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1. Introduction 

Electrical discharges in air at atmospheric pressure like corona or dielectric barrier 
discharges are generally crossed by thin ionized filament called streamers (about 100µm 
diameter). The streamer develops and propagates inside the background gas with a high 
velocity (around 106 m/s) higher than the electron drift velocity (around 105 m/s). During 
the transport of charged particles within the filaments under the action of the electric field, 
the energetic charged particles undergo many collisions with the background gas (neutral 
particles). The interactions between charged and neutral particles generate in turn a gas 
dynamics characterized by gas temperature and density gradients. The variation of density, 
momentum transfer and energy of the different particles, present within the ionized 
filaments, are governed by the fluid conservation laws (or continuity equations) coupled, in 
the charged particles case, to the electric field or Poisson equation.  

It is very important to well known the electro-dynamics characteristics of these atmospheric 
pressure non thermal plasma generated by streamer or micro-discharge dynamics for an 
efficient use in the associated applications such as the pollution control of flue gases (Kim, 
2004; Marotta et al., 2007), the combustion and ignition improvement (Starikovskaia, 2006), 
the airflow control (Eichwald et al., 1998; Moreau, 2007) and the biomedical fields (Laroussi, 
2002; Fridman, 2008).  

In fact, up to now, the optimal use of the atmospheric non thermal plasma sources needs 
further experimental research works and also modelling investigations in order to better 
understand the electro-dynamics processes and phenomena induced by the micro-
discharges (Ebert&Sentman, 2008; Eichwald et al., 2008). In the frame work of the micro-
discharge modelling, the obtained results (the streamer morphology and velocity, the 
production of charged and radical particles, the dissipated power) depend on the 
hydrodynamics physical model (Eichwald et al., 2006; Li et al., 2007) the discretisation 
method (Finite Difference Method: FDM, Finite Element Method: FEM, or Finite Volume 
Method: FVM) and the numerical solver used (Ducasse et al., 2007, 2010; Soria-Hoyo et al., 
2008). Indeed, the solution of the micro-discharge fluid models requires high resolution 
numerical schemes in order to be able to consider the strong coupling between both the 
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transport and field equations and the steep gradients of the charged particles evolution in a 
sharp and very fast ionizing wave (Soria-Hoyo et al., 2008). Therefore, the streamer dynamics 
modelling does not only depend on the selected physical model but also on the accuracy and 
the stability of the numerical algorithm. Furthermore, the parametric analysis of non thermal 
plasma discharge requires less time consuming and optimized numerical algorithms. 

The present work is dedicated to the use for Finite Volume Method through the streamer 
discharge simulation and the gas dynamics simulation. We start with an overview on 
streamer and gas dynamics modelling followed by the model and numerical algorithms for 
streamers and gas dynamics; in this main part, we explicitly discuss how the model 
equations are discretized with the help of FVM. Finally, some results about both the 
streamer discharge and the gas dynamics simulations are shown; in the case of the streamer 
discharge we also discuss the validation of the present models from comparison between 
the experiment and the simulation. 

2. Bibliographic overview on streamer discharge and gas dynamics 
modelling 

Initials attempts at the numerical treatment of the electro-hydrodynamic model, in the case 
of gas discharges at atmospheric pressure, began in the 1960’s with Davies et al. (Davies et 
al., 1964) and Ward (Ward, 1971). They used a first order method of characteristics in the 
context of the Finite Difference (FD) method. However, poor spatial resolution restricted 
their study to qualitative results. Towards the late 1970’s, Davies improved the method of 
characteristics by introducing an iterative counterpart that increased the overall accuracy of 
the algorithm to second order (Davies et al., 1971, 1975, 1977). This method was adopted by 
several research teams (Kline, 1974), (Yoshida & Tagashira, 1976) and (Abbas & Bayle, 1980) 
and, as a result, it became the dominant method until the early 1980’s. In 1981, Morrow and 
Lowke (Morrow & Lowke, 1981) presented a work that numerically integrated the system of 
continuity equations with the two-step Lax-Wendroff method of Roach (Roach, 1972). 
However, due to numerical dispersion and numerical instability, calculations were 
restricted to low density plasmas. Such restrictions were overcame by the introduction of 
the Finite Difference (FD) - Flux Corrected Transport (FCT) technique, originally developed 
by Boris and Book (Boris & Book, 1973) and extended to two dimensions by Zalezak 
(Zalesak, 1979). The FCT technique adds an optimal amount of diffusion and is remarkably 
stable in presence of sharp density gradients. In this context, FCT has become the most 
frequently used numerical method in streamer discharge modelling since Morrow 
introduced it for the first time to the gas discharge community in the 1980’s (Morrow, 1981, 
1982). Thus, Morrow was the first to offer an analysis (Morrow, 1982) for high density 
plasmas (up to electron density of 1013 cm-3) and particular attention was paid to the 
selection of the Courant–Friedrichs–Lewy condition (CFL) (Courant et al., 1928). According 
to Morrow (Morrow, 1982) the CFL has to take values lower than 0.1 in order to quickly 
damp out any numerical oscillations resulting from steep density gradients. However, until 
the early 1980’s, the FD based models did not exceed 1.5D description (1D for the continuity 
equations, and 2D for the electric field calculation in order to take into account the 
filamentary structure of the streamer: radial extension). By the middle of the 1980’s, Dhali 
and Williams (Dhali & Williams, 1985) had launched the first fully two-dimensional 
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simulation, using the FCT technique to solve the continuity equations. Thus, they elucidated 
several aspects of both positive and negative streamer phenomena. Subsequently, Kunhardt 
and Wu (Kunhardt & Wu, 1987) improved the FCT method and described a self-consistent 
numerical simulation of the formation and propagation of streamers in electropositive (N2) 
and electronegative (N2-SF6) gases. Finally, an implicit version of FCT for gas discharge 
problems was presented by Steinle and Morrow (Steinle & Morrow, 1989). This new algorithm 
gave a threefold increase in the overall simulation speed because it was able to use a CFL ~ 1 
while maintaining the scheme accuracy. However, this new method never became popular 
among the scientific community. In the mid-1990’s, using the same model as Dhali and 
Williams (Dhali & Williams, 1985), Vittelo et al (Vittelo et al., 1993, 1994) reported a more 
accurate analysis of the negative streamer in N2 with a quite small spatial resolution (2.5µm - 
10µm). They also made the first simulations for streamer propagation in non-uniform gaps 
(point-to-plane electrode configuration) using a fully two-dimensional model. More systematic 
work on non-uniform gaps was also performed by Babaeva and Naidis (Babaeva & Naidis, 
1996) (using the FCT technique), Kulikovsky (Kulikovsky, 1995a, 1995b) (using an optimized 
second-order Shurfetter-Gummel scheme) or Pancheshnyi and Starikovskii (Pancheshnyi & 
Starikovskii, 2003) (using a first-order upwind scheme). Another efficient second-order 
numerical scheme was introduced by Van Leer (Van Leer, 1979) and named the second order 
Monotonic Upwind-Centered Scheme For Conservation Laws (MUSCL) scheme. This 
algorithm was used through the Finite Volume Method (FVM) in the 3D modelling of high 
pressure micro-discharges in micro-cavities (Eichwald et al., 1998) in the 1.5D (Eichwald et al., 
2006) and the 2D (Ducasse et al., 2007) modelling of the positive streamer propagation. At the 
beginning of the century (2000) a new approach to gas discharge modelling was presented in 
the works of Georghiou et al. (Georghiou et al., 1999, 2000) and Min et al. (Min et al., 2000, 
2001) in which they used the Finite Element Method (FEM) to solve the electro-hydrodynamic 
model for parallel plate and wire-plate gaps. Based on a Finite Element Flux Corrected 
Transport algorithm (FEM-FCT) the simulations maintain the ability to handle steep gradients 
through the use of FCT, but also allow for the use of unstructured triangular cells. This method 
significantly reduces the number of unknowns, consequently reducing the computing time. 
Fine resolution is used only where it is necessary, enabling the model to be extended to a fully 
two-dimensional form and thereby making it possible to model complex geometries. 
Moreover, the first works that adapted the FEM to the charged carrier conservation equations 
were the papers of Yousfi et al. (Yousfi et al., 1994) and Novak and Bartnikas (Novak & 
Bartnikas, 1987) but the former restricted its application to 1.5D problems. Finally, a few works 
on 3D streamer discharge modeling using either FVM or FEM numerical schemes have been 
performed by Kulikovsky (Kulikovsky, 1998), Park et al. (Park et al., 2002), Akyuz et al. 
(Akyuz et al., 2003) Georghiou et al. (Georghiou et al., 2005) Pancheshnyi (Pancheshnyi, 2005) 
and Papageorghiou et al. (Papageorghiou et al., 2011). 

3. Model and numerical algorithms for streamer discharge and gas dynamics 

3.1 Model and equation discretisations with finite volume method (FVM) for streamer 
discharge and gas dynamics 

In this work, streamer formation and propagation (streamer dynamics) is modelled using 
the first order electro-hydrodynamic model in the framework of the drift-diffusion 
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approximation (Eichwald, 2006). Moreover, neutral dynamics is not taken into account; only 
the charged particle dynamics is considered. Thus, the equations involved in this model are 
the following: 

   p e ndiv εE e (n n n )  


, 0 r    (1) 

 E gradV 


 (2) 

    g

s E
s s n

n
div j σ

t


 




,  g

E
s s s nj =n v
 

, s=e, n, p (3) 

          g

g g g g

E
s n

E E E E
s s drift s diff s sn n n n

s

D
v v v E gradn

n
    

  
, s=e, n, p (4) 

In (1) (Maxwell-Gauss) E


 is the total electric field (due to geometry and space charge) e 
the absolute value of the electronic charge, ne, np and nn the electron, positive and 
negative ion densities, c the space charge density and 0 and r the free space and relative 
permittivities; here, the relative permittivity is equal to 1. With regard to the continuity 
equations (3) of the density, subscript “s” stands for the electrons (e) or the positive (p) or 
negative (n) ions. Moreover, sv


 is the velocity and s  the source term; both are functions 

of the reduced electric field E/ng (ng is the gas density) according to the local electric field 
approximation. The electron velocity is calculated using the classical drift-diffusion 
approximation (4), where µs and Ds are the mobility and the diffusion coefficients 
respectively.  

The Maxwell-Gauss equation (1) is discretised with finite volume method (FVM). Thus, the 
equation is integrated on an elementary volume ijV  (cell) of the three-dimensional (3D) 
space. In addition, the Gauss-Ostrogradsky theorem (or divergence theorem) is used to 
transform the volume integration in surface integration. The Gauss-Ostrogradsky theorem 
is a mathematical statement of the physical fact that, in the absence of the creation or 
destruction of matter, the density within a region of space can change only by having it 
flow into or away from the region through its boundary. After resolution, the following 
equation is obtained: 

            cij  ij
i 1/2 i 1/2, j i 1/2 i 1/2, j j 1/2 i, j 1/2 j 1/2 i, j 1/2

0

┩
S E S E S E S E

ε
V

 (5) 

In the case of a z-axis of symmetry (Fig. 1), the elementary volume and surfaces in 
cylindrical coordinates are: 

    2 2
 ij i 1/2 i 1/2 cell┨ r r dzV , with i 1/2 i ir r dr /2   , i 1/2 i i 1r r dr /2   , 

 


j-1 j

cell

dz dz
dz

2
; 

  i 1/2 i 1/2 cellS 2┨r dz ,  i 1/2 i 1/2 cellS 2┨r dz  et  2 2
j 1/2 j 1/2 i 1/2 i 1/2S S ┨ r r       (6) 
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Fig. 1. Schematic representation of an elementary cell in the three-dimensional space. Due to 
the z-axial symmetry, the calculation on the half space is sufficient; thus computing time 
and memory size are saved. 

In equation (5), the electric field components are expressed in function of the potential (7) to 
obtain equation (8) (FVM discretised Poisson equation); (7) is determined by first order finite 
difference of equation (2). Finally, (8) is ordered to generate the linear equation (9) for the 
(i,j) cell. 
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For the whole elementary volumes of the 3D space, the equations rearrange in a matrix way 
as Ax=b, with A, x and b, respectively of dimension nr2×nz2, nr×nz and nr×nz; x is the 
solution of the linear equation system. As regards the boundary conditions, we applied a 
Dirichlet or Neumann condition, following an electrode or an open space is considered. 

The continuity equation for density of each charge species (3) is also discretised with FVM 
(like Poisson equation) and an explicit scheme. The explicit scheme calculates the state of a 
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system at a later time from the state of the system at the current time. Thus, the discretised 
equation is the following: 

 
   

 
 

 



   

   

  

   

i 1/2 , j i 1/2 , j

i, j 1/2 i, j 1/2

t tt Δt t

i, j i, j  ij r ri 1/2, j i 1/2 i 1 /2, j i 1 /2

t t
t

z z iji, j 1/2 j 1/2 i, j 1/2 j 1/2

n n n v S n v S  Δt

 n v S n v S  Δt   Δt

V

 (10) 

The above continuity equations (10) and Poisson equation (9) are coupled through the 
source terms and the reduced electric field, which depends on the space charge density. 
Thus, the algorithms used have to be robust in order to prevent the development of non-
physical oscillations or diffusion phenomena within the electro-hydrodynamic model. 

The streamer development is described in a two-dimensional cylindrical (Orz) geometry, 
where (Oz) is associated with the streamer propagation axis, and (Or) with its radial 
extension. The next section is devoted to validating and comparing the efficiency of the 
algorithms to solve the continuity equations (10) and Poisson equation (9). 

As regards the gas dynamic model, the system of equation bellow is used. The energy (11), 
momentum (12) and mass (13) continuity equations compose the model. The energy 
(thermal and kinetic), momentum and mass densities are respectively E, v  , and ; 
moreover, P, v


, thj


 and disch arg e E  are the pressure, velocity, thermal flux density, and the 
mean energy source term. 

      th disch arg ediv v div Pv div j
t

 


    


 
E

E
E  (11) 

  r
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( v ) P
div vv
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  z
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 div v 0
t

 
 




 (13) 

The mean energy source term      
   1t

 Tdisch arg e 0
1

1
r f E/n j (r, t) E(r, t)dt

tE
 is obtained via 

the streamer discharge simulation (previous model); f(E/n) is the distribution function of  

translation processes (depending on the reduced electric field) and 
 

 Tj (r , t)  the current 
density vector within the streamer discharge simulation. The mean energy is evaluated (for 
each cell of the calculation domain) on 150ns; the duration is negligible compared with the 
neutral gas dynamic duration process >1µs (shock wave). The thermal flux density 

 thj grad T 


 is expressed in function of the thermal conductivity coefficient and 
temperature gradient of the gas (air). The gas viscosity is not taking into account, there is no 
reactivity of the gas, the electrodes are at ambient temperature, and gliding conditions are 
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applied to the electrodes. Finally, if the thermal transfer is not taking into account, the 
simulation diverges and there is no propagation wave. 

One can notice the three equations (11) to (13) are based on the same structure as (3), the 
transport term in one side (left term) and source term on the other side (right term). Thus, 
the algorithm used to solve the equations is the same as (10). 

3.2 Algorithm tests to solve the energy, momentum, density continuity and poisson 
equations 

Several kinds of algorithms are presented to solve the two equation types of the model: 
continuity and Poisson equations. The algorithms have been tested in accuracy and 
computing time on special tests. For the continuity equations (or transport equations) we 
used the Davies’ test (Davies & Niessen, 1990; Davies, 1992; Yousfi et al., 1994; Ducasse et 
al., 2010) in two directions of a cylindrical coordinate system (r, z). Six algorithms are tested: 
Upwind, Superbee Monotonic Upstream-centred Scheme for Conservation Law (MUSCL 
Superbee), Piecewise Parabolic Method PPM, ETBFCT, and Zalesak Peak Preserver (Ducasse 
et al., 2010). For the Poisson equation we compare the analytic solution to the numeric ones 
given by MUMPS (Direct method; not iterative) and SOR (Iterative method) (Amestoy, 2001, 
2006; Fournié, 2010; Press, 2nd edition). 

The Davies’ test was first introduced by Davies and Niessen in order to compare the 
algorithm efficiency to solve one-dimensional continuity equations (14) ((15) is the FVM 
discretised form) without source term; what we write here is valid for energy, momentum 
and density continuity equations. The test is interesting for streamer modelling since it 
reproduces mathematically the behaviour of the streamer head propagation which is a fast 
ionizing wave that propagates steep density gradients in a sharp velocity field. Thus, the 
test is performed along a normalized z-axis [0, 1] divided into N=100 regular cells, and 
consists in propagating a square density profile (wave) n(z, t)  in a stationary oscillating 
velocity field, as shown in Fig. 2. Equations (16) and (17) give respectively the mathematical 
expressions for the density and the velocity profiles: This gives a velocity peak value at 
z 0.5 au (arbitrary unit) which is ten times greater than the values at the beginning and the 
end of the domain. The initial density of the square wave distribution n(z, t 0)  is enclosed 
between z 0.05  and z 0.25  with a constant value of 10au. In addition, the time step is 
chosen equal to 10-5au which corresponds to a Courant-Friedrich-Levy number (CFL) equal  

to 10-2 ( maxv t
CFL

z





). 

 
 znvn

0
t z
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j 1/2 j 1/2

t tt Δt t
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  8
zv (z) 1 9sin ┨z   (17) 

Finally, the boundaries at z=0 and z=1 are periodic in the sense that any particle leaving the 

right side boundary enters at the left side; so that, after the period 
1

z0

dz
T 0.59

v (z)
  , the 

transport density profile solution should be identical to the initial distribution n(z, t 0) . 

The comparison of the transported density profile with the exact solution at time t=T will 
determine the accuracy of the algorithms in handling discontinuities and steep gradients 
(for t grater than T see (Ducasse, 2010)). In order to quantify the algorithm accuracy, the 
mean absolute error (18) is calculated. 
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Fig. 2. Initial conditions in the Davies-test case for the density and the velocity field with the 
densities at times t=T. 

Fig. 3 shows the numerical results obtained after one period, whereas Table 1 quantifies the 
performances of the algorithms in term of accuracy and time consumption. Moreover, with 
a CFL number equal to 10-2, one period T of the square wave evolution corresponds to 59 
070 iterations or time steps, which means that the flux correction is applied 59 070 times at 
the edges of each cells. 

MUSCL Superbee, PPM, ETBFCT, Zalesak without Peak Preserver (ZNOPP) and Zalesak 
Peak Preserver (ZPP) algorithms generate similar results and nearly preserve the solutions 
from numerical diffusion and dispersion (Fig. 3). Nevertheless, after one period, the results 
clearly indicate that the PPM algorithm generates the most accurate solution since both the  
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Fig. 3. Solutions obtained after one period (59 070 iterations) in the case of (a) Godunov-type 
schemes and (b) FCT technique. PPM is the most efficient. 

steep gradients and the floor of the square wave are better reproduced (Fig. 3a). 
Furthermore, the PPM-AE is roughly two times lower in comparison with the other tested 
algorithms (Table 1); this is in accordance with the previous observations. For Upwind, we 
observe on Fig. 3a it introduces a large amount of numerical diffusion (comparable to 
physical diffusion) and its AE is ten times higher than PPM-AE. 
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The conservation criterion of the algorithms has been tested too. We observed that the particle 
conservation is verified for all the algorithms except for ZPP. Indeed, the particle number 
associated with ZPP increases of 1.1% as it was already emphasized by Morrow (Morrow, 
1981). 

The last two columns of Table 1, specify the absolute and relative computation time of the 
six algorithms. The processors used for this comparison are a 3GHz Intel® Pentium® IV 
with 512Ko of cache memory (768Mo of RAM) and a 2.8GHz Intel® quad-core Nehalem® 
EX with 8 Mo of cache memory for each processor (18Go of RAM). The results indicate 
ETBFCT is the fastest but also the less accurate (if Upwind is omitted). Therefore, by taken 
the ETBFCT values as the reference, it becomes possible to compare the gain of precision 
relatively to the computing time rise. For example, PPM is 2.32 times more accurate than 
ETBFCT but the computing time is multiplied by a factor 2.6 (2.5 with Nehalem®). In 
addition, ZPP is the less efficient since the precision increases by a factor 1.05 only, while the 
computation time increases by a factor 3.6 (4.3 with Nehalem®). MUSCL and ETBFCT show 
similar behaviours in term of computing time and accuracy. Moreover, we notice an 
important computing time fall from Pentium® IV to Nehalem® with a factor 5 for ETBFCT 
and about 3.5 to 4 for the others. In the particular case of Upwind we see a time 
consumption divided by 4 compared to ETBFCT, but more than 4 times less accurate than 
ETBFCT; some author still use the Upwind algorithm with a high space resolution to 
compensate the numerical diffusion (Pancheshnyi & Starikovskii, 2003; Urquijo et al., 2007). 

Algorithm 
AE after one 

period T (59070 
iterations) 

Computing time 
Intel-PentiumIV® 3GHz, 512Ko 

cache memory 

Computing time 
Intel-Nehalem® 

2.8GHz, 8Mo cache 
memory 

Per iteration 
(µs) 

Relative CPU 
time 

Per 
iteration 

(µs)

Relative 
CPU 
time 

Upwind 1.23 1.9 0.25 0.54 0.36 

MUSCL 0.265 9.0 1.2 2.1 1.4 

PPM 0.124 13 2.6 3.7 2.5 

ETBFCT 0.288 7.5 1 1.5 1 

ZNOPP 0.274 19 2.5 4.2 2.8 

ZPP 0.275 22 3.6 6.5 4.3 

Table 1. Absolute Error after one period (59 070 iterations) and mean computing time per 
iteration (no compilation option) for six numerical schemes. 

Afterwards, the MUSCL Superbee algorithm is selected to be tested on the Kreyszig radial 
test (Kreyszig, 1999). Indeed, MUSCL with ETBFCT is the most interesting in terms of 
computing time and accuracy, with boundaries conditions simpler to implement than 
ETBFCT. 
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The Kreyszig radial test (Kreyszig, 1999) was used to observe the behaviour of the 
MUSCL Superbee algorithm for a physical quantity movement along the r-axis, both 
towards and away from the z-axis (symmetry axis). The test consists of the advection of a 
normalized square profile along the normalized radial direction, with a constant speed of 
108cm.s-1, a mesh of 100 uniform cells, and a time step fixed at 10-11s, which corresponds 
to a CFL equal to 0.1. In these conditions, Fig. 4 compares the numerical and analytical  
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Fig. 4. Radial density solution given by the FVM-MUSCL algorithm, (a) for a positive radial 
velocity, and (b) for a negative radial velocity. 

www.intechopen.com



 
Finite Volume Method – Powerful Means of Engineering Design 

 

294 

solutions, in a positive constant velocity field and a negative constant velocity field 
respectively. We note the correct behaviour of the algorithm, which introduce relatively 
small amounts of diffusion. The sharp corners are determined quite well despite the low 
spatial resolution. Thus, the solutions can be considered as satisfactory, all the more 
satisfactory the numerical solution tend to the analytic one with 1000 points and more 
accurate if a CFL=10-2 is added. 

We conclude the MUSCL algorithm gives interesting results for both the absolute error of 
the solution and computing time. Moreover, we noted that the numerical solutions of the 
continuity equation tend to the analytic solutions in both axial and radial directions when 
the mesh step and (or) the time step are decreased (CFL). 

At this stage we examine the numerical behaviour of SOR and MUMPS algorithms 
(Amestoy et al., 2001, 2006; Fournié et al., 2010; Press, 2nd edition) used to solve the Poisson 
equation (elliptic partial differential equation) without charge (i.e. Laplace’s equation). We 
adopted a hyperbolic point-to-plane configuration for which the analytical potential field is 
known; the analytical solution was initially proposed by Eyring and first used by Morrow 
for streamers simulation (Eyring et al., 1928; Morrow & Lowke, 1997). Thus, the analytical 
solution is compared to the numerical one and the algorithm efficiency is quantified thanks 
to the relative error. 

The curvature radius of the tip is 20µm and the inter-electrode space is 10mm; the applied 
voltage on the tip is equal to 9kV. The computational domain consists of a structured grid 
with none constant space cells in each direction. The limits of the domain are 19×19mm in z 
and r directions (cylinder of 19mm height and 19mm radius) and the number of nodal 
points in this domain is r zn n 307 1186 364102     (rmin=1µm and zmin=1µm). The 

spatial resolution along the z-axis is z=10µm from the plan until 200µm of the point, 
decrease down to z=1µm on the point, and increase again until the upper boundary; the 
radial step is progressively increased from r=1µm at the centre until the lateral boundary. 
Because of the symmetrical axis (Oz), the radial derivatives along the z-axis are set equal to 
zero. To perform the potential field comparisons, we set at each nodal point of the open 
boundaries (r=19mm and z=19mm) the analytical solution (Dirichlet conditions); we also 
performed the comparisons with a zero Neumann condition, since the simulation use this 
boundary condition. 

The isopotential maps in Fig. 5 compare the analytic field with the MUMPS and SOR 
solutions. Very good agreements are observed between all results, as well as around the tip 
than in the whole domain; it can be quantitatively discussed using Fig. 6 for the solution 
along the z-axis. Thus, the relative error shows the direct method MUMPS gives the closest 
solution to the analytical one with a value less than 0.1%. For SOR, the error depends on the 
tolerance chosen for the convergence and the spectral radius (sr influence the speed 
convergence and solution accuracy); the convergence tolerance is defined as the maximum 
of the relative difference between the solution at iteration k and k-1. Indeed, with a 10-5 
tolerance and an optimised convergence for the same tolerance (specific sr), we observe an 
error distribution lower than 0.5%, totally different from the MUMPS one, whereas with a 
10-5 tolerance and an optimised convergence at 10-10 tolerance (other sr) the error tends to 
error distribution is constant on a large part of the inter-electrode space and decreases  the 
MUMPS one; the result with a 10-10 tolerance and an optimised convergence for the same  
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Fig. 5. Isopotentials given by the analytic solution (left side) and the numerical solutions 
(right side) which are identical for the two methods (SOR and MUMPS). NB: Zoom with a 
size of 5mm×18mm centred over the symmetry axis. The tip isopotential is 9000V and the 
interval between each isopotential is 900V 
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Fig. 6. Relative error between the analytic, and the SOR and MUMPS solutions along the z- axis. 
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tolerance is superimposed to the MUMPS one. In addition, for the three accurate results the 
reaching the point; it is due to the mesh, constant at the beginning and that starts to decrease 
close to the point. The contrary is observed if a constant step mesh is used: the error 
increases from the plan to the point (Kacem et al., 2011). 

Table 2 gives the mean relative error calculated in the whole domain, the computing time 
and the number of iterations performed to satisfy the convergence tolerance fixed at 10-5; 
these quantities are given for each method, several domain dimensions, several tolerance 
conditions, Dirichlet and Neumann conditions. Thus, SOR shows the highest mean relative 
error (0.30%) even if the value is acceptable. Moreover, one can notice MUMPS has the 
smallest mean relative error (4.2 10-2 %) since this direct method gives the nearest solution 
compared to the analytic one; SOR generate the same solution accuracy with both a 10-10 
tolerance, or a 10-5 tolerance with an optimised spectral radius (convergence speed 
optimised for a 10-10 tolerance). Concerning the computing time, the SOR method needs 
between 17 and 34s to reach the specific tolerance criterion. MUMPS needs 830s to perform 
the direct calculation; thus, 830s are needed to construct the main matrix, analyse and 
performed the LU decomposition (Kacem et al., 2011), whereas only 0.23s are necessary to 
calculate the final product of matrices (if the LU decomposition is known, than only 0.23s is 
necessary to know the potential field). As regards the iteration number, SOR needs between 
2400 and 5900 iterations in order to converge; the number depending on the tolerance.  
 

Methods Tolerance 
Domain 

size 
(mm²) 

Iterations 
Mean Relative 

Error (%) 

Computing 
Time (s) 

Intel-Nehalem® 
2.8GHz, 8Mo 

cache memory 
Dirichlet condition

MUMPS - 

20×20 

- 24.2 10  

28.3 10 first 
time 

0.23 (if a next 
time step) 

SOR 

10-5 2438 
0.30 (sr optimised 
at tolerance 10-5)

17 

10-5 3510 

24.4 10   
(sr optimised at 
tolerance 10-10)

20 

10-10 5902 

24.2 10   
(sr optimised at 
tolerance 10-10)

34 

Neumann condition

SOR 10-10 

10×20 10830 40 62 
20×20 13894 11 85 
30×30 10937 3.9 72 

40×40 14353 2.6 21.0 10  

Table 2. Quantitative criteria to compare the method efficiency for Dirichlet and Neumann 
conditions on the open boundaries (r=rmax and z=zmax). 
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Afterwards, the point used is not hyperbolic anymore, so the potential at the boundaries of 
the domain is unknown (a Dirichlet condition is not possible) that is why we impose 
Neumann conditions. Thus, it is important to check the impact of a Neumann condition on 
the previous hyperbolic point and compare the numerical solution to the analytic one; the 
test is performed with the SOR method. Table 2 shows the boundary position in the 
previous tests (Dirichlet) is 2x2mm². If we choose a 1x2mm² domain, than we observe the 
mean relative error is too high (40%). But with a 2x2mm² domain, the error decreases down 
to 11%; the value is acceptable. With a 3x3mm² domain the error is still improved (3.9%) but 
at 4x4mm² the improvement starts to slow down (2.6%). 

For the boundary positions of the next simulation we use the 2x2mm² domain with a 
tolerance of 10-5 and a spectral radius obtain for an optimised convergence at a tolerance of 
10-10; it is a compromise between the solution accuracy and the computing time. 

To finish, the code was compared to another one developed with finite element method. We 
found a very good agreement with less than 10% of difference (Ducasse et al., 2007). 

4. Simulation results 

The first part presents the results obtain with the streamer discharge simulation and the 
second the results obtained with the gas dynamic simulation. The streamer ionizing wave 
and the shock wave involved by the streamer discharge are simulated via a PRHE MPI 
parallelised streamer code; the simulator is able to reproduce both phenomena thanks to 
efficient algorithms we previously studied (no commercial software is able to do it). Both the 
streamer and gas dynamics simulations are 3D simulations with axial symmetry; cylindrical 
coordinates are used. Thus, only half space of a 2D domain (plane) is solved.  

The electric discharge is obtained with a point-to-plane electrode system (see the algorithm 
test part above). The tip curvature radius is 20µm, the gap is 10mm, and the discharge 
occurs in air at atmospheric pressure; a time varying positive potential (reaches a 9kV 
maximum on 60ns about) is applied to the point (Fig. 9). The transport of charged particles, 
their reactivity, their influence on the electric field and the photoionisation phenomenon are 
taken into account; the air neutral particles are fixed. Moreover, the reaction scheme is 
composed of 28 reactions the reader can find in (Bekstein et al., 2010) plus 10 ionic 
recombination reactions and 15 reactions with metastables (Table 3); so the reaction scheme 
is composed of 53 reactions. Finally, the reaction scheme is composed of electrons, two 
negative ions (O- and O2-) seven positive ions (N2+, O2+, N+, O+, N4+, O4+ and N2O2+) two 
radical atoms (O, N) and three metastables (N2(A), N2(a’) and O2(a)). 

Electronic density and electric field are shown; the simulation results are compared with 
experimental ones for several inter-electrode space values. The simulation code has been 
parallelised and the computing time is given varying several parameters. 

Fig. 7 and Fig. 8 show the electric field and electronic density evolutions from 20ns up to 
200ns. We observe the primary streamer starts its propagation at 20ns about, i.e. when the 
applied voltage reaches 3.8kV (Fig. 9). At this time, the space charge formation near the 
positive point is responsible for the little current peak which appears in the current curve in 
Fig. 9. The streamer arrives at the plane at 87.5ns about, and corresponds to the maximum 
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calculated current peak. Moreover, a secondary front propagates from the point (the 
mechanism is different from an ionising wave) in the same time than the streamer 
propagation and after, during the relaxation phase (beyond 87.5ns); but the speed of this 
second front is definitely slower. More details about the streamer mechanism, the radical 
production are available in (Eichwald et al., 2008, 2011). 

Ion-Ion recombination (Kossyi et al., 1992)

   N2+ + O-  N2 + O 

   N2+ + O2
-  N2 + O2 

   O2++ O-  O2 + O 

   O2++ O2
-  2 O2 

   N4+ + O-  2 N2 + O 

   N4+ + O2
-  2 N2 + O2 

   O4+ + O-  2 O2 + O 

   O4+ + O2
-  3 O2 

   N2O2+ + O-  N2 + O2 + O 

        N2O2+ + O2
-  N2 + 2 O2

Metastable reactions (Yousfi & Benabdessadok, 1996; Kossyi et al., 1992)

   e- + N2  e- + N2(A) 

   e- + N2  e- + N2(a’) 

   e-+ O2  e-+ O2(a) 
   N2(A) + N2  2N2 
   N2(A) + O2  N2 + O2 
   N2(A) + O2  O2(a) + N2 
   N2(A) + O2  2 O + N2 
   N2(A) + N  N + N2 

   2 N2(a’)  N4+ + e- 

   N2(a’) + N2(A)  N4+ + e- 
   N2(a’) + O2  2 O + N2 
   O2(a) + N2  N2 + O2 
        O2(a) + O2  2O2

Table 3. Ion-Ion recombinaison and metastable reactions taken into account in the streamer 
reaction scheme. 

A first comparison between simulation and experiment (through the current) was done at 
one specific potential and inter-electrode space (Eichwald at al., 2008). Here, the simulated 
currents are compared with the experimental ones at 9, 10, 11mm inter-electrode space and a 
9kV DC applied voltage (the power is increased by hand to reach 9kV, afterward we 
observe a streamer discharge quite periodically). Thus the experimental applied potential 
shape is different, but the streamer channel is filiform in both cases (simulation and 
experiment; no branching phenomenon is observed). 
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Fig. 7. Reduced electric field (Td) distribution as a function of time. 

     

 
Fig. 8. Electron density distribution (log10 scale; m-3) as a function of time. 
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Fig. 9. Current and applied potential as a function of time; the streamer propagation starts at 
20ns with a 2.8kV applied potential. 

Fig. 10 shows there is a difference on the main peak of 10mA about at 9mm, and increases 
with the inter-electrode space; nevertheless the orders of magnitude are the same. Moreover, 
the bump observed on the experimental curve at 9mm (due to the secondary streamer) is not 
visible at 10 and 11mm; it seems the phenomenon is of the same amplitude as the primary 
streamer, but not at all visible on the simulated curves (even at 9mm); it could explain the  

 
Fig. 10. Comparison (--) simulated – (–) experimental results for three inter-electrode spaces. 
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important current gap observed between 10 and 9mm we do not see on the simulated 
current. In addition, at 10 and 11mm we observe an important bump during the streamer 
propagation phase not present at 9mm; whereas the simulation always shows the same light 
bump (not depends on the gap size). Concerning the phenomenon duration, the 
configurations at 11mm are closer. Nevertheless, the fact the applied potential conditions are 
different for both the simulation and the experiment are responsible (may be in part) for the 
differences we observe. 

The simulation results are generated via a MPI parallelised streamer code developed by the 
PRHE group (Laplace laboratory). Table 3 shows the calculation performances obtained on a 
Altix cluster ICE 8200 of 352 nodes named Hyperion (Toulouse University); each node is 
composed of two Nehalem EX quad-core processors at 2.8 GHz with 8 Mo of cache memory 
per processor, and 36 Go of RAM. Thus, the computing time increases from 9 to 11mm, but 
not linearly. Indeed, from 9 to 10, 10 hours more are necessary whereas from 10 to 11mm 
less than 2 hours are necessary; this has to be correlated with the time iteration numbers. 
Indeed, when the inter-electrode gap increases it is like the applied potential decreases; 
consequently the physical quantity gradients are lower and the iterative parts of the code 
converge faster. We do the same observation with SOR: SOR is faster than MUMPS for one 
iteration; if the gradients are lower enough to make SOR converge at one iteration than the 
calculation time will be certainly lower.  

Inter-
electrode 
Size (mm) 

Mesh 
Definition 

r zn n & 

Point 
Applied 
Potential 

(kV)

Potential 
Solver 

Processor 
Number 

Time 
Iteration 
Number 

Computing Time to 
Generate the Result 

Intel-Nehalem® 2.8GHz, 
8Mo cache memory 

Total 
(h:min:s) 

Per time 
iteration 

(s) 
9 307×1190; 9 MUMPS

16 

742174 69:20:29 0.33 
10 307×1186; 9 MUMPS 726190 79:31:58 0.39 
10 307×1186; 9 SOR 726771 41:53:55 0.21 
11 307×1298; 9 MUMPS 728497 81:17:39 0.40 

Table 4. Computing time necessary to generate the result with a PRHE MPI parallelised 
Streamer code at 16 Processors, for three inter-electrode dimensions, and MUMPS and SOR 
potential solvers. The calculations were made on the Hyperion supercomputer. The 
simulation generates a faster result when SOR solver is implemented.  

The streamer discharge effect on the air gas dynamics is shown through the pressure Fig. 11; 
complementary information can be found in (Eichwald et al., 2011). The local air heated 
locally on the point by the electric discharge reaches a temperature of thousands of Kelvin. 
Thus, the thermal shock generates pressure gradients (Fig. 11) that induces wave 
propagations by a successive local compression – expansion mechanism. The gas expansion 
is characterised by a spherical and cylindrical shock wave. Indeed, the streamer discharge 
start to heat locally the air on the tip, forming afterwards a spherical wave, superimpose to 
the heat in the channel, forming a cylinder wave. Such spherical waves were already 
experimentally observed using the laser Schlieren technique (Ono & Oda, 2004). In addition, 
the simulation shows the spherical shock wave propagates at the air sound speed: between 
1µs and 4µs the wave front propagates on 1200µm so a velocity of 400m/s. 
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Fig. 11. Shock wave pressure distribution (×105 Pa) as a function of time. 

5. Conclusion 

In this chapter we have shown how the Finite Volume Method can be used for the 
discretisation of the transport and Poisson equations, allowing the simulations of streamer 
discharge development and the associated gas dynamics. It is clear that FVM is attractive 
since we work directly on elementary volumes that make sense from a physical point of 
view. Moreover, through a very carefully study, we showed important results as regards the 
algorithm accuracy, the algorithm convergence (SOR iterative method) the boundary 
conditions, and the computing time. In the case of the algorithms tested in our research 
group we have shown first that MUSCL Superbee is the most efficient to treat the 
conservation laws (Energy, momentum and density); we have also shown that SOR and 
MUMPS are both interesting in term of computing time. In fact SOR is efficient from a time 
step to another when the space charge varies slowly (it is the case at relatively low applied 
potential); MUMPS is efficient if the space charge varies rapidly (the computing time 
remaining practically the same). In addition, the PRHE-MPI-parallelised code is efficient 
with 16 processors on the Hyperion HPC system (2.8GHz Intel-Nehalem®; 8Mo cache 
memory). At this stage, it is possible to do parametric studies since the calculation is fast 
enough (around three days at 10mm inter-electrode distance and 200ns for the duration). 
Nevertheless, some improvements on the discharge model still have to be performed from a 
physical point of view. Indeed, we have shown the experimental current behaves differently 
when varying the inter-electrode space, whereas the simulation always showed the same 
shape. May be one of the improvement would be to take into account the local modifications 
of the air gas properties due to the streamer discharge by the direct coupling of gas 
dynamics and streamer discharge dynamics. 
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