
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322412339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


6 

Alternative Methods for Generating Elliptic 
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K. N. Toosi University of Technology 

Iran 

1. Introduction 

Numerical solution of an engineering problem via finite volume method (FVM) requires the 

discretization of the solution domain and computational grid generation. While both 

structured and unstructured grids can be used, elliptic structured grid generation methods, 

when applicable, have favorable features in terms of both accuracy and computational cost. 

Among the elliptic grid generation (EGG) methods, the most well known and widely used 

are the algebraic transfinite interpolation and differential methods which employ Poisson 

equations. In this chapter classical EGG methods are reviewed. It is then proposed that these 

methods can be classified based on the parameters being interpolated (i.e. interpolants), the 

interpolation method used and the grid generation equations being employed. The 

proposed unified view provides a framework for the development of new grid generation 

methods; some of which are introduced here for the first time.  

Another major task in this chapter is to show that finite volume method, which employs the 

computational grid, can itself be used in the numerical grid generation process. In other 

words, FVM can be used for two different tasks; discretization of the differential equations 

which govern the coordinates of the computational grid points and discretization of the 

differential equations which govern the physical process of interest. 

A typical 2D structured grid in the physical domain is shown in Fig. 1a and the 
corresponding logical or computational grid is shown in Fig. 1b. The classical structured 
grid generation methods provide equations which define, directly or indirectly, the 
mapping functions which describe the curvilinear coordinate lines in the physical domain, 
i.e. ( , ) x y  and ( , ) x y  curves. The grid point ( , )i j  in the physical domain is defined at the 
intersection of the curvilinear coordinate lines i  and j  as shown in Fig. 1a. 

The so called algebraic grid generation methods directly specify the formulas used to 

calculate the physical coordinates ( , )x y  in terms of the logical coordinates ( , )   (Eiseman, 

1979; Eiseman et al., 1992; Lehitmaki, 2000; Zhou, 1998). For example, in the Trans-Finite 

Interpolation (TFI) method (Eiseman et al., 1992), the generating equations employ the 

boundary nodal coordinates and some derivative terms to calculate the nodal coordinates 

throughout the solution domain. This method is often described as a Boolean sum of one 

dimensional interpolation functions U  and V  as follows: 
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Fig. 1. (a) A physical grid, (b) the corresponding logical grid. 

The highest orders of one-dimensional interpolation formulas in Eqs. (2) and (3) are 
specified by P  and Q  respectively, and L  and M  specify the number of auxiliary nodes 
used in these interpolations. For example, a zero order TFI computational molecule for 
generating a (M×N) grid is as follows: 

 
, , , ,1 ,1 1, 1, , ,

1, 1, , , 1,1 1,1 ,1 ,1

    

  

    

   
i j i N i N i i j j M j M j

N N M N M N M M

R C R C R C R C R

C R C R C R C R
 (4) 

Coefficients ,i NC , ,1iC , …… in this nine-point computational molecule for the calculation of 

the coordinates of the nodal point ( , )i j  can be linear or nonlinear functions of the logical 

coordinates of this point, i.e. , i j .  

In contrast to the TFI, the mapping functions are not explicitly provided in the so called 

differential grid generators. For example, the following differential constraints on the 

unknown mapping functions ( , ) x y  and ( , ) x y  are proposed by Thompson, Thames and 

Mastin (TTM) (Thompson, et al., 1974): 

 ( , )    xx yy P  (5) 

 ( , )    xx yy Q  (6)  
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Equations (5) and (6) are often analytically inverted and the calculations are carried out in 
the logical domain. The non-linear inverted equations are as follows: 

 - -

2
11 12 222 ( )      g x g x g x J P x Qx  (7) 

 - -

2
11 12 222 ( )      g y g y g y J P y Q y  (8) 

In Eqs. (7) and (8), 2 2
11   g x y , 2 2

22   g x y , 12     g x x y y  and J is the Jacobian of the 

transformation ( -   J x y y x ). 

Ashrafizadeh and Raithby (Ashrafizadeh & Raithby, 2006) have shown that the TTM grid 
generation equations, i.e. Eqs. (5) and (6), can be discretized and solved in the physical 
domain. To apply the finite volume method to the solution of Eqs. (5) and (6) in the physical 
domain, an initial algebraic grid is generated first. Then, a control volume is associated with 
each node of the initial grid. Defining  

 ;   
  

q q  (9) 

the integral of Eq. (5) over a control volume associated with node i, with volume iV  and 

surface iS , is 

       
 

i i iV S V

q dV dS P dV  (10) 

The surface iS  consists of a number of panels, with an integration point ip located at the 

centre of each panel. The panel containing ip has area 


ipS . The integrals in Eq. (10) are 

approximated as follows 

 ( )    


ip iip ip
ip ip

q S F PV  (11) 

where 
ipF  can be thought of as a generalized “flow” across the panel ip driven by 


. 

The final algebraic equation is obtained by approximating each term in Eq. (11) by an 

equation that involves nodal values of , , and  x y . This provides one constraint for 

, , and i i ix y . Applying a similar procedure, Eq. (6) leads to another algebraic equation 

relating , , and i i ix y  for each interior node. But the values of i and i are known for all 

interior nodes, so that these two algebraic equations provide the necessary constraints for 

computing ( ,i ix y ). The nodal values of , , and  i i i ix y  are all prescribed for boundary 

nodes, so the set of equations is closed throughout the solution domain and its boundary. 

This is called the Direct Design Method for solving the elliptic grid generation problem 

because no inversion of equations is required and the unknown nodal values of ( ,i ix y ) 

appear explicitly (i.e. “directly”) as dependent variables in the finite volume equations in the 

physical domain.  

Calculation of the source or control functions at the right hand sides of Eqs. (5) and (6) is an 
important part of any method which uses this set of equations to generate the grid. In 
addition to the elementary method, proposed in (Thompson, et al., 1974), many researchers 
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have proposed methods for the automatic calculation of the boundary values of control 
functions (Thomas & Middlecoff, 1980; Spekreijse, 1995; Steger & Sorenson, 1997; Kaul, 2003; 
Lee & Soni, 2004; Ashrafizadeh & Raithby, 2006; Kaul, 2010). Assuming that the P  values 
are known at ( , 1)  i  and ( , 0)  i  boundaries in Fig. 1a, the P  values at internal nodes 
can be obtained through the following one dimensional interpolation formula (Thomas & 
Middlecoff, 1980): 

         -( , ) ,0 1 ,1      P C P C P  (12) 

The Q  values at internal nodes can also be calculated similarly: 

         -( , ) 0, 1 1,      Q C Q C Q  (13) 

Coefficients ( )C  and ( )C  in Eqs. (12) and (13) can be linear or non-linear functions of the 
corresponding logical coordinates. 

Another noticeable classical Grid Generation method, which is known as the Orthogonal 

Grid Generation (OGG) method and is elliptic in certain situations, is based on the 

assumptions of continuity and orthogonality of the coordinate lines. The final forms of the 

grid generation equations in the OGG method are as follows (Ryskin & Leal, 1983): 

 
1

( ) ( ) 0
   
   

 
   

x x
f

f
 (14) 

 
1

( ) ( ) 0
   

  
 

   
y y

f
f

 (15) 

The orthogonality condition, 12 0     g x x y y , is implied in Eqs. (14) and (15). The scale 
factor, f , is defined based on the transformation metrics relevant to the magnification 
effects of the mapping in different logical directions as follows: 

 
 
 

2 2

22

2 2
11

 

 


 



x yg
f

g x y
 (16) 

Calculation of the scale factor near the boundaries and throughout the solution domain is a 

major step in the orthogonal grid generation and is discussed in a number of publications 

(Ryskin & Leal, 1983; Kang & Leal, 1992; Eca, 1996; A. Bourchetin & L. Bourchetin, 2006). 

Most commonly, boundary values of f  are calculated first and then linear or non-linear 

interpolation techniques are used to obtain the internal values. 

Imposition of the orthogonality constraint in some problems may be difficult or even 

impossible. Therefore, modifications on the OGG have also been proposed to generate 

nearly orthogonal grids (Akcelik et al., 2001; Zhang et al., 2004, Zhang et. Al, 2006a, Zhang 

et. Al, 2006b).  

Based on the above brief review of some of the classical EGG methods, it can be argued that 
in each one of these methods a set of grid generation equations is developed to calculate the 
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physical coordinates of the nodal points. The set of equations may directly introduce the 
mapping functions which transform the logical grid to the physical grid, e. g. the TFI, or 
they may provide differential constraints on the mapping functions and indirectly 
describe them, e. g. the TTM and the OGG methods. However, it is important to note that 
the governing equations in grid generation are radically different from equations which 
govern physical processes. While experimental observations provide a basis for the 
development of the physical governing equations, the grid generation equations are not 
expressions of natural phenomena and are developed based on analogy or mathematical 
considerations. An example of the use of physical analogy in determining the control 
functions in Eq. (5) and (6) is provided by Kaul (Kaul, 2003). Considering the arbitrariness 
in the development of elliptic grid generation equations, it is very desirable to have a 
clear, simple and systematic approach for proposing the governing equations in the 
context of structured grid generation.  

In this paper, we propose a unifying rationale for the development of elliptic grid 
generation methods. Based on the proposed unifying view point, all existing EGG methods 
can be viewed as multi-dimensional geometrical interpolation techniques which employ 
different interpolants, interpolation methods and grid generation equations. Once the grid 
generation equations, the interpolants and interpolation techniques are chosen, there are 
various numerical solution methods to solve the algebraic equations and to calculate the 
nodal coordinates.  

To explain the proposed framework, a number of applicable interpolants in structured grid 
generation are first introduced in the next section. Then, different applicable interpolation 
techniques are presented. Afterwards, the rationale behind the development of grid 
generation equations is discussed. Finally, a number of alternative EGG methods are 
introduced and examples of elliptic grid generation via the classical and proposed 
alternative methods are presented.  

For the sake of simplicity and brevity, the grid generation examples in this chapter are 
limited to two dimensional solution domains, but the underlying ideas are clearly applicable 
in three-dimensional problems as well.  

2. Interpolants 

The logical grid, shown in Fig. 1b, is the simplest possible two-dimensional grid. The 
boundaries are straight lines and the nodes are distributed uniformly. This simplicity 
makes the logical grid generation trivial. In contrast, boundaries of the physical grid may 
be complex curves and the boundary nodes in this case can be distributed non-uniformly. 
For example, the N, S, W and E boundaries shown in Fig. 1a are different curves with 
different non-uniform distributions of nodes. It is exactly this complexity that makes the 
grid generation in the physical domain a rather difficult task as compared to the logical 
domain. The shape of the boundary of the domain and the distribution of the nodes along 
the boundary are the most important information which needs to be taken into 
consideration in the elliptic grid generation process. Quantities which provide 
information regarding the shape of the boundary coordinate lines, expected shape of the 
crossing coordinate lines near the boundaries and the distribution of nodes along the 
boundaries are here called the boundary data. Some or all of these data are the inputs 
required in an elliptic grid generation method. 
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The interpolants in an EGG problem are quantities related to the boundary data. The 
simplest, and most obvious, quantities which describe the boundary coordinate lines are the 
x and y coordinates of boundary nodal points. These are the interpolants used in many 
simple algebraic grid generators and we call them here the zero order boundary data.  

It is possible to use higher order boundary data as interpolants as well. Quantities such as 
nodal values of x  and y  along the north boundary in Fig. 1a are tangential slope-related 
first order data. Similarly, x  and y  along the south boundary are tangential curvature-
related second order data. These data provide information regarding the stretching of nodes 
along a boundary coordinate line.  

By generating paving layers near boundaries or by making assumptions regarding the 
coordinate lines which cross the boundaries, it is also possible to generate normal first, 
second,……, and nth order boundary data. For example, using the shaded paving layer 
near the north boundary in Fig. 1a, it is possible to generate x  and y  data at the north 
boundary. Similarly, x  and y  can be generated near the south boundary using the 
data obtained from the two shaded paving layers near the south boundary in Fig. 1a. 
Therefore, using the paving layers, it is possible to generate boundary data which actually 
describe the boundary cell geometries or the shape of coordinate lines crossing the 
boundary. A simple algebraic method for generating high quality paving layers is 
introduced in (Ashrafizadeh & Raithby, 2006).  

The first and second order boundary data can also be defined with the physical coordinates 
as the independent variables. For example quantities such as x , xx , y  and yy  fall in this 
category. However, in contrast to the logical coordinates, the physical coordinates of nodes 
are not univariate variables and the denominator in the discrete form of a quantity such as 
x  can be zero, resulting in computational difficulties.  

Boundary data of different orders, just described, can also be combined to provide more 
information regarding the boundary nodes and cells. Such combinations of the boundary 
data can be employed as the interpolants in the formulation of EGG problems. For example, 
in the TTM method, boundary values of ( ) xx yy , called P , and ( ) xx yy , called Q , are 
used as the interpolants. Figure 2 shows how the source term P  provides information 
regarding the shape of the cells and the distribution of the nodes along the boundary 
coordinate line ( , ) i N . In Fig. 2a, the boundary is a straight line and the nodes are 
distributed uniformly. The source term P  is identically zero everywhere along the 
boundary in this case. Figure 2b shows a straight boundary with non-uniform distribution 
of nodes. It is seen that the source term P  is not zero anymore at locations with contraction 
or expansion of the grid. Figures 2c and 2d show curved boundaries with uniform and non-
uniform distribution of nodes respectively. It is clear that the source term P  varies along the 
N  coordinate line and carries some information regarding the boundary geometry in the 
latter two cases as well. Therefore, the source terms P  and Q  can be used as interpolants in 
an elliptic grid generation problem. The source values in these examples, which are 
Laplacians of the logical coordinates, have been calculated using the finite volume method 
as described in (Ashrafizadeh et al., 2002; Ashrafizadeh et al., 2003). 

The scale factor f  is used as the interpolant in the classical OGG method. The shape of the 
boundary and the distribution of nodes in Figs. 3a to 3d have been chosen similar to Figs. 2a 
to 2d respectively to study the effect of the boundary geometry on the boundary values of 
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f .For the straight uniform paving layer shown in Fig. 3a, 1f  everywhere along the 
boundary. In all other cases in Fig. 3, the curved boundary and/or non-uniform distribution 
of nodes result in a corresponding change in the nodal f  values. Therefore, the scale factor 
f  can also be used as the interpolant in an elliptic grid generation problem. 

Other combinations of the boundary data can also be used as the interpolants in an EGG 
problem and one can check the sensitivity of a chosen interpolant to the boundary 
specifications before actually using them in an elliptic grid generation algorithm as just 
explained. Since these computations are done on distorted and/or non-uniform grids in 
the physical domain, finite volume method is a suitable numerical solution choice as 
explained before.  

 

Fig. 2. Sensitivity of the source term, P, with respect to the boundary geometry and nodal 
distribution. 

 

Fig. 3. Sensitivity of the scale factor, f, with respect to the boundary geometry and nodal 
distribution. 
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3. Interpolation techniques 

Having chosen the interpolants, an interpolation technique is required to find the 
corresponding values at internal nodes. The idea is that the boundary data should be used 
to determine the geometrical properties of the internal cells and coordinate lines via 
interpolation techniques. There are three geometrical interpolation techniques that can be 
used in a multi-dimensional problem as follows. 

3.1 One-dimensional interpolation 

Univariate stretching functions provide the relations for the one dimensional interpolation. 
Equations (12) and (13) are examples of one dimensional interpolation formulas used in a 
2D problem.  

3.2 Quasi multi-dimensional interpolation 

Quasi multi-dimensional interpolation techniques such as TFI, which employs the Boolean 
sum of 1D interpolations, can also be used to interpolate the chosen interpolants in an 
elliptic grid generation process. The interpolation coefficients in these algebraic methods can 
be constant, linear or non-linear functions of the logical or physical coordinates. Use of the 
physical coordinates as the independent variables in the interpolation coefficients worsens 
the nonlinearity of the interpolation and, therefore, this option has not gained any 
popularity. As an example, it will be shown later that the boundary values of the control 
functions in the TTM method can also be interpolated via the TFI. 

3.3 Multi-dimensional interpolation 

The interpolants in the EGG methods can also be interpolated by truly multi-dimensional 
methods, i.e. by the solution of boundary value problems. For example, it will be shown that 
the boundary values of the control functions in the TTM method can also be interpolated 
through the solution of Dirichlet boundary value problems to obtain the corresponding 
values for the internal nodes. 

4. Grid generation equations 

By viewing the elliptic grid generation problem as a multi-dimensional interpolation 

problem, the focus is obviously on the selection of interpolants and the interpolation 

techniques. However, depending on the chosen interpolants, it may also be necessary to 

develop grid generation equations, i.e. equations which ultimately provide the nodal 

coordinates throughout the domain.  

The process of interpolation may actually play the role of the grid generation equations. In 

an algebraic grid generation method such as the zero order TFI, the interpolants are the 

nodal coordinates. By carrying out the interpolation, nodal coordinates are obtained 

throughout the domain and no additional grid generation equation is required. In other 

words, the interpolation equations in this case are themselves the grid generation equations.  

The expressions used to define the interpolants may also be used to develop the grid 
generation equations. For example, in the classical TTM method, in which Eqs. (5) and (6) 

www.intechopen.com



 
Alternative Methods for Generating Elliptic Grids in Finite Volume Applications 

 

125 

are used to define the interpolants, the same equations are also inverted to obtain the grid 
generation equations in the logical domain. In the method proposed by Ashrafizadeh and 
Raithby (Ashrafizdeh & Raithby, 2006), Eqs. (5) and (6) are used to obtain the grid 
generation equations in the physical domain.  

The classical orthogonal grid generation method is a good representative example of the 

cases in which neither the interpolation formulas nor the definition of the interpolants can 

be used for the grid generation. In contrast to the TTM, the interpolated values of the scale 

factor are not directly used to calculate the coordinates of internal nodes in the OGG. First 

order differential interpolants, such as the scale factor f , are not appropriate for the 

calculation of the nodal coordinates. Therefore, second order differential equations are 

developed by imposing the continuity constraints on the mapping functions. Consequently, 

Eqs. (14) and (15) are obtained and used as the grid generation equations.  

Now that the commonly used grid generation methods are explained in the framework of 

the proposed unifying view, a number of alternative elliptic grid generation methods are 

introduced in the next section. The objective is to show that how new elliptic grid generation 

methods can be developed in the context of the suggested vantage point.  

5. Alternative grid generation methods 

Based on the proposed view point, there are many possible alternatives for the development 
of elliptic grid generation methods. By focusing on the interpolants and the interpolation 
techniques, EGG methods can be divided into the following four categories: 

 Algebraic interpolation of Algebraic interpolants (AA methods). 

 Algebraic interpolation of Differential interpolants (AD methods). 

 Differential interpolation of Algebraic interpolants (DA methods). 

 Differential interpolation of Differential interpolants (DD methods). 

As mentioned before, the selection of appropriate grid generation equations provides 

another degree of freedom in the development of elliptic grid generation methods. Here we 

present two alternative grid generation methods in each category. It is clear that there are 

other possibilities and one may develop new grid generation methods in the proposed 

context. 

5.1 AA methods  

5.1.1 The AA1 method 

This method works with algebraic boundary data and employs an algebraic interpolation 

formula with constant coefficients. Grid generation equations here are algebraic 

interpolation formulas similar to Eq. (4) applied to a sub-domain close to the nodal point, 

shown in Fig. 4, as follows: 

    -0.5 0.25      P W E S N NW NE SW SEx x x x x x x x x  (17) 

    -0.5 0.25      P W E S N NW NE SW SEy y y y y y y y y  (18) 
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Note that here algebraic formulas are used to ultimately interpolate the coordinates of 
boundary nodes (the interpolants). The nine-point computational molecules provide two 
sets of simultaneous equations which have to be solved to obtain the coordinates of grid 
points. In the context of the classical EGG methods it is hard to call this method an algebraic 
grid generator. We prefer to avoid the confusion by simply associate the method to the 
selected interpolants and the mathematical nature of the interpolation technique.  

 

Fig. 4. Contributing nodes in the AA1, DA1 and DD1 methods. 

5.1.2 The AA2 method 

This method provides a combined local/global interpolation formula. Coordinates of some 

adjacent and neighbor boundary nodes are interpolated in a TFI-like interpolation 

procedure. To obtain the nodal coordinates, the following procedure is carried out: 

 Coordinates of node P
 
are calculated using zero order TFI in the shaded area in Fig. 5a. 

The contributing nodes are shown by solid dots in Fig. 5a. The calculated coordinates at 
this stage are called  1 1,

P
x y . 

 A similar procedure is carried out using the TFI in shaded areas shown in Figs 5b, 5c 
and 5d to obtain new coordinates  2 2,

P
x y ,  3 3,

P
x y  and  4 4,

P
x y .  

 The final coordinates of node P , i. e.  ,
P

x y , are obtained as follows: 

          1 1 1 2 2 2 3 3 3 4 4 4, , , , ,   
P P P P P

x y C x y C x y C x y C x y  (19) 

The simplest choice for the weight factors would be 1 2 3 4 0.25   C C C C . The weight 
factors may also be chosen taking into consideration the logical coordinates of point P. 

Note that formula for  1 1,
P

x y  includes coordinates of some boundary points as well as 
points P  and 1P . Similarly, the  2 2,

P
x y ,  3 3,

P
x y  and  4 4,

P
x y  terms bring the 

coordinates of points 2P , 3P  and 4P  in the mix. Therefore, as compared to the traditional 
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zero order TFI method, which takes the coordinates of 8 boundary nodes to calculate the 
coordinates of an internal node P , this method employs the information at 16 boundary 
nodes as well as 4 neighbor nodes to construct a computational molecule for nodal point P . 
Considering the fact that the coordinates of boundary nodes are known, Eq. (14) can be re-
written as 5-point computational molecule for the coordinates of node P  as follows: 

          
1 2 3 41 2 3 4

, , , , ,    P P P P PP P P P P
x y C x y C x y C x y C x y C  (20) 

Coefficient PC  in Eq. (20) includes the effects of the above mentioned 16 boundary nodes. In 
contrast to the classical TFI, a simultaneous set of equations needs to be solved to obtain the 
coordinates of internal nodes. If only two shaded areas shown in Figs. 5a and 5b are used to 
develop the interpolation formulas, the coordinates of internal nodes can be obtained in a 
marching calculation process starting from the south east corner of the domain. 

 

 

 

Fig. 5. Four sub-domains used to develop the computational molecule in the AA2 method. 

5.2 AD methods  

5.2.1 The AD1 method  

In this method the interpolants are some differential boundary data interpolated by 
algebraic interpolation formulas. The contributing boundary nodes in each computational 
molecule are shown in Fig. 6 by   signs. Second order derivatives of boundary coordinates 
are interpolated by the algebraic TFI method:  
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Fig. 6. Contributing nodes in the AD1 method. 

 

          
      
       
   

-

- -

-

- -

- - -

- - - -

-

, 1 , , 1 ,

, 1 1 ,

1 , 1 ,

,

       

   

   

 

  

  

   

 

  



P P pP bW bE bS

P P pbN P SW

P P P pP NW P SE

P P P NE

x y x y x y x y

x y x y

x y x y

x y

 (21) 

 

          
      
       
   

-

- -

-

- -

- - -

- - - -

-

, 1 , , 1 ,

, 1 1 ,

1 , 1 ,

,

       

   

   

 

  

  

   

 

  



P P pP bW bE bS

P P pbN P SW

P P P pP NW P SE

P P P NE

x y x y x y x y

x y x y

x y x y

x y

 (22) 

Discrete forms of Eqs (21) and (22) result in the following formulas for the coordinates of 
node P: 

      1 1 1 1 11 1
, , ,  S N PP S N

x y C x y C x y C  (23) 

      2 2 2 2 22 2
, , ,  E W PP E W

x y C x y C x y C  (24) 

Coefficients 1PC  and 2PC  include the contribution of boundary nodes corresponding to the 
nodal point P  as shown in Fig. 6. The final computational molecule is obtained as follows: 

      1 1 1 2 2 2, , ,  P PP P P
x y x y x y  (25) 

Again the simplest choice for the weight factors would be 1 2 0.5  P P , however, these 
factors may also be chosen taking into consideration the logical coordinates of point P. 
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Therefore, in this method the coordinates of each node are constrained directly by the 
coordinates of 4 neighbor nodes and indirectly by 32 boundary nodes. Once again all 

boundary nodes contribute to the calculation of the coordinates of node P  through the 
solution of a set of algebraic equations similar to Eq. (25). 

5.2.2 The AD2 method  

In this method the interpolants are the source functions P  and Q , defined in Eqs. (5) and 
(6). The zero-order TFI is used for the interpolation of the interpolants as follows:  
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 (27) 

Equations (5) and (6) are used as the grid generation equations. 

5.3 DA methods  

5.3.1 The DA1 method 

In this case Dirichlet boundary value problems are solved to interpolate algebraic boundary 
data, i.e. coordinates of boundary nodes. All boundary nodes, shown by   signs in Fig. 4, 
indirectly contribute to the calculation of coordinates of each internal node. The 
interpolation formulas, which are actually the grid generation equations, are mathematical 
expressions which imply the smoothness of functions ( , ) x  and ( , ) y  as follows: 

 0  x x  (28) 

 0  y y  (29) 

Nodal points which contribute to the computational molecule for the calculation of the 
coordinates of node P  are shown by   signs in Fig. 4. It is interesting to note that Eqs. (28) 
and (29) correspond also to the conformal mapping. These equations are also obtained by 
setting 1f  in Eqs. (14) and (15). 

5.3.2 The DA2 method  

In this case an initial grid in a simple domain,  0 0,x y , is used to generate the grid in the 
physical domain. The interpolants are algebraic quantities - 0 x x x  and - 0 y y y , in 
which ( , )x y  are the corresponding boundary nodes of the target geometry. The target 
domain and the initial grid are both shown in Fig. 7. The interpolation formulas, which are 
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actually the grid generation equations, are mathematical expressions for a two-dimensional 
interpolation of the boundary values of x  and  y  as follows: 

    
 

 
 

2 2

2
0 2 2

0 0

0
 


 

   
 

x x
x

x y
 (30) 

    
 

 
 

2 2

2
0 2 2

0 0

0
 


 

   
 

y y
y

x y
 (31) 

 

Fig. 7. Grid generation by interpolating the nodal boundary displacements (the DA2 
method). 

Both finite difference and finite volume methods can be used to numerically solve these 
equations. This method can also be used to re-mesh the computational domain in a 
moving boundary problem. More discussion on this method can be found in 
(Ashrafizadeh et al., 2009). 

5.4 The DD methods 

5.4.1 The DD1 method 

In this example of a DD method, two differential quantities,   P x x  and 

  Q y y , are calculated at all nodes adjacent to the boundary using the paving layers 
as explained in (Ashrafizadeh & Raithby, 2006). These boundary data are then 
interpolated differentially as follows: 
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 0  P P  (32) 

 0  Q Q  (33) 

With the P  and Q  terms available at all internal nodes, the following grid generation 
equations are solved to obtain the internal nodal coordinates: 

   x x P  (34) 

   y y Q  (35) 

Here again all boundary nodes, depicted by   signs in Fig. 4, contribute through the 

implementation of boundary conditions in the interpolation procedure for each internal node.  

5.4.2 The DD2 method 

Another alternative for the description of the boundary information is to use   xx yyP  

and   xx yyQ  interpolants. Boundary values of these source functions are interpolated 

by a multi-dimensional interpolation technique, i.e. Eqs. (32) and (33), and the coordinates 

are generated by solving Eqs. (5) and (6). This method is similar to the TTM as employed in 

(Thomas & Middlecoff, 1980) except that a multi-dimensional interpolation method is used 

to calculate internal values of the source functions. 

6. A brief discussion 

It is worthwhile to mention few points here for further clarification: 

1. The grid generation methods, just introduced, are few examples of many methods that 

can be developed based on the three main choices in the proposed unifying view, i. e. 

the choice of the interpolants, the choice of the interpolation technique and the choice of 

the grid generation equations. For example, a family of new methods, not discussed 

here, have also been developed by the authors which employ the transformation 

metrics at or near the boundary as interpolants. Such methods may be viewed as a 

continuation, and generalization, of the orthogonal grid generation method. 

2. The smooth distribution of the source terms in the TTM method is a sign of grid 

smoothness. By properly choosing the interpolants, the interpolation technique and the 

grid generation equations, boundary coordinate lines are smoothly interpolated into the 

domain and a smooth distribution of source terms is obtained.  

3. The possibility of folding exists in nearly all of the commonly used elliptic grid 

generation methods except for the TTM with P Q 0   on sufficiently fine grids. 

Therefore, the above new grid generation methods may result in folded grids for some 

geometrically complex domains. However, the objective in the development of new 

elliptic grid generation techniques is to obtain methods which generate high quality 

grids and are more resilient to folding as compared to the classical methods. 
4. Many of the alternative grid generation methods presented here are executed much 

faster than the classical methods. They may also be used to generate the background or 

initial grids for other more expensive grid generators. 
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7. Grid generation examples 

The performances of the proposed grid generation methods are now studied by solving 

various grid generation problems. In this section two geometries, often used to test the 

elliptic grid generators and here called the test cases, are chosen to examine some of the 

proposed methods and to also compare them with the classical elliptic and algebraic grid 

generation methods. The first test case is a quadrilateral domain, for which all four 

boundaries are distorted. The second test case is also a quadrilateral domain for which only 

two of the neighboring boundaries are distorted. A (11 11)  grid is generated in all test 

cases. Finer, and nicer, grids can obviously be generated but we have chosen a rather coarse 

grid to be able to visualize the details of the performance of the methods.  

The EGG methods can be compared in terms of the computational cost and the grid 

quality measures. Considering the fact that the grid generation cost depends mostly on 

the cost of the solution of the grid generation equations, the comparison in terms of the 

computational cost seems a trivial task in nearly all cases. As a general guideline, the 

solution of a nonlinear set of equations is computationally more expensive than the 

solution of a linear set. Regarding the grid quality, two parameters, i.e. the skewness and 

the aspect ratio, are chosen as the quality measures in this study. Skewness of a cell varies 

between 0 and 1 and measures the deviation from the orthogonality of the coordinate 

lines. Aspect ratio of a cell is defined as the ratio of the longest edge length to the shortest 

one and measures the deviation from a square cell. Cells in the logical space have zero 

skewness and aspect ratio equal to one. 

Figure 8 shows the grids generated by the classical methods in the test domains. The 

generated grids by the zero-order TFI are shown in Figs. 8a and 8b. Figures 8c and 8d show 

the grids obtained from the TTM and Figs. 8e and 8f are orthogonal grids generated by the 

OGG. It is seen that the OGG method results in folded grids in both test cases. The 

corresponding grid quality measures are shown in Figs. 9a and 9b, 9c and 9d, and 9e and 9f 

respectively. Note that there are 10 cells along each coordinate line in the test grids. Each 

quality measure diagram shows the relevant quality measures for all 100 cells on a three-

dimensional plot containing 10 10  data points. 

Figures 10, 11, 12 and 13 show the grids in the test geometries obtained via the proposed 

new methods. It can be seen that all of the methods provide unfolded grids comparable to 

the grids obtained by the classical methods. Furthermore, and as expected, it is obvious that 

methods which employ differential interpolation techniques result in smoother grids. 

The spatial distribution of the source functions   xx yyP  and   xx yyQ  using three 

different interpolation techniques are shown in Fig. 14. One dimensional interpolation is 

used to interpolate the control functions shown in Figs. 14a and 14b. The grids 

corresponding to these control functions are shown in Figs. 8c and 8d. Figures 14c and 14d 

show the distributions of control functions, which are obtained through a quasi-two 

dimensional method, i.e. the TFI. The grids corresponding to these control functions are 

shown in Figs. 11c and 11d. Finally, Figs. 14e and 14f show the interpolated control 

functions via a truly two-dimensional interpolation method, i.e. the solution of Dirichlet 

boundary value problems. The grids corresponding to these control functions are shown in 
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Figs. 13c and 13d. As expected, it is seen that the grids corresponding to the control 

functions shown in Figs. 14e and 14f are smoother than the other grids. A stretched grid 

with higher number of nodes is shown in Fig. 15 to show the applicability of AD1 in more 

complex domains. Similar results can be obtained via other proposed methods. 

 

 

 

Fig. 8. Generated grids by TFI (a,b), TTM (c,d) and OGG (e,f). 
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Fig. 9. Quality measures for the grids generated by TFI (a,b), TTM (c,d) and OGG (e,f). 
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Fig. 10. Generated grids by AA1 (a, b), AA2 (c, d). 

 

Fig. 11. Generated grids by AD1 (a, b) and AD2 (c, d). 
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Fig. 12. Generated grids by DA1 (a, b) and DA2 (c, d). 

 

Fig. 13. Generated grids by DD1 (a, b) and DD2 (c, d). 
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Fig. 14. Calculated P and Q by 1D interpolation (a, b), AD2 (c, d) and DD2 (e, f). 
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Fig. 15. A sample grid generated by AD1 (a), and a larger view of sections of the grid (b, c 
and d). 
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8. Conclusion 

A unified view of the elliptic grid generation is proposed in this Chapter. It is argued that 
elliptic grid generation techniques are actually methods for multi-dimensional geometrical 
interpolation and can be described in terms of the interpolants, interpolation technique, and 
grid generation equations. Interpolants are used to describe the boundary shape and nodal 
distribution, interpolation technique is used to bring the boundary data into the domain, 
and grid generation equations are used to calculate the internal nodal coordinates. The most 
commonly used classical elliptic grid generation methods are explained in the context of the 
proposed unified view and new grid generation methods are also presented in the same 
context. A number of grid generation examples are chosen to show the applicability of the 
proposed methods. Authors believe that the proposed unified view provides a systematic 
and comprehensible approach to explain and develop a large class of elliptic grid generation 
methods. Some of these methods are computationally cheaper than the existing methods, 
yet provide grids with comparable qualities. 
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