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1. Introduction 

Carbohydrate-based surfactants (CBS) are, today, among the most important classes of 
amphiphilic compounds (Dembintsky, 2004; Queneau et al, 2008; Ruiz, 2009). Their 
structure is the result of the saccharide and lipid combination, naturally biosynthesized 
within living cells, or synthetically prepared by sequential reactions using carbohydrate and 
fatty materials, through one or several bonds. The growing interests of such compounds 
arise from many reasons of fundamental, practical, economical, and environmental orders 
(Razafindralambo et al, 2009, 2011a; Hill, K. & LeHen-Ferrenbach, 2009; Kitamoto et al, 
2009). First, they can be easily prepared from the most abundant renewable vegetable raw 
materials (cellulose, pectin, hemicellulose, starch, etc.) in a wide range of structure and 
geometry by modular synthesis thanks to the presence of numerous reactive hydroxyl 
groups. Second, such a structural diversity makes them, on the one hand, as excellent 
models for getting insight into the surfactant mechanisms in modifying interfacial 
properties, which control the formation and the stability of colloidal systems such as 
micelles, vesicles, foams, emulsions, and suspensions (Razafindralambo et al, 2011b). One 
the other hand, numerous properties and functionalities would be expected from such a 
quasi-unlimited number of various compounds that can find specific applications in 
different industrial areas. Third, their compatibility to the environment, for instance, a 
higher biodegradability and lower toxicity, is an excellent criterion for their uses as 
alternatives to surfactants from petrochemical sources. Owing to the two former reasons, a 
systematic investigation of structure-activity relationships, which has rarely been carried out 
in the past, appears valuable for increasing knowledge on the impact of each CBS structural 
entity on their activities-functionalities, and ultimately, for achieving successfully a rational 
design in selecting and combining suitable compounds for further developments and 
applications. In the present chapter, we report the results of dynamic and equilibrium 
surface properties of homologous and analogous series of uronic acid derivatives, and 
evidence, consequently, the impact of different structural entities on their fundamental 
properties at the air-water interface.  

2. Scope of the contribution 

The aim of the present contribution is: (1) to review CBS in terms of structural classification 
based on their molecular size (mono-, oligo-, polymeric surfactants), geometry (standard, 
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bipolar or bolaform, and gemini surfactants), and the nature of the polar headgroup 
(charged or not, cyclic or not), the apolar tail (number and length of alkyl chain), and the 
linker (amide, ester, ...) and/or the spacer; (2) to present systematically results on structure-
activity relationships of uronic acid derivatives (UADs), a particular class of carbohydrate-
based surfactants. These concern the impact of each structural entity including the polar 
headgroup (stereochemistry), apolar tail (chain length, number, and unsaturation), and 
linkage/spacer, on the performance of UADs to change surface properties, and possibly, to 
form and stabilize colloidal systems.  

3. Classification of carbohydrate-based surfactants 

Carbohydrate-based surfactants, currently known as glycolipids (Chester, 1997; Hato et 
al., 1999), are constituted by a saccharide unit (mono-, di-, oligo-, or polysaccharide) 
linked to a hydrophobic part of one, two, or multi-hydrocarbon chains by a single, or 
several bonds. These may be an ester, thioester, ether, amine, or/and amide group 
(Stubenrauch, 2001). Generally, glycolipids may be classified according to their 
amphiphilic structure, which depends on the polar headgroup, the apolar tail, but also the 
linkage between these main entities. Based on these three structural parameters, 
glycolipids are grouped in different categories, as presented in Table 1. 

 

Glycolipids Hydrophilic part Hydrophobic part Linkers 

Monocatenary 
Bicatenary 
Multicatenary 

One headgroup 
One tail 
Two tails 
Multi tails 

Ester, thioester, Ether, 
amine, amide 

Glycoglycerolipids  Acylglycerol 

Glycosphingolipids  Sphingoides 

Bolaforms Two headgroups One spacer 

Geminis  One spacer/two tails 

Alkylpolyglucosides Multi-headgroups One or multi-tails 

Table 1. Main classes of glycolipids, based on the amphiphilic structure and geometry 

Besides the nature ionic, nonionic, and amphoteric of the polar headgroup, as for all 
surfactants, glycolipids can also be classified in small, medium, and large compounds, in 
relation to their molecular mass and size. According to these criteria, three main classes 
belonging to glycolipid-based monomeric, oligomeric, and polymeric surfactants may be 
distinguished. In addition to structural criteria, glycolipids may have two origins, those 
from microbial fermentation, crops, and animals, which are natural products, and those 
synthetized by chemical, enzymatic, and chemo-enzymatic routes, globally considered as 
synthetic compounds. In the following section, we try to illustrate by a few representative 
examples the most important classes of glycolipids with their chemical structure on the basis 
of their source, molecular mass, and geometry while considering the other classification 
aspects. 
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3.1 Natural glycolipids 

3.1.1 Microbial biosurfactants 

 

Bioglycolipids Structure Specificities 
(headgroup, tail, linkage) 

 
 
 
 Rhamnolipids 
 
 
 
 Sophorolipids 
 
 
 
 Trehalolipids 
 
 
 
 
 Mannosylerythriol lipid 
 
 
 
 
 
 Monogalactosyldiacylglycerol

Low molecular mass 
 
 

 
 
 

 
 
 

 
 
 

 
 

 
 

 
 
 

nonionic, mono/di, ester, 
(Dembitsky, 2005) 

 
 

nonionic, mono, ester, 
(Dembitsky, 2005) 

 
 

nonionic, di, ester, 
(Dembitsky, 2005) 

 
 
 

nonionic, mono, ester, 
(Kitamoto et al. 2009) 

 
 
 
 

nonionic, di, ester,  
(Infante et al. 1997) 

 
 
 Cyclo-oligosaccharides 
 
 
 
 
 Emulsan 

(Polymeric biosurfactant) 

High molecular mass 
 

 
 

 
 

nonionic, mono, ester-
amide, 

(Dembitsky, 2005) 
 
 

nonionic, multi, 
ester/amide, 

(Desai et Banat, 1997) 

O

O
O

COOH

O

OH
OH

OH
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3.1.2 Plant biosurfactants 

 

Bioglycolipids Structure Specificities (headgroup, tail, linkage) 

 
 Butanolide 

glycosides 
 
 
 Sucrose ester 

 

 
 

 
nonionic, multi, ester,  

(Dembitsky, 2005) 
 

nonionic, multi, ester,  
(Dembitsky, 2005) 

3.1.3 Animal biosurfactants 

 

Bioglycolipids Structure Specificities (headgroup, tail, linkage) 

 
 Cerebrosides 
 
 
 
 Gangliosides 

 

 
 
 

 

 
nonionic, di, amide,  
(Dembitsky, 2005) 

 
 

cationic, di, amine,  
(Dembitsky, 2005) 

3.2 Synthetic glycolipids 

 

Glycolipids Structure Specificities  (headgroup, tail, linkage) 

Monomeric 

 
 Sorbitan monoester
 
 
 
 Isosorbide 

derivative 
 
 
 
 Uronic acid 

derivatives: 
a. Monocatenary 
 
b. Bicatenary 

 
 
 Alkylglucoside 

 
 

 
 
 
 

 
 

 
 

 
nonionic, mono, ester,  

(Hill &LeHen- Ferrenbach, 2009) 
 
 

nonionic, mono, ester 
(Hill &LeHen- Ferrenbach, 2009) 

 
 
 
 

nonionic, mono, amide 
(Laurent et al. 2011) 

 
nonionic, di, ester-ether 

(Richel et al. 2010) 
 
 

nonionic, mono, ether (Vulfson, 1990) 

O

O

O

OH
OH

O

OH
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Glycolipids Structure Specificities  (headgroup, tail, linkage) 

Bolaform 

 
 α,-diamino-(oxa) 

[Spacer: -(CH2)n-] 

 
nonionic, bi, amide  

(Wagenaar&Engberts, 2007) 

Gemini 

 
 Glu(n)-2-Glu(n) 

 
nonionic, bi, amides 

(Sakai, 2008) 

Oligomeric/polymeric 

 Alkylpolyglucoside
 
 
 
 Inulin carbamate 

 
 

nonionic, mono, ether  
(Queneau et al. 2008) 

 
 

nonionic, mono, ester 
(Tadros, 2004) 

4. Uronic acid derivatives 

Uronic Acid-Derivative Surfactants (UADs) are a particular class of monomeric glycolipids 
(Fig.1). Their polar headgroup represents a considerable part of carbohydrate components, 
widely distributed in natural plant polysaccharides (Langguth & Benet, 1992). In addition, 
uronic acids are the result of the primary alcohol oxydation into a carboxylic group within a 
monosaccharide like glucose and galactose. Thus, they contain, in their structure, both 
hydroxyl and carboxylic groups that are highly reactive, explaining their potential as a basic 
unit for generating closely related surfactant compounds. The polar headgroup configurations 
according to the stereochemistry of OH groups and geometry (cyclic or not, bipolarity), the 
hydrophobic tail (number and length of alkyl chain), and the type of linker (ester, ether and 
amide, etc) are among the main variables in their structural entities. Therefore, they represent a 
set of ideal compounds for investigating structure-surface activity relationships. 

 
Fig. 1. General structure of uronic acid (left) and uronolactone (right) derivatives 

O

L

O
R3

OH
OH

O R1

R2

R4
O

OH

O

O

OH O RX
L: NH or O

R1: (CH2)n-CH3

R2: (CH2)n-CH3

R3: OH or H

R4: H or OH

R: (CH2)n
X: OH or CH3
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Among several activities that CBS are able to develop (Ruiz, 2009), those related to the 
modification of surface and interface fundamental properties are undeniably the most 
important to evaluate and understand. Through several research works during last decades, 
it is established that fundamental properties such as dynamic and equilibrium surface 
tensions play a key role in the formation and stability of colloidal systems like foams, 
emulsions, and suspensions (Razafindralambo et al. 2011b). In this chapter, we are only 
focused on the relationships between chemical structure of UADs and their surface-activities 
at the air-water interface. UADs are a set of glucuronic and galacturonic acid-based 
surfactants varying in the polar headgroup configuration, including a cyclic (lactone bond) 
or non-cyclic structure and a ǂ- or ǃ- anomeric form, the hydrophobic tail chain length (C8 
to C14) and number (mono- and bicatenary), the presence of a double bond, as well as an 
OH group at the terminal carbon, and in the type of linkage, ester, amide in C6, or ether in 
C1. These compounds have been synthesized by chemical or enzymatic routes, purified, and 
their chemical structure has been confirmed by means of various spectroscopic techniques 
(Nuclear Magnetic Resonance, Infrared, and Mass Spectrometry).  

5. Surface-active properties 

Surface-active properties of any surfactants can be measured through their capacity, either 
to reduce the surface tension of aqueous solution (o) to any value (), or to increase the 
surface pressure (π = o-) of the air-water interface. Measurements can be performed in both 
dynamic and static/quasi-static modes. Based on the solubility of the coumpound to 
characterize, one of the two following approaches must be used. The Gibbs’approach, 
measuring  by adsorption, i.e. by migration of surfactant to the surface, is more convenient 
for short chain derivative surfactants (high solubility in water) whereas the Langmuir 
approach, determining π after spreading and compressing surfactant molecules at the 
surface, is rather appropriate for long chain derivative surfactants (low solubility in water). 
Surface activities of uronic acid derivatives may be evaluated in both dynamic and 
static/quasi-satic modes using a series of complementary techniques at room temperature 
comprised between 20-25°C (Razafindralambo et al., 1995; 2009; 2011). 

5.1 Dynamic surface properties 

In dynamic mode, surface tensions (dyn) are measured using a drop volume tensiometer 
(TVT1, Lauda, Germany) by determining the critical volume (maximum pending size) of a 
series of drop created at different growing rates from 3  to 120 s (Razafindralambo et al., 
2004).  

5.2 Equilibrium surface properties 

5.2.1 Gibbs approach 

In static and quasi-static modes, the equilibrium surface tensions (e) are measured by 
means of Wilhelmy plate (Tensimat N3, Prolabo, France), drop volume (TVT1, Lauda, 
Germany), or pending drop (Tracker, IT-Concept, France)-based tensiometers as detailed in 
previous papers (Razafindralamboet al., 1995; 2009). These methods consist of measuring 
continuously e as a function of time, for surfactant solutions at different concentrations. The 
equilibrium surface tension (e) can be determined as the fitting value of  from 
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representative experimental data, using appropriate mathematical models. All physical 
parameters such as critical micelle concentration (CMC), surface tension at the CMC (cmc), 
surface excess (Γmax), and minimum area per molecule(Amin), can be calculated using Gibbs 
equations for nonionic surfactants : 

 max
1

ln o

d

RT d C

 
    

 
 (1) 

and 

 
max

1
cmcA

N

 
  

 
 (2) 

where Co is the bulk solution concentration; R = 8.314 J.K-1.m-2, the gas constant; T, the 
temperature in Kelvin, and N, the Avogadro’s number. 

5.2.2 Langmuir approach 

By Langmuir approach, a small volume of surfactant organic solution is spread drop wise onto 
the clean milli-Q water surface by means of Hamilton micro-syringe using a reproducibility 
adapter. After a given laps time, allowing the solvent evaporation, the surface pressure (π) of 
the monolayer is determined by measuring the horizontal force per unit of length, for a 
delimited area, during the compression. With an automatic Langmuir film Waage LFW2 3″5 
(Lauda, Königshofen, Germany), a total trough area of 927 cm² is available. This is 
progressively reduced by moving a single barrier made in Teflon, and the force per length unit 
detected at a float gives the surface pressure of the monolayer at a constant temperature. For 
characterizing uronic acid derivatives, mainly bicatenary surfactants, the research of optimized 
experimental conditions is required (Razafindralambo et al. 2011). 

6. Structure-activity relationships 

6.1 Polar headgroup effect 

6.1.1 Stereochemistry 

Anomeric forms 

The effect of the octyl glucuronolactone anomeric form is observed for the equilibrium 
surface properties (Table 2). The anomer ǂ CMC is about the half of that of the anomer ǃ, all 
other related parameters being quite similar. cmc and Amin are quite similar, indicating that 
the anomeric form does not affect the molecular arrangement at the air-water interface, but 
changes that in the bulk water. In other words, the anomer ǂ self-aggregates readily in water 
while adopting the same close-packed configuration at the air-water interface than the 
anomer ǃ. Therefore, the anomer ǂ appears more hydrophobic than the anomer ǃ, which is 
attributed to the difference in the steric effect of their polar headgroup. This interacts 
stronger with water molecules for the anomer ǃ, delaying its self-aggregation process. 
Concerning their dynamic surface properties, the anomer ǃ appears slightly more efficient 
than the anomer ǂ (data not shown), the difference being less important than that observed 
for equilibrium surface properties.  
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 ϒcmc 

[mN/m] 
CMC 
[mM] 

Amin 

[Å²/mol] 
ǂ-C8- Glucuronolactone 
ǃ-C8- Glucuronolactone 

32.8 
35.2 

1.3 
2.4 

43 
40 

Table 2. Physical parameters of octyl glucuronolactone with ǂ and ǃ anomers 

4-hydroxyl group (4-OH) axial or equatorial position effect 

The second parameter related to the polar headgroup stereochemistry is the axial or 
equatorial position of the hydroxyl group of the fourth carbon within bicatenary derivatives 
of galacturonic and glucuronic acids. This stereochemistry effect impacts their configuration 
and behaviour at the air-water interface, as observed with the (-A) isotherms (Fig.2). The 
glucuronic acid derivative (GlcA-C14/14) is more expanded when it is spread at the air-water 
around 20°C, and shows a transition phase under compression, which does not occur for the 
galacturonic acid derivative (GalA-C14/14). This difference is in agreement with film 
morphologies and thicknesses, and is also supported by molecular models 
(Razafindralambo et al., 2011). In contrast, the 4-OH axial or equatorial position has no effect 
when the molecules are vertically oriented, i.e. within a film at a condensed state. Such 
results have been attributed to the configuration of two alkyl chains, which is in "open" or 
"close" structure according to the film is in expanded or in condensed state.  

 
Fig. 2. (-A) isotherms of GalA-C14/14 and GlcA-C14/14 spread at the air-water interface 20°C 

6.1.2 Impact of the bipolarity: (OH group ending the alkyl chain) 

Adding an OH group at the end of the alkyl chain changes the geometry of uronic acid 
derivatives, which becomes a bipolar asymmetric. Such a modification impacts some 
dynamic (Fig.3) and equilibrium surface properties (Table 3) of glucuronic acid derivatives.  
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Fig. 3. Dynamic surface tension vs. time of dodecyl glucuronolactones (0.2 g/L), with and 
without a hydroxyl group at the end, measured by TVT1 at 20°C 

 

 ϒcmc 

[mN/m] 
CMC 
[mM] 

Amin 

[Å²/mol] 
OH-C12-Glucuronolactone 
C12-Glucuronolactone 

43.9 
47.2 

0.7 
0.6 

65 
34 

Table 3. Physical parameters of dodecyl glucuronolactones ending with, and without 
hydroxyl group 

It increases the area occupied per molecule (cross-sectional area), and the performance in the 
adsorption time by reducing faster the dynamic surface tension. This difference is easy to 
understand, and may be explained by the fact that the two polar headgroups are directed 
into the aqueous phase, leaving the hydrophobic spacer in the gaseous phase, and forming, 
as a consequence, a "convex" configuration. In contrast, it has no significant effect on the 
equilibrium (long time) surface properties, based on their CMC and cmc values.  

6.2 Hydrophobic effect 

6.2.1 Alkyl chain length 

The impact of the alkyl chain length on all of interfacial properties can be evaluated with a 
homologous series of monocatenary and bicatenary uronic acid derivatives. As for all 
monomeric surfactants, whatever their nature, the general trend is respected with uronic acid 
derivatives, that is, the longer the alkyl chain length, the lower the CMC of the uronate and 
uronamide derivatives (Blecker et al., 2002; Laurent et al., 2011). About dynamic surface 
properties, an optimum chain length of eleven carbon atom gives the best performance, 
regarding the adsorption time and the maximum reduction of the surface tension. Concerning 
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bicatenary derivatives, the comparison of GalA-C10/10 and GalA-C14/14 monolayer properties 
shows that the shorter the two alkyl chains (C10/10), the more expanded and compressible the 
spread molecules, and the less stable the molecular film (Fig.4). Such behaviour of the shorter 
chain derivatives is attributed to stronger interactions with the subphase, which is comparable 
with the case of the dimyristoyl-phosphatidylcholine (DMPC), an ionic phospholipid having 
the same alkyl chains  than that of GalA-C14/14 (data not shown).  

 
Fig. 4. (π-A) isotherms of GalA-C10/10 and GlcA-C14/14 spread at the air-water interface 

6.2.2 Alkyl chain number (Monocatenary vs. bicatenary) 

The alkyl chain number of uronic acid derivatives also appears crucial on their surface 
properties characterized by the Langmuir approach. When a second alkyl chain is added to 
the polar headgroup, that is, the compound becomes bicatenary, the mechanical properties 
of the film at the air-water interface are improved, regarding its collapse pressure (Fig.5). It 
is to be noted, from this figure, that the inclusion of a cyclic ester bond into the polar 
headgroup affects slightly the behaviour of the monolayer. 

6.2.3 Unsaturation 

By including a double bond at the end of the alkyl chain, no significant effect has been 
observed on the equilibrium surface properties, the cmc, CMC, and Amin values being similar 
and equal to 34.2 ± 1.1 mN/m, 0.12 ± 0.01 g/L, and 39.0 ± 2.0 Å²/mol., respectively. In 
contrast, it impacts extensively the dynamic surface properties of the undecanoyl 
glucuronate (Fig.6). The derivative with an unsaturated chain migrates faster at the air-
water interface, and reduces readily the dynamic surface tension, compared to the saturated 
one. It is attributed to the “shortening effect” of the double bond inclusion (Milkereit et al. 
2005), reducing the hydrophobicity of the surfactant, and therefore, its adsorption time.  
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Fig. 5. (π-A) isotherms of GlcA-O-C14, GlcA-lactone-C14, and GlcA-C14/14 spread at the air-
water interface 25°C. 

 
Fig. 6. Dynamic surface tension vs. time of undecanyl (C11:0) and undecenyl (C11:1)-
glucuronolactones ( 0.1 g/L) measured by TVT1 at 20°C. 

6.3 Linkage effect 

6.3.1 Ester bond direction 

One of the spectacular effects of the linkage between the polar headgroup and the 
hydrophobic tail is the change of the ester bond orientation within the octyl sugar 
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derivatives. By comparing the dynamic and equilibrium surface properties of glucose 
octanoate (C8-CO-O-Glc) and octyl glucuronate (C8-O-CO-GlcA), significant differences are 
observed (Table 4). When the carbonyl group is closed to the polar headgroup constituted 
by glucuronic acid (C8-O-CO-GlcA), the surfactant is more hydrophobic, and the polar head 
group is larger. The consequence is the increase of dynamic properties, and the decrease of 
the CMC (10.7 mM vs. 19.1 mM). When the carbonyl group is close to the alkyl chain (C8-
CO-O-Glc), there is an "interruption" of the hydrophobic tail, which reduces its 
hydrophobicity (Razafindralambo et al. 2009). The molecular area becomes smaller and the 
CMC is higher. On the other hand, the adsorption time rate characterized by t* and vmax are 
increased, reducing its performance on dynamic surface properties.  
 

Parameters Glucose octanoate 
[Glc-O-C8] 

Octylglucuronate 
[GlcA-O-C8] 

Dynamics (1) : 
t* (10-3 s) 
n 
vmax(mN/m/s) 
 

Equilibrium : 
ϒcmc (mN/m) 
CMC (mM) 
Amin (Å²/mol) 

 
36.1 
0.14 
0.024 

 
 

25.1 
19.1 
37 

 
3.4 
0.56 

0.0081 
 
 

28.0 
10.7 
44 

Table 4. Physical parameters of glucose octanoate and octyl glucuronate; (1) Compared at 
1.63 mM (25°C). 

6.3.2 Ester vs. amide bond 

By comparing the surface properties of three derivatives with an octyl chain, the impact of 
the type of the linkage bond can be evidenced, despite the difference in the ratio alpha/beta 
of anomeric forms (Table 5). It appears that the uronamide is the most effective in terms of 
equilibrium surface tensions. This result may be attributed to the difference in the molecular 
area occupied by the two octyl derivatives. The amide bond has a smaller bulk size than the 
ester ones. In comparison with a unique form of octyl glucoside, the glucuronamide is more 
effective. Even though the linkage is not at the same position, on the C1 for glucoside, and 
on the C6 for glucuronamide, the impact may be significant, considering the similarity in the 
molecular mass, and the number of the OH group available. 
 

Physical parameters 

C8-glucuronate 
[C6-Ester linkage] 

 
ǂ/ ǃ=1.5 

C8-glucuronamide 
[C6-Amide linkage] 

 
ǂ/ ǃ=0.6 

C8-glucoside (25°C) 
[C1-Ether linkage] 

ǂ ; ǃ 
[Boyd et al, 2000] 

ϒcmc (mN/m) 
CMC (mM) 
Amin (Å²/mol) 

28.0 
10.7 

44 ; 45(1) 

24.0 
3.3 

25 ; 35(1) 

35.2 ; 31.3 
12.0; 18.2 
42 ; 42(2) 

Table 5. Physical parameters of glucuronic acid and glucose derivatives containing different 
linkages at the air-water interface. (1) By modeling; (2) by linear fit 
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7. Conclusion 

In the present chapter, we contribute to a better understanding of the structure-surface 
activity relationships of uronic acid derivatives, a promising class of carbohydrate-based 
surfactants. Each structural element impacts either their dynamic performances, measured 
over a short period range, or their equilibrium activities, evaluated after a longer period. 
Besides scientific interests of such fundamental information, the approach also leads to the 
identification of some suitable structures for practical performances in forming and 
stabilizing colloidal systems like foams, emulsions, and suspensions, which are encountered 
virtually in all soft manufactured products.  
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