates 
the expression of cdGMP modulating enzymes (mentioned above), so the effect of cdGMP on 
flagellar synthesis and motility is likely extremely complex, involving a large number of 
counteracting enzymes that regulate and are regulated by the flagellar hierarchy.  

7. Conclusion 

The single polar flagellum of V. cholerae is assembled in a stepwise fashion of components 
that are tightly regulated by a flagellar transcriptional hierarchy. The study of some of the 
unique aspects of this flagellum are likely to yield further insight into the role of flagellar 
synthesis, motility, and chemotaxis on the virulence and environmental persistence of this 
important human pathogen. One of the most unique aspects is the sheath surrounding the 
flagellum, which is still mysterious. The presence and function of the multiple flagellins still 
needs to be elucidated. Regulation of the flagellar transcriptional hierarchy is still not 
understood, nor how this hierarchy regulates non-flagellar genes that influence virulence 
and biofilm formation. Clearly much remains to be illuminated in the study of the 
contribution of flagellar synthesis and motility to the lifecycle of V. cholerae.  

8. Acknowledgement 

Funded by NIH AI43486 

9. References 

Aizawa, S. I., G. E. Dean, et al. (1985). "Purification and characterization of the flagellar 
hook-basal body complex of Salmonella typhimurium." J Bacteriol 161(3): 836-849. 

Allen, R. D. and P. Baumann (1971). "Structure and arrangement of flagella in species of the 
genus Beneckea and Photobacterium fischeri." J Bacteriol 107(1): 295-302. 

Alm, R. A. and P. A. Manning (1990). "Characterization of the hlyB gene and its role in the 
production of the El Tor haemolysin of Vibrio cholerae O1." Mol Microbiol 4(3): 
413-425. 

Armitage, J. P. (1999). "Bacterial tactic responses." Adv Microb Physiol 41: 229-289. 
Asai, Y., S. Kojima, et al. (1997). "Putative channel components for the fast-rotating sodium-

driven flagellar motor of a marine bacterium." J Bacteriol 179(16): 5104-5110. 
Banerjee, R., S. Das, et al. (2002). "Involvement of in vivo induced cheY-4 gene of Vibrio 

cholerae in motility, early adherence to intestinal epithelial cells and regulation of 
virulence factors." FEBS Lett 532(1-2): 221-226. 

Beyhan, S., K. Bilecen, et al. (2007). "Regulation of rugosity and biofilm formation in Vibrio 
cholerae: comparison of VpsT and VpsR regulons and epistasis analysis of vpsT, 
vpsR, and hapR." J Bacteriol 189(2): 388-402. 

Beyhan, S., L. S. Odell, et al. (2008). "Identification and characterization of cyclic diguanylate 
signaling systems controlling rugosity in Vibrio cholerae." J Bacteriol 190(22): 7392-
7405. 

Beyhan, S., A. D. Tischler, et al. (2006). "Transcriptome and phenotypic responses of Vibrio 
cholerae to increased cyclic di-GMP level." J Bacteriol 188(10): 3600-3613. 

www.intechopen.com



 
Vibrio cholerae Flagellar Synthesis and Virulence 

 

69 

Blair, D. F. (2003). "Flagellar movement driven by proton translocation." FEBS Lett 545(1): 
86-95. 

Blair, D. F. and H. C. Berg (1990). "The MotA protein of E. coli is a proton-conducting 
component of the flagellar motor." Cell 60(3): 439-449. 

Blokesch, M. and G. K. Schoolnik (2007). "Serogroup conversion of Vibrio cholerae in 
aquatic reservoirs." PLoS Pathog 3(6): e81. 

Braun, T. F., S. Poulson, et al. (1999). "Function of proline residues of MotA in torque 
generation by the flagellar motor of Escherichia coli." J Bacteriol 181(11): 3542-3551. 

Butler, S. M. and A. Camilli (2004). "Both chemotaxis and net motility greatly influence the 
infectivity of Vibrio cholerae." Proc Natl Acad Sci U S A 101(14): 5018-5023. 

Butler, S. M. and A. Camilli (2005). "Going against the grain: chemotaxis and infection in 
Vibrio cholerae." Nat Rev Microbiol 3(8): 611-620. 

Butler, S. M., E. J. Nelson, et al. (2006). "Cholera stool bacteria repress chemotaxis to increase 
infectivity." Mol Microbiol 60(2): 417-426. 

Camilli, A. and J. J. Mekalanos (1995). "Use of recombinase gene fusions to identify Vibrio 
cholerae genes induced during infection." Mol Microbiol 18(4): 671-683. 

Carpenter, P. B., D. W. Hanlon, et al. (1992). "flhF, a Bacillus subtilis flagellar gene that 
encodes a putative GTP-binding protein." Mol Microbiol 6(18): 2705-2713. 

Carsiotis, M., D. L. Weinstein, et al. (1984). "Flagella of Salmonella typhimurium are a 
virulence factor in infected C57BL/6J mice." Infect Immun 46(3): 814-818. 

Chevance, F. F. and K. T. Hughes (2008). "Coordinating assembly of a bacterial 
macromolecular machine." Nat Rev Microbiol 6(6): 455-465. 

Correa, N. E., J. R. Barker, et al. (2004). "The Vibrio cholerae FlgM homologue is an anti-
sigma28 factor that is secreted through the sheathed polar flagellum." J Bacteriol 
186(14): 4613-4619. 

Correa, N. E. and K. E. Klose (2005). "Characterization of enhancer binding by the Vibrio 
cholerae flagellar regulatory protein FlrC." J Bacteriol 187(9): 3158-3170. 

Correa, N. E., C. M. Lauriano, et al. (2000). "Phosphorylation of the flagellar regulatory 
protein FlrC is necessary for Vibrio cholerae motility and enhanced colonization." 
Mol Microbiol 35(4): 743-755. 

Correa, N. E., F. Peng, et al. (2005). "Roles of the regulatory proteins FlhF and FlhG in the 
Vibrio cholerae flagellar transcription hierarchy." J Bacteriol 187(18): 6324-6332. 

Coster, T. S., K. P. Killeen, et al. (1995). "Safety, immunogenicity, and efficacy of live 
attenuated Vibrio cholerae O139 vaccine prototype." Lancet 345(8955): 949-952. 

Costerton, J. W., Z. Lewandowski, et al. (1995). "Microbial biofilms." Annu Rev Microbiol 49: 
711-745. 

Dasgupta, N. and R. Ramphal (2001). "Interaction of the antiactivator FleN with the 
transcriptional activator FleQ regulates flagellar number in Pseudomonas 
aeruginosa." J Bacteriol 183(22): 6636-6644. 

Dasgupta, N., M. C. Wolfgang, et al. (2003). "A four-tiered transcriptional regulatory circuit 
controls flagellar biogenesis in Pseudomonas aeruginosa." Mol Microbiol 50(3): 809-
824. 

Dean, G. E., R. M. Macnab, et al. (1984). "Gene sequence and predicted amino acid sequence 
of the motA protein, a membrane-associated protein required for flagellar rotation 
in Escherichia coli." J Bacteriol 159(3): 991-999. 

www.intechopen.com



 
Cholera 

 

70

Everiss, K. D., K. J. Hughes, et al. (1994). "The accessory colonization factor and toxin-
coregulated pilus gene clusters are physically linked on the Vibrio cholerae 0395 
chromosome." DNA Seq 5(1): 51-55. 

Falke, J. J., R. B. Bass, et al. (1997). "The two-component signaling pathway of bacterial 
chemotaxis: a molecular view of signal transduction by receptors, kinases, and 
adaptation enzymes." Annu Rev Cell Dev Biol 13: 457-512. 

Faruque, S. M., M. J. Albert, et al. (1998). "Epidemiology, genetics, and ecology of toxigenic 
Vibrio cholerae." Microbiol Mol Biol Rev 62(4): 1301-1314. 

Faruque, S. M., K. Biswas, et al. (2006). "Transmissibility of cholera: in vivo-formed biofilms 
and their relationship to infectivity and persistence in the environment." Proc Natl 
Acad Sci U S A 103(16): 6350-6355. 

Francis, N. R., G. E. Sosinsky, et al. (1994). "Isolation, characterization and structure of 
bacterial flagellar motors containing the switch complex." J Mol Biol 235(4): 1261-
1270. 

Freter, R. and P. C. O'Brien (1981). "Role of chemotaxis in the association of motile bacteria 
with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae 
mutants in infant mice." Infect Immun 34(1): 222-233. 

Fuerst, J. A. and J. W. Perry (1988). "Demonstration of lipopolysaccharide on sheathed 
flagella of Vibrio cholerae O:1 by protein A-gold immunoelectron microscopy." J 
Bacteriol 170(4): 1488-1494. 

Fukuoka, H., T. Yakushi, et al. (2005). "Assembly of motor proteins, PomA and PomB, in the 
Na+-driven stator of the flagellar motor." J Mol Biol 351(4): 707-717. 

Gardel, C. L. and J. J. Mekalanos (1996). "Alterations in Vibrio cholerae motility phenotypes 
correlate with changes in virulence factor expression." Infect Immun 64(6): 2246-
2255. 

Green, J. C., C. Kahramanoglou, et al. (2009). "Recruitment of the earliest component of the 
bacterial flagellum to the old cell division pole by a membrane-associated signal 
recognition particle family GTP-binding protein." J Mol Biol 391(4): 679-690. 

Guentzel, M. N. and L. J. Berry (1975). "Motility as a virulence factor for Vibrio cholerae." 
Infect Immun 11(5): 890-897. 

Harkey, C. W., K. D. Everiss, et al. (1994). "The Vibrio cholerae toxin-coregulated-pilus gene 
tcpI encodes a homolog of methyl-accepting chemotaxis proteins." Infect Immun 
62(7): 2669-2678. 

Heidelberg, J. F., J. A. Eisen, et al. (2000). "DNA sequence of both chromosomes of the 
cholera pathogen Vibrio cholerae." Nature 406(6795): 477-483. 

Hendrixson, D. R. and V. J. DiRita (2003). "Transcription of sigma54-dependent but not 
sigma28-dependent flagellar genes in Campylobacter jejuni is associated with 
formation of the flagellar secretory apparatus." Mol Microbiol 50(2): 687-702. 

Hickman, J. W. and C. S. Harwood (2008). "Identification of FleQ from Pseudomonas 
aeruginosa as a c-di-GMP-responsive transcription factor." Mol Microbiol 69(2): 
376-389. 

Homma, M., S. Aizawa, et al. (1987). "Identification of the M-ring protein of the flagellar 
motor of Salmonella typhimurium." Proc Natl Acad Sci U S A 84(21): 7483-7487. 

Homma, M., D. J. DeRosier, et al. (1990). "Flagellar hook and hook-associated proteins of 
Salmonella typhimurium and their relationship to other axial components of the 
flagellum." J Mol Biol 213(4): 819-832. 

www.intechopen.com



 
Vibrio cholerae Flagellar Synthesis and Virulence 

 

71 

Homma, M., K. Kutsukake, et al. (1990). "FlgB, FlgC, FlgF and FlgG. A family of structurally 
related proteins in the flagellar basal body of Salmonella typhimurium." J Mol Biol 
211(2): 465-477. 

Homma, M., K. Ohnishi, et al. (1987). "Identification of flagellar hook and basal body gene 
products (FlaFV, FlaFVI, FlaFVII and FlaFVIII) in Salmonella typhimurium." J 
Bacteriol 169(8): 3617-3624. 

Hyakutake, A., M. Homma, et al. (2005). "Only one of the five CheY homologs in Vibrio 
cholerae directly switches flagellar rotation." J Bacteriol 187(24): 8403-8410. 

Ikeda, T., S. Asakura, et al. (1985). ""Cap" on the tip of Salmonella flagella." J Mol Biol 184(4): 
735-737. 

Ikeda, T., M. Homma, et al. (1987). "Localization and stoichiometry of hook-associated 
proteins within Salmonella typhimurium flagella." J Bacteriol 169(3): 1168-1173. 

Jobling, M. G. and R. K. Holmes (1997). "Characterization of hapR, a positive regulator of the 
Vibrio cholerae HA/protease gene hap, and its identification as a functional 
homologue of the Vibrio harveyi luxR gene." Mol Microbiol 26(5): 1023-1034. 

Joslin, S. N. and D. R. Hendrixson (2009). "Activation of the Campylobacter jejuni FlgSR 
two-component system is linked to the flagellar export apparatus." J Bacteriol 
191(8): 2656-2667. 

Karlinsey, J. E., S. Tanaka, et al. (2000). "Completion of the hook-basal body complex of the 
Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC 
transcription." Mol Microbiol 37(5): 1220-1231. 

Kawagishi, I., M. Imagawa, et al. (1996). "The sodium-driven polar flagellar motor of marine 
Vibrio as the mechanosensor that regulates lateral flagellar expression." Mol 
Microbiol 20(4): 693-699. 

Kennedy, M. J., E. L. Rosey, et al. (1997). "Characterization of flaA- and flaB- mutants of 
Serpulina hyodysenteriae: both flagellin subunits, FlaA and FlaB, are necessary for 
full motility and intestinal colonization." FEMS Microbiol Lett 153(1): 119-128. 

Kenner, J. R., T. S. Coster, et al. (1995). "Peru-15, an improved live attenuated oral vaccine 
candidate for Vibrio cholerae O1." J Infect Dis 172(4): 1126-1129. 

Klose, K. E. and J. J. Mekalanos (1998). "Differential regulation of multiple flagellins in 
Vibrio cholerae." J Bacteriol 180(2): 303-316. 

Klose, K. E. and J. J. Mekalanos (1998). "Distinct roles of an alternative sigma factor during 
both free-swimming and colonizing phases of the Vibrio cholerae pathogenic 
cycle." Mol Microbiol 28(3): 501-520. 

Klose, K. E., V. Novik, et al. (1998). "Identification of multiple sigma54-dependent 
transcriptional activators in Vibrio cholerae." J Bacteriol 180(19): 5256-5259. 

Koerdt, A., A. Paulick, et al. (2009). "MotX and MotY are required for flagellar rotation in 
Shewanella oneidensis MR-1." J Bacteriol 191(16): 5085-5093. 

Kojima, M., N. Nishioka, et al. (2011). "Conversion of mono-polar to peritrichous flagellation 
in Vibrio alginolyticus." Microbiol Immunol 55(2): 76-83. 

Kojima, S. and D. F. Blair (2004). "The bacterial flagellar motor: structure and function of a 
complex molecular machine." Int Rev Cytol 233: 93-134. 

Kusumoto, A., K. Kamisaka, et al. (2006). "Regulation of polar flagellar number by the flhF 
and flhG genes in Vibrio alginolyticus." J Biochem 139(1): 113-121. 

www.intechopen.com



 
Cholera 

 

72

Kusumoto, A., N. Nishioka, et al. (2009). "Mutational analysis of the GTP-binding motif of 
FlhF which regulates the number and placement of the polar flagellum in Vibrio 
alginolyticus." J Biochem 146(5): 643-650. 

Kusumoto, A., A. Shinohara, et al. (2008). "Collaboration of FlhF and FlhG to regulate polar-
flagella number and localization in Vibrio alginolyticus." Microbiology 154(Pt 5): 
1390-1399. 

Lauriano, C. M., C. Ghosh, et al. (2004). "The sodium-driven flagellar motor controls 
exopolysaccharide expression in Vibrio cholerae." J Bacteriol 186(15): 4864-4874. 

Lee, S. H., S. M. Butler, et al. (2001). "Selection for in vivo regulators of bacterial virulence." 
Proc Natl Acad Sci U S A 98(12): 6889-6894. 

Lim, B., S. Beyhan, et al. (2006). "Cyclic-diGMP signal transduction systems in Vibrio cholerae: 
modulation of rugosity and biofilm formation." Mol Microbiol 60(2): 331-348. 

Lim, B., S. Beyhan, et al. (2007). "Regulation of Vibrio polysaccharide synthesis and 
virulence factor production by CdgC, a GGDEF-EAL domain protein, in Vibrio 
cholerae." J Bacteriol 189(3): 717-729. 

Lloyd, S. A., H. Tang, et al. (1996). "Torque generation in the flagellar motor of Escherichia 
coli: evidence of a direct role for FliG but not for FliM or FliN." J Bacteriol 178(1): 
223-231. 

Martinez, R. M., M. N. Dharmasena, et al. (2009). "Characterization of two outer membrane 
proteins, FlgO and FlgP, that influence vibrio cholerae motility." J Bacteriol 191(18): 
5669-5679. 

Matz, C., D. McDougald, et al. (2005). "Biofilm formation and phenotypic variation enhance 
predation-driven persistence of Vibrio cholerae." Proc Natl Acad Sci U S A 102(46): 
16819-16824. 

McCarter, L., M. Hilmen, et al. (1988). "Flagellar dynamometer controls swarmer cell 
differentiation of V. parahaemolyticus." Cell 54(3): 345-351. 

McCarter, L. L. (1994). "MotX, the channel component of the sodium-type flagellar motor." J 
Bacteriol 176(19): 5988-5998. 

McCarter, L. L. (1994). "MotY, a component of the sodium-type flagellar motor." J Bacteriol 
176(14): 4219-4225. 

Merrell, D. S., S. M. Butler, et al. (2002). "Host-induced epidemic spread of the cholera 
bacterium." Nature 417(6889): 642-645. 

Moisi, M., C. Jenul, et al. (2009). "A novel regulatory protein involved in motility of Vibrio 
cholerae." J Bacteriol 191(22): 7027-7038. 

Montie, T. C., D. Doyle-Huntzinger, et al. (1982). "Loss of virulence associated with absence 
of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-
mouse model." Infect Immun 38(3): 1296-1298. 

Morris, D. C., F. Peng, et al. (2008). "Lipidation of an FlrC-dependent protein is required for 
enhanced intestinal colonization by Vibrio cholerae." J Bacteriol 190(1): 231-239. 

Niehus, E., H. Gressmann, et al. (2004). "Genome-wide analysis of transcriptional hierarchy 
and feedback regulation in the flagellar system of Helicobacter pylori." Mol 
Microbiol 52(4): 947-961. 

Okabe, M., T. Yakushi, et al. (2001). "Cloning and characterization of motX, a Vibrio 
alginolyticus sodium-driven flagellar motor gene." J Biochem 130(6): 879-884. 

www.intechopen.com



 
Vibrio cholerae Flagellar Synthesis and Virulence 

 

73 

Okabe, M., T. Yakushi, et al. (2005). "Interactions of MotX with MotY and with the 
PomA/PomB sodium ion channel complex of the Vibrio alginolyticus polar 
flagellum." J Biol Chem 280(27): 25659-25664. 

Okabe, M., T. Yakushi, et al. (2002). "MotX and MotY, specific components of the sodium-
driven flagellar motor, colocalize to the outer membrane in Vibrio alginolyticus." 
Mol Microbiol 46(1): 125-134. 

Okunishi, I., I. Kawagishi, et al. (1996). "Cloning and characterization of motY, a gene coding 
for a component of the sodium-driven flagellar motor in Vibrio alginolyticus." J 
Bacteriol 178(8): 2409-2415. 

Prouty, M. G., N. E. Correa, et al. (2001). "The novel sigma54- and sigma28-dependent flagellar 
gene transcription hierarchy of Vibrio cholerae." Mol Microbiol 39(6): 1595-1609. 

Richardson, K. (1991). "Roles of motility and flagellar structure in pathogenicity of Vibrio 
cholerae: analysis of motility mutants in three animal models." Infect Immun 59(8): 
2727-2736. 

Rui, H., J. M. Ritchie, et al. (2010). "Reactogenicity of live-attenuated Vibrio cholerae vaccines 
is dependent on flagellins." Proc Natl Acad Sci U S A 107(9): 4359-4364. 

Salvetti, S., E. Ghelardi, et al. (2007). "FlhF, a signal recognition particle-like GTPase, is 
involved in the regulation of flagellar arrangement, motility behaviour and protein 
secretion in Bacillus cereus." Microbiology 153(Pt 8): 2541-2552. 

Sato, K. and M. Homma (2000). "Functional reconstitution of the Na(+)-driven polar flagellar 
motor component of Vibrio alginolyticus." J Biol Chem 275(8): 5718-5722. 

Sato, K. and M. Homma (2000). "Multimeric structure of PomA, a component of the Na+-
driven polar flagellar motor of vibrio alginolyticus." J Biol Chem 275(26): 20223-20228. 

Schmitt, C. K., S. C. Darnell, et al. (1994). "Mutation of flgM attenuates virulence of 
Salmonella typhimurium, and mutation of fliA represses the attenuated 
phenotype." J Bacteriol 176(2): 368-377. 

Schoenhals, G. J. and R. M. Macnab (1996). "Physiological and biochemical analyses of FlgH, 
a lipoprotein forming the outer membrane L ring of the flagellar basal body of 
Salmonella typhimurium." J Bacteriol 178(14): 4200-4207. 

Sjoblad, R. D., C. W. Emala, et al. (1983). "Invited review: bacterial flagellar sheaths: 
structures in search of a function." Cell Motil 3(1): 93-103. 

Stader, J., P. Matsumura, et al. (1986). "Nucleotide sequence of the Escherichia coli motB 
gene and site-limited incorporation of its product into the cytoplasmic membrane." 
J Bacteriol 166(1): 244-252. 

Stolz, B. and H. C. Berg (1991). "Evidence for interactions between MotA and MotB, torque-
generating elements of the flagellar motor of Escherichia coli." J Bacteriol 173(21): 
7033-7037. 

Syed, K. A., S. Beyhan, et al. (2009). "The Vibrio cholerae flagellar regulatory hierarchy 
controls expression of virulence factors." J Bacteriol 191(21): 6555-6570. 

Terashima, H., H. Fukuoka, et al. (2006). "The Vibrio motor proteins, MotX and MotY, are 
associated with the basal body of Na-driven flagella and required for stator 
formation." Mol Microbiol 62(4): 1170-1180. 

Terashima, H., M. Koike, et al. (2010). "The flagellar basal body-associated protein FlgT is 
essential for a novel ring structure in the sodium-driven Vibrio motor." J Bacteriol 
192(21): 5609-5615. 

www.intechopen.com



 
Cholera 

 

74

Terashima, H., S. Kojima, et al. (2008). "Flagellar motility in bacteria structure and function 
of flagellar motor." Int Rev Cell Mol Biol 270: 39-85. 

Tischler, A. D. and A. Camilli (2004). "Cyclic diguanylate (c-di-GMP) regulates Vibrio 
cholerae biofilm formation." Mol Microbiol 53(3): 857-869. 

Ueno, T., K. Oosawa, et al. (1992). "M ring, S ring and proximal rod of the flagellar basal 
body of Salmonella typhimurium are composed of subunits of a single protein, 
FliF." J Mol Biol 227(3): 672-677. 

Vess, R. W., R. L. Anderson, et al. (1993). "The colonization of solid PVC surfaces and the 
acquisition of resistance to germicides by water micro-organisms." J Appl Bacteriol 
74(2): 215-221. 

Watnick, P. I. and R. Kolter (1999). "Steps in the development of a Vibrio cholerae El Tor 
biofilm." Mol Microbiol 34(3): 586-595. 

Watnick, P. I., C. M. Lauriano, et al. (2001). "The absence of a flagellum leads to altered 
colony morphology, biofilm development and virulence in Vibrio cholerae O139." 
Mol Microbiol 39(2): 223-235. 

Weinstein, D. L., M. Carsiotis, et al. (1984). "Flagella help Salmonella typhimurium survive 
within murine macrophages." Infect Immun 46(3): 819-825. 

Yildiz, F. H. and G. K. Schoolnik (1999). "Vibrio cholerae O1 El Tor: identification of a gene 
cluster required for the rugose colony type, exopolysaccharide production, chlorine 
resistance, and biofilm formation." Proc Natl Acad Sci U S A 96(7): 4028-4033. 

Yildiz, F. H. and K. L. Visick (2009). "Vibrio biofilms: so much the same yet so different." 
Trends Microbiol 17(3): 109-118. 

Yonekura, K., S. Maki-Yonekura, et al. (2003). "Complete atomic model of the bacterial 
flagellar filament by electron cryomicroscopy." Nature 424(6949): 643-650. 

Yoon, S. S. and J. J. Mekalanos (2008). "Decreased potency of the Vibrio cholerae sheathed 
flagellum to trigger host innate immunity." Infect Immun 76(3): 1282-1288. 

Yorimitsu, T., Y. Asai, et al. (2000). "Intermolecular cross-linking between the periplasmic 
Loop3-4 regions of PomA, a component of the Na+-driven flagellar motor of Vibrio 
alginolyticus." J Biol Chem 275(40): 31387-31391. 

Yorimitsu, T., M. Kojima, et al. (2004). "Multimeric structure of the PomA/PomB channel 
complex in the Na+-driven flagellar motor of Vibrio alginolyticus." J Biochem 
135(1): 43-51. 

Zanen, G., H. Antelmann, et al. (2004). "FlhF, the third signal recognition particle-GTPase of 
Bacillus subtilis, is dispensable for protein secretion." J Bacteriol 186(17): 5956-5960. 

Zhou, J., S. A. Lloyd, et al. (1998). "Electrostatic interactions between rotor and stator in the 
bacterial flagellar motor." Proc Natl Acad Sci U S A 95(11): 6436-6441. 

Zhou, J., L. L. Sharp, et al. (1998). "Function of protonatable residues in the flagellar motor of 
Escherichia coli: a critical role for Asp 32 of MotB." J Bacteriol 180(10): 2729-2735. 

www.intechopen.com



Cholera

Edited by Dr. Sivakumar Gowder

ISBN 978-953-51-0415-5

Hard cover, 218 pages

Publisher InTech

Published online 28, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Cholera, a problem in Third World countries, is a complicated diarrheal disease caused by the bacterium Vibrio

cholerae. The latest outbreak in Haiti and surrounding areas in 2010 illustrated that cholera remains a serious

threat to public health and safety. With advancements in research, cholera can be prevented and effectively

treated. Irrespective of "Military" or "Monetary" power, with one's "Own Power", we can defeat this disease.

The book "Cholera" is a valuable resource of power (knowledge) not only for cholera researchers but for

anyone interested in promoting the health of people. Experts from different parts of the world have contributed

to this important work thereby generating this power. Key features include the history of cholera, geographical

distribution of the disease, mode of transmission, Vibrio cholerae activities, characterization of cholera toxin,

cholera antagonists and preventive measures.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Anastasia R. Rugel and Karl E. Klose (2012). Vibrio cholerae Flagellar Synthesis and Virulence, Cholera, Dr.

Sivakumar Gowder (Ed.), ISBN: 978-953-51-0415-5, InTech, Available from:

http://www.intechopen.com/books/cholera/vibrio-cholerae-flagellar-synthesis-and-virulence



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


