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1. Introduction  

Lifestyle factors including, but not limited to, dietary intake, have led to the increasing 
global prevalence and incidence of major chronic diseases (e.g. obesity, diabetes, 
cardiovascular disease and cancer) in children and adults. Numerous reports have 
documented the relationships between dietary patterns, weight gain (Mozaffarian, Hao, 
Rimm, Willett, & Hu, 2011; Romaguera et al., 2011) and chronic disease prevalence 
(Adebamowo et al., 2005; de Munter, Hu, Spiegelman, Franz, & van Dam, 2007; L. Hooper et 
al., 2008; Hung et al., 2004; Song, Manson, Buring, Sesso, & Liu, 2005). Few studies have 
evaluated the potential contribution of decreased food crop genetic diversity in these 
metabolic and inflammatory disorders (Jew, AbuMweis, & Jones, 2009a; M. D. T. Thompson 
& Thompson, 2009). Integrating our understanding of nutrigenetics and the gut microbiome 
with genetic and phytochemical diversity of food crops represents a novel systems level 
approach for determining the important contributions of plant genetic diversity to human 
health.  

The composition of one’s diet is a strong environmental pressure that can influence the 

gut microenvironment, as well as the nutrigenomic evolution of the human species. The 

human genome has adapted to changes in the available food supply through a complex 

set of interactions. Humans have also strongly influenced the evolution of plant genomes, 

particularly those plant foods domesticated as staple crops (e.g. rice, wheat, beans, 

potatoes, corn). While staple crop genomes have been widely studied for agronomic traits, 

such as yield and disease resistance, little is known regarding the impact of genetic 

selection on staple food crop traits that are of human health importance. Changes in the 

“genome” of both plants and animals are complex and multi-layered fields of study. 

Beyond the foundational layer of genetic sequence, plants and animals have modifications 

to DNA that create a pattern of inheritance known as epigenetics. Moreover, humans have 

another layer of extensive genetic diversity bestowed by the microbial kingdom that co-

habituates within the human body that may be referred to as metagenomics. Each of these 

layers interacts to influence host gene expression and have evolved over time to affect 

host metabolism. 
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2. Definition of terms for understanding human nutrigenetic co-evolution  

with crops  

Definitions for common terms relevant to the synthesis of information on genetic diversity 

of plant foods for human chronic disease prevention are provided to advance our ability to 

integrate these systems level concepts.  

 Genotype: Genetic makeup consisting of nucleic acid sequence and containing a 

combination of DNA mutations. Genotype is unique to every individual, is determined 

at conception, cannot be changed throughout one’s lifetime, and will be the foundation 

for determining genetic predisposition for disease (DeBusk, Fogarty, Ordovas, & 

Kornman, 2005). 

 Nutrigenetics: The field of study that focuses on the effect of one’s genotype on 

dietary needs as it relates to risk for developing disease (DeBusk et al., 2005; 

Simopoulos, 2010).  

 Nutrigenomics: The field of study that focuses on the effect of dietary components on 

gene expression as it relates to disease processes (DeBusk et al., 2005).  

 Epigenetics: The pattern of DNA modifications that affect gene expression, but do 

not involve changing nucleotide sequence (DNA methylation and histone acetylation 

are examples of epigenetic modifications). Epigenotype is an inherited pattern which 

varies from cell to cell, is determined at conception, and may also be highly 

influenced by environmental conditions during development and throughout one’s 

lifetime. Unlike genotype, it is not a static pattern, but a mutable one (Feil, 2006; 

Fraga et al., 2005).  

 Microbiomics: The study of all of microorganisms within a single ecosystem. For 

nutritional contexts, this refers to all microorganisms co-existing within the human 

gastrointestinal (GI) tract (Dimitrov, 2011).  

 Metagenomics: The study of a collection of genetic material (genomes) from a mixed 

community of organisms.For nutritional contexts, this refers to the microbial 

communities residing within the human GI tract (Hattori, 2009). 

 Phylotype: The composition of microflora that make up a particular microbiome. It is 

established after birth and changes in response to environmental influences and 

disease (Let et al., 2008; Turnbaugh et al., 2009).  

 Phenotype: The measurable, observable, or experienced expression of a trait. It is  

the manifestation of genotype as influenced by epigenotype, phylotype, and 

environment (DeBusk et al., 2005).  

 Cultivar: A variety of a plant or crop that has been deliberately selected for a specific 

trait or characteristic (e.g. yield or disease resistance) (Zeven, 1998). 

 Phytochemical: Any of the chemical substances produced by plants. 

 Primary Metabolites: Products of plant biosynthesis that are considered essential 

building blocks for growth and development, e.g. macromolecules such as 

carbohydrates, proteins, and fats. 

 Secondary Metabolites: Small molecules synthesized by plants for signaling or defense 

purposes. There are over 200,000 different secondary metabolite compounds that have 

been characterized (M.D.T. Thompson & Thompson, 2009). 
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Fig. 1. The Layers of the Nutrigenome: Genetic make-up (genotype), genomic expression, 
epigenetic modifications (epigenotype), the microbiome (phylotype) and environmental 
factors contribute to the overall health phenotype of humans. Genotype serves as the 
foundation, while epigenotype, and phylotype are modifiers of gene expression in  
response to dietary components and other environmental factors.  

3. Gene-nutrient interactions  

After a decade into the 21st century, there is concern that today’s children may be the first 

generation in America to have a shortened life expectancy compared to their parents 

(Olshansky et al., 2005). One major reason for this concern is the growing obesity epidemic 

and the myriad of health issues associated with obesity including, diabetes, heart disease, 

non-alcoholic liver disease, and cancer (Bray, 2004). A theory to address this global surge in 

metabolic related chronic diseases is related to the deviation of human populations from the 

food supply that their ancestors have co-evolved with (Cordain et al., 2005; Jew, AbuMweis, 

& Jones, 2009b).  

The nutritional and biomedical sciences have developed areas of investigation that delve 

into possible causal events for metabolic and inflammatory related chronic disorders, while 

simultaneously searching for effective preventive measures (Garcia-Canas, Simo, Leon, & 

Cifuentes, 2010; Go, Nguyen, Harris, & Lee, 2005; Goodacre, 2007). These emerging fields of 

study include Nutrigenetics, Nutrigenomics, Nutri-Epigenetics, Nutri-Proteomics, Nutri-

Metabolomics, and Microbiomics (Figure 1). Nutrigenetics, Nutrigenomics, and Nutri-
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Epigenomics seek to characterize genes that participate in diet-disease relationships, while 

Proteomics and Metabolomics involve measuring the protein or metabolite end products of 

gene expression in response to dietary influences, and can be considered critical measures of 

function or phenotype (Cobiac, 2007; Go et al., 2005). Microbiome studies represent the 

youngest of the aforementioned high throughput technologies, and reveals how the 

phylogenetic make up of our GI tract microbiota may influence overall metabolic status and 

diet-disease relationships (Hattori, 2009), and emerging models support the importance of 

gut microbial community modifications by diet (Flint, Duncan, Scott, & Louis, 2007; Kau, 

Ahern, Griffin, Goodman, & Gordon, 2011; Ley et al., 2005).  

3.1 Evolutionary nutrigenetics 

In parallel with major shifts in human diet composition and dietary patterns, such as the 

incorporation of animal products like meat or dairy, and the increased consumption of a 

single staple food during the green revolution (i.e. wheat, rice), the human body has had to 

adapt metabolically for optimal absorption of essential nutrients (Jew et al., 2009b; Luca, 

Perry, & Di Rienzo, 2010). These adaptations have been targeted by natural selection, 

resulting in genetic mutations that may vary between individuals and are an essential part 

of a person’s unique nutrigenetic code. Specific examples of gene mutations that have arisen 

in concordance with changes in the available food supply have become increasingly 

apparent as the field of nutrigenetics unfolds. Though there are countless known genetic 

mutations relevant to nutrition and chronic disease risk, we will highlight three significant 

examples. Additional examples of gene mutations that have arisen in response to changes in 

diet composition are listed in Table 1.  

3.1.1 Lactase persistence 
A token example of human genetic co-evolution with the food supply is lactase 
persistence in concordance with incorporation of dairy within the diet of some human 
populations. Lactose intolerance is the “default” phenotype yielded by the ancestral or 
wild type version of the human LCT (lactase-phlorizin hydrolase) gene and results  
from diminished expression of the LCT gene post-weaning (Hollox, 2005). Individuals 
with mutant forms of the LCT gene have certain DNA mutations, called single nucleotide 
polymorphisms, or SNPs, within the regulatory region of the gene. These mutations  
allow for continued expression of the LCT gene post-weaning, resulting in the ability to 
digest and gain energy from lactase in dairy products. These mutations were positively 
selected for during human evolutionary history in populations with increased 
incorporation of dairy in the diet. Several different SNPs in the LCT gene have 
independently evolved in distinct populations of northern Europe and eastern Africa 
(Jarvela, Torniainen, & Kolho, 2009). This mutation is a classic example of evolutionary 
nutrigenetics, and exemplifies the genetic co-evolution of populations with dietary intake 
and availability.  

3.1.2 Alcohol dehydrogenase 

The human ADH1B gene, which encodes for a subunit of the alcohol dehydrogenase 

enzyme responsible for catalyzing the breakdown of alcohol into acetaldehyde, is another 
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example of genetic selection that occurred in response to changes in the food supply. The 

ancestral genotype for the ADH1B gene encodes for the amino acid arginine at amino acid 

position 47 while the mutant version encodes for histidine at this location. This mutation has 

been correlated with increased alcohol metabolism, and decreased propensity for 

developing alcoholism (Chen, Peng, Wang, Tsao, & Yin, 2009). Interestingly, the 

ADH1B*47His SNP is most prevalent in the southeast populations of China with the 

geographic distribution overlapping the areas of origin and expansion of rice domestication 

(Li et al., 2007; Peng et al., 2010). It is thought that as rice became a Neolithic staple for use in 

fermented food and beverages, the *47His allele was beneficial for preventing some of the 

deleterious effects of alcohol consumption (Peng et al., 2010).  

3.1.3 Salivary amylase 

The human salivary amylase gene (AMY1) provides an example of a gene where the 

variation observed between populations is not differences in genetic sequence, but 

differences in gene copy number. The human salivary amylase enzyme serves an 

important role in the digestion of dietary starch and oligosaccharides by breaking them 

down into maltose molecules which can then be further broken down by the enzyme 

maltase to produce glucose (Meisler & Ting, 1993). Geographic populations were found to 

have extensive variation in the copy numbers of AMY1 they possess, and it has been 

determined that the number of AMY1 copies in a population correlates to salivary 

amylase activity and efficiency of starch digestion (Perry et al., 2007). AMY1 copy number 

has been found to correlate with the starch intake of a population, with populations 

consuming a high starch diet having more copies of AMY1 than populations that are 

hunter-gatherer or pastoral in nature and depend on a low starch diet (Coyne & Hoekstra, 

2007; Perry et al., 2007). As populations moved toward increased dependence on high 

starch containing diets (e.g. wheat, rice), increased efficiency in digesting starches became 

a beneficial trait.  

4. Nutritional epigenetics and microbiomics 

Beyond genetic traits selected naturally over many generations, it is also possible for 

changes in diet composition to affect gene expression and manifest as epigenetic 

modifications (“epigenotype”) or changes in microbiome composition (“phylotype”). These 

epigenetic and microbiome modifications occur continuously as a real-time response to diet 

and other environmental factors. It is these layers of the human genome that we do have the 

power to change with dietary and lifestyle modifications. 

Genetic diversity of plant food crops may be considered a significant dietary feature, and 

as such, may play a large role in chronic disease risk by influencing the epigenotype and 

phylotype of humans. It can be hypothesized that the decrease in the botanical and 

genetic diversity of plant foods in today’s diet may influence the evolution of epigenotype 

and phylotype to affect disease risk within one’s lifetime. To our knowledge, there has 

been limited investigation of the relationships between staple food crop biodiversity and 

their dietary effects on human epigenotype and phylotype in relation to risk for 

developing chronic diseases such as obesity, type II diabetes, heart disease and cancer.  
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Gene 

Abbreviation 
Protein 

Phenotype with 

selected mutation 
Selection Advantage 

LCT 
Lactase-phlorizin 

hydrolase 

Ability to digest 

lactose in milk 

Allowed for consumption 

of dairy as staple 

food(Jarvela et al., 2009). 

 

TAS2R38 
Taste receptor, type 

2, member 38 

Ability to detect 

certain substances 

with bitter taste 

Allowed for detection and 

aversion of certain plants 

that contained substances 

which could cause iodine 

deficiencies and thyroid 

disordes(Wooding et al., 

2004). 

 

AMY1 
Salivary Amylase 

Gene 

More copies of the 

AMY1 gene result 

in increased 

salivary amylase 

protein 

Populations that consume 

high starch diets have 

more copies of the AMY1 

gene, allowing for more 

efficient digestion of 

starches(Perry et al., 2007). 

 

FOXI1 

Forkhead-box 

transcription factor 

I1 

Sensorineural 

deafness, distal 

renal tubular 

acidosis, male 

infertility 

Possibly allowed for 

climate adaptation 

through water-electrolyte 

homeostasis and 

prevention of 

dehydration(Moreno-

Estrada et al., 2010). 

 

 

GIP 
Gastric inhibitory 

peptide (GIP) 

GIP is resistant to 

serum degradation, 

and exhibits a 

higher bioactivity 

 

May have been beneficial 

for individuals who had 

unconstrained access to 

the food supply in 

agricultural societies by 

preventing hyperglycemia 

(Chang et al., 2011) 

    

ADH1B 

Alcohol 

Dehydrogenase 1B 

(class 1), beta 

polypeptide 

Increased activity 

for ethanol 

oxidation 

Ability to metabolize 

fermented rice products 

(Peng et al., 2010) 

Table 1. Examples of diverse genetic mutations that may have co-evolved with changes in 
food supply. 
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4.1 Dietary influences on epigenetic evolution 

Epigenetic modifications are biochemical alterations that are made to DNA or DNA 
packaging proteins that modify the availability of genes to transcription machinery, thereby 
affecting gene expression. Epigenetic modifications such as DNA methylation or histone 
acetylation, for example, are responsible for differential expression allowing for a liver cell 
to greatly differ in structure and function from a skin cell, even though they share the same 
genetic make-up (Morgan, Santos, Green, Dean, & Reik, 2005). The “epigenotype,” 
determined at conception, is inherited from the parents, but it can be greatly influenced by 
gestational conditions (Cooney, Dave, & Wolff, 2002; Nicoletto & Rinaldi, 2011; Wolff, 
Kodell, Moore, & Cooney, 1998). This is best exemplified by the Agouti mouse, where the 
epigenetic status of the Agouti gene, namely presence or absence of methylation at nine 
particular cytosines within a regulatory region 5’ of the Agouti start site, results in a 
strikingly visible phenotype, as it causes variation in coat color and body weight as well as 
proneness to developing Type 2 Diabetes (Dolinoy, 2008). Experiments with these mice have 
demonstrated that maternal diet lacking in certain nutrients affects the epigenetic status of 
this gene and the related phenotypes (Cooney et al., 2002; Dolinoy, Huang, & Jirtle, 2007; 
Wolff et al., 1998).  

In addition to the influence of gestational environment, epigenotype can also be influenced 
by environmental factors post-development and can be thought to evolve throughout one’s 
lifetime. The changes that occur in epigenotype over time are referred to as “Epigenetic 
Drift” (Fraga et al., 2005; Nicoletto & Rinaldi, 2011). Studies conducted with identical twins 
that analyzed epigenetic patterns at different ages demonstrated that while twins share 
highly similar epigenetic patterns at young ages, this similarity decreases over time, and the 
disparity is likely due to environmental influences including diet composition (Fraga et al., 
2005). Prospective intervention studies in twins that consume foods comprising of distinct 
dietary patterns, and including diverse staple foods may be useful to determine the relative 
importance of epigenetic drifts to the diet-disease risk relationship.  

4.1.1 Effects of dietary folate on epigenotype 

DNA methylation is one example of an epigenetic modification, where a methyl group is 
covalently added to the C5 position of cytosine residues that occur directly adjacent to 
guanine residues. Many genes contain regulatory regions that are rich in cytosine-guanine 
dinucleotide repeats (“CG islands”) (Hirst & Marra, 2009), and in general, a high degree of 
methylation in these regulatory regions results in diminished gene expression- a silencing 
that is often critical to many cellular processes. Methylation is a heritable modification and is 
maintained with cell division; however, methyl groups can be lost due to enzymatic 
removal or failure to accurately copy methylation pattern during replication (Oommen, 
Griffin, Sarath, & Zempleni, 2005). Alterations in methylation patterns have been associated 
with various disease states including cancer, Type 2 diabetes, and Alzheimer’s Disease 
(Coppieters & Dragunow, 2011; Hirst & Marra, 2009; Ling & Groop, 2009; Martin-Subero & 
Esteller, 2011). These changes in epigenotype occur as a result of aging and environmental 
influences, including dietary exposures, and more work needs to be done to fully 
demonstrate a clear cause and effect relationship between diet induced changes in 
epigenotype and risk for disease (Jaenisch & Bird, 2003).  

Folate is a micronutrient that can directly influence DNA methylation status via its effects 
on the one carbon metabolism pathway, whereby folate serves as an important co-enzyme 
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in the production of S-adenosylmethionine, the DNA methyl donor (Kim, Friso, & Choi, 
2009). Folate depletion and/or folate supplementation can affect the methylation status of 
certain genes. Studies beyond the scope of this chapter demonstrate the precise mechanisms 
by which folate status effects epigenotype and gene expression (Jacob et al., 1998; 
Rampersaud, Kauwell, Hutson, Cerda, & Bailey, 2000).  

Legumes represent a major staple plant food that is naturally rich in folate (e.g. lentils and dry 
beans) (U.S.D.A, 2009). It is unknown whether the vast genetic diversity of the Leguminosae 
family and consumption rates of legumes can influence DNA methylation. Populations with 
staple legume consumption have shown lower chronic disease prevalence that may be due to 
a number of reported bioactivities. (Adebamowo et al., 2005; Bazzano et al., 2001; Michels et 
al., 2006; Papanikolaou, 2006; Singh & Fraser, 1998; Villegas et al., 2008). There is potential for 
legume folate, bioactive compounds, and essential nutrients to affect methylation status and 
influence epigenotype, yet the relationship to disease risk in humans is currently unknown. 

4.1.2 Effects of butyrate on epigenotype 

Modifications to the histone proteins, which interact and tightly bind DNA so it can 
eventually be condensed into chromatin, are another category of epigenetic modifications 
that make up epigenotype. The tails of the histone proteins are targets for modifications 
because they protrude from the histone/DNA complex known as the nucleosome. Specific 
residues in these histone tails may undergo methylation, phosphorylation or acetylation 
(Cobiac, 2007; Sawan & Herceg, 2010). Modifications to histones affect their DNA binding 
affinity and may result in more or less condensation of the DNA, and thus influences gene 
transcription at that location. Histone acetylation is generally associated with less 
condensation and increased gene transcription. Histone acetyltransferases and 
deacetyltransferases affect acetylation, and aberrant acetylatione has been associated with 
disease such as cancer, neurodegenerative disorders, and Type 2 Diabetes (Cobiac, 2007; 
Sawan & Herceg, 2010; Gray & DeMeyts, 2005; Mattson, 2003).  

There have been some accounts of dietary factors affecting histone aetyltransferases. In 
particular, the short chain fatty acid, butyrate, was reported to inhibit histone 
acetytransferase (Timmermann, 2003). Short chain fatty acids are produced in the 
gastrointestinal tract from dietary fiber and resistant starch microflora fermentation. 
Legumes and whole grains represent food staples that are rich sources of dietary fiber that 
leads to production of short chain fatty acids, including butyrate. This is another example of 
how changes in staple food crops may interact with the microbiome and epigenome to affect 
risk of developing chronic diseases. 

4.2 The gut microbiome and dietary evolution of phylotype 

The community of microbes within our gut and the genes they harbor is known as the 
microbiome (Zaneveld et al., 2008). Each individual has a distinct microbiota fingerprint, 
and the composition is subject to change from acute and chronic environmental influences 
such as diet, illness and travel (Dethlefsen, McFall-Ngai, & Relman, 2007). The microbiome 
includes species of bacteria, archaea, fungi, viruses, protozoans, and sometimes 
multicellular organisms, though bacteria are the predominate population and reach 100 
trillion cells in the colon (Lee & Mazmanian, 2010). The microbiome composition can also be 
referred to as “phylotype”. In mammals, phylotype is established after birth, becomes more 
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established in childhood, and continues to evolve throughout one’s lifetime. GI microbes are 
critical components of the early digestive development process and affect the amount of 
energy extracted from the diet (Ley et al., 2008). The microbiome acts as a metabolic filter 
between what is ingested, what is absorbed into the bloodstream, and what small molecules 
or nutrients are presented to the intestinal tract.  

The microbiome provides protective immune and metabolic functions for the human host 

(Laparra & Sanz, 2010). The metabolic enzymes and pathways provided by the microbiome 

are vast, allowing for biotransformation of many molecules including lipids, carbohydrates 

and phytochemicals (Laparra & Sanz, 2010). It is an integral part of the human digestive 

system, providing essential functions for the host such as biosynthesis of vitamins (e.g. 

vitamin K) and digestion of otherwise non-digestible carbohydrates (e.g. cellulose, psyllium, 

and pectin) (L. V. Hooper, Midtvedt, & Gordon, 2002). An oligosaccharide that is non-

digestible by the host but can be fermented by the microbiome is known as a “prebiotic”, 

and these molecules will stimulate the growth and/or activity of different species of 

microorganisms within the microbiome, thus having the potential to change 

phylotype(Laparra & Sanz, 2010). Emerging evidence suggests that the diet modifiable gut 

microbiome is a promising area of exploration for chronic disease control and prevention 

(Cani et al., 2008; Delzenne & Cani, 2011; Kau et al., 2011; Ley et al., 2005) (Figure 2). In 

addition to essential nutrients, there are a number of non-essential nutrients that differ 

across genetically diverse varieties of a single plant food, such as rice and dry beans 

(Heuberger et al., 2010; Mensack et al., 2010). These foods demonstrate promising potential 

to affect the microbiome via fibers and bioactive phytochemicals (e.g. polyphenolics, 

triterpenoids etc.), and may reveal a role for phytonutrient/phytochemical teamwork to 

influence dietary-mediated host protection against chronic disease.  

4.3 Nutri-metabolome interactions and chronic disease 

Nutrient-based dietary guidelines for overweight and chronic disease prevention may 

undoubtedly require an assessment of the gut microbiome to establish ideal nutritional 

phylotypes. A growing body of evidence exists for determining which dietary patterns are 

associated with improved human health (Adebamowo et al., 2005; Batres-Marquez, 

Jensen, & Upton, 2009; de Munter et al., 2007; Hung et al., 2004; Lanza et al., 2006; Michels 

et al., 2006; Mozaffarian et al., 2011; Sofi, Abbate, Gensini, & Casini, 2010). While age, sex, 

life stage, and other factors contribute to the variation in our nutrient requirements 

among individuals within a population, the opportunities to explore how plant diversity 

may benefit human health are astounding. Because human genetic variation confers 

tolerance/intolerance for certain foods and the genetic contribution to dietary 

requirements within and among human populations remains to be evaluated rigorously, 

the potential to continue to co-evolve with our food supply is a promising endeavor to 

consider.  

Brown rice consumption was recently shown to have an inverse association with risk for 

developing Type 2 Diabetes (Sun et al., 2010), however the importance of the rice genotype 

for this effect is unknown. Recent evidence for metabolome diversity in cooked brown rice 

from genetically diverse varieties suggests that rice crop varieties may differ in these health 

promoting and disease fighting properties (Heuberger et al., 2010; Ryan et al., 2011). 
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Fig. 2. Interactions between bioactive phytochemicals from genetically diverse staple food 
crops and the gut microbiome for chronic disease control and prevention.  

5. Plant crop genetic diversity  

Plants are among the oldest living complex organisms, and have had to face evolutionary 
pressures from pathogens such as insects, bacteria, and fungi from the very beginning of 
their evolutionary history. As they have developed defense mechanisms to protect 
themselves from infectious threats, these organisms have evolved counter-mechanisms of 
their own, necessitating further adaptations by plants, thus creating a cycle of co-evolution. 
This co-evolution of plants and the species that attack them has led to the development of an 
immense array of over 200,000 different phytochemicals present in plant life today 
(Hartmann, 2007; Macias, Galindo, & Galindo, 2007).  

As humans transitioned from hunter gatherer societies to agricultural societies, they began 
cultivating crops, and both consciously and unconsciously selected for certain agronomic 
traits that rendered the crop more desirable for production in a particular climate and 
environment (Ross-Ibarra, Morrell, & Gaut, 2007). These selective pressures resulted in what 
is known as the “domestication syndrome”, whereby certain traits are present in all 
domesticated crops compared to wild plants. These traits are ones that have made the crop 
easier to cultivate, including traits such as agricultural production of a larger fruit or grain, a 
more robust plant, more robust growth of the central stem compared to the side stems, and 
the loss of natural seed dispersal, which renders the plant dependant on humans for 
propagation (Doebley, Gaut, & Smith, 2006).  
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Since this time of early domestication, agricultural developments involve continuous 

improvements of genetic traits in our staple crop species, and have not considered traits of 

nutritional importance (Sands, Morris, Dratz, & Pilgeram, 2009). This has also been referred 

to as the “breeders dilemma”. Recently, crop domestication has come with a price, and that 

price is a loss of genetic diversity that has occurred on two levels. First, there has been a loss 

of biodiversity in overall diet composition, as nearly 70% of all of the calories consumed by 

humans are supplied by only 15 crops (Ross-Ibarra et al., 2007), with the majority of these 

calories not coming from the basic raw or cooked form of the plant food, but from some 

more processed form. Secondly,there has been a loss of genetic diversity within each 

individual staple crop species themselves, as it has been estimated that cultivation has 

resulted in the loss of up to 95% of the genetic variation for many traits (M. D. T. Thompson 

& Thompson, 2009).  

5.1 Loss of dietary phytochemical diversity  

Primary metabolites produced by plants are compounds such as proteins, carbohydrates, 

and lipids that serve structural and functional purposes, and comprise essential nutrients in 

the human diet. Other phytochemicals produced by the plant that have no recognized role 

in the maintenance of fundamental life processes in the plants that synthesize  

them, but do have an important role in the interaction of the plant with its environment are 

known as secondary metabolites (Oksman-Caldentey & Inze, 2004). Secondary metabolites 

serve as chemical messengers functioning in the interaction of plants with their abiotic and 

biotic environment in processes such as communication, reproduction, or defense 

mechanisms (Hartmann, 2007). There are over 200,00 different plant secondary metabolites, 

and many have been studied for their bioactivity and enhanced human health importance 

(Table 2), which has led in large part to their development as dietary supplements (Espin, 

Garcia-Conesa, & Tomas-Barberan, 2007), though secondary metabolites are typically 

included in the human diet via consumption of fruits, vegetables, spices, flavouring agents, 

or beverages (Mandlekar, Hong, & Kong, 2006). While the increased consumption of dietary 

supplements may have replaced the availability and intake of these chemicals from food in 

the past couple decades, there is emerging interest in achieving intakes of these “non-

essential nutrients” from whole foods (Liu, 2003, 2004). The loss of genetic variation in 

staple food crops that make up our food supply is a serious concern for a number of reasons. 

Of particular emphasis in this chapter is the loss of genetic diversity that translates to 

reduced dietary phytochemical intake from foods that make of the bulk of our caloric 

intakes. 

5.2 Food crop diversity as a feasible dietary solution to chronic disease susceptibility 

One of the main tenets of a Paleolithic diet that we have diverged from compared to our 

present diets is the amount and diversity of plant foods and fiber that is consumed. Diet 

composition of plant foods is believed to have decreased from about 2/3 of total intake to 

less than 10% of total intake, while fiber intake is believed to have decreased from about 104 

g/day in Paleolithic times to about 15.2 g/day in present times (Jew et al., 2009b). Because 

there is growing evidence that maintaining intake of diverse phytochemicals is of utmost 

importance for maintaining health and preventing chronic disease (M. D. T. Thompson &  
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Secondary Metabolites 
in whole grains and 

legumes 

Examples  
(Amarowicz, 2008) 

Biologic Activity 

Antioxidants and 
Polyphenols 

┛-Oryzanol (Rice) 
Flavonoids 

Phenolic acids 
Procyanidins 

Anthocyanidins 
┙-lipoic acid 

- Antibacterial 
- Antioxidant 
- Reduces cholesterol 

absorption 
- Anti-Cancer 

Vitamin E 
Alpha, gamma, delta 

tocotrienols and tocopherols 

- Anti-tumor 
- Antioxidant 
- Antibacterial 

Phytosterols 
┚-sitosterol 

Campesterol 
Stigmasterol 

- Reduces cholesterol 
absorption 

- Anti-inflammatory 
- Antioxidant 
- Stimulates lymphocyte 

proliferation 

Table 2. Secondary metabolites from plants and bioactive mechanisms of action for chronic 
disease prevention (Amarowicz, 2008). 

 

Fig. 3. Identifying relationships between food crop genetic diversity, dietary phytochemical 
diversity, and the potential opportunities for human health benefit.  
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Thompson, 2009; Heuberger et al., 2010; Ryan et al., 2011), it stands to reason that including 

more phytochemicals (both in terms of quantity and variety) in the diet has great potential 

for benefiting human health and decreasing risk for chronic disease (Figure 3). Recent 

evidence from the NIH-AARP cohort study that prospectively evaluated the diet-disease 

relationships of more than a half a million Americans supports that legumes and whole 

grains were the most significant sources of fiber intake compared to fruit and vegetable 

consumption for protection against chronic disease risk(Park, Subar, Hollenbeck, & 

Schatzkin, 2011). These findings provide strong rationale for evaluating staple food crops as 

a powerful vehicle for delivery of health promoting phytochemicals and bioactive food 

components that comprise a large part of total plant food and caloric intake.  

6. Concluding remarks 

The shift to the modern Western diet, lacking in fiber and phytodiversity while providing an 
overabundance of macronutrients, has happened relatively fast in evolutionary terms. Much 
of human nutrigenetic variation is the result of natural selection for genotypes that allowed 
for metabolism of diet available at the time. The selection of these gene mutations with the 
evolving food supply was a very slow process requiring thousands of years and many 
generations. While it is not feasible to change genotype that is amendable to current 
changing environmental conditions, or poor lifestyle choices, we have other layers to our 
genome that are modifiable. The epigenome and the microbiome are by nature short term 
modulators between our environment and our genes. In our quest to diminish chronic 
disease, we will need to harness this ability to affect the short-term evolutionary potential of 
the epigenome and microbiome and determine what dietary patterns have the most optimal 
effects on epigenotype and phylotype. Maintaining genetic diversity within our food crops 
is an important concept that can be appreciated across diverse scientific disciplines for 
providing an extensive array of molecules that, like folate or phenolics, may be beneficial 
modulators of the epigenome and microbiome. Genetic Diversity in staple food crops, 
because they are the most widely consumed, will play an especially important role in 
optimizing the diet-gene-epigenetic-microbiomic-disease relationships.  
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