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1. Introduction 

Finite Volume Method (FVM) is a popular field discretization approach for the numerical 
simulation of physical processes described by conservation laws. This article presents some 
advances in finite volume discretization of heat and fluid flow problems. 

In the case of thermo-fluid problems, decision regarding the choice of unknown variables 
needs to be taken at the continuous level of formulation. A popular choice, among many 
available options, is the pressure-based primitive variable formulation (Acharya, 2007), in 
which the flow continuity equation is considered as a constraint on fluid pressure. 
Pressure-based finite volume methods, in turn, can be categorized based on the 
computational grid arrangement used for the discretization of solution domain. In a 
staggered grid arrangement, velocity components and other unknown scalars are defined 
at different nodal points (Patankar, 1980). On the contrary, all unknown variables are 
defined at the same nodal locations in a co-located grid arrangement. The discussion of 
finite volume discretization schemes in this article is limited to pressure-based 
formulations on co-located grids.  

At the continuous level of formulation in a finite volume method, an intensive variable   is 
constrained by an integral balance equation for a control volume CV  bounded by the 
control surface CS  as follows: 

 
CV CS CV

dV J ndA S dV
t

 
  

   
    (1) 

In Eq. (1) J


 represents the flux of   across the control surface, S
  stands for the rate of 

generation of   within the control volume and n


 is the outward unit normal vector to the 
control surface. In most of the engineering problems of interest, there are two mechanisms 
for the transport of  , i.e. advection and diffusion, and the flux function is mathematically 
described as follows: 

     J V      
  

 (2) 

In Eq. (2) V


 is the advective mass flux and   is the diffusion coefficient associated with 
variable  . By properly defining  , J


 and S

 , Eq. (1) can be used as a generic equation to 
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mathematically describe the transport of mass, momentum and energy in fluid flow 
problems (Patankar, 1980). 

A typical two dimensional discrete domain covered by contiguous control volumes (cells) is 
shown in Fig. 1. Each cell represents a nodal point and is bounded by a number of panels 
which comprise the control surface. Typically, each panel includes one integration point.  
There isn't any limitation on the shape and the number of panels of a cell. Here we use a 
background finite element mesh to define the control volumes. Figure 1 shows structured 
and unstructured two-dimensional grids in an element-based finite volume method 
(EBFVM) context (Ashrafizadeh et al., 2011).  

The objective of any finite volume discretization scheme is to use the CV balance equations, 
similar to Eq. (1), to obtain a set of algebraic equations which constrains the unknown nodal 
values throughout the domain. This objective is achieved by carrying out the discretization 
in two stages.  

At the first stage of discretization, here called level-1 approximation, Eq. (1) is converted to a 
semi-discrete form comprising of both nodal and integration point variables. Level-1 
approximate form of Eq. (1) for an internal finite volume in Fig. 1 can be written as follows: 

 
1 1

( )
( ) ( )

ip ipN N
np

ip ip
ip ip

V V ndA A S V
t n


   

 

 
    

  
    (3) 

In Eq. (3), subscripts np  and ip  stand for nodal and integration point variables respectively. 
Closure equations are now needed to relate ip  variables to np  variables. 

At the second stage of discretization, here called level-2 approximation, Eq. (3) is converted 
to a fully-discrete form, i.e. an algebraic equation which constrains the variable   at nodal 
point P . The computational molecule obtained at this stage of discretization is written in 
the following convenient form: 

 
1

nbN

P P nb nb P
nb

a a S 


   (4) 

Here, subscript nb  stands for the neighbor nodes and superscript nbN  refers to the number 
of influential neighbor nodes. Influence coefficients Pa  and nba  and the source term S  
contain terms and parameters which model all physical effects relevant to the value of   at 
the nodal point P . 

If Eq. (1) is a nonlinear equation, linearization also becomes necessary and should be carried 
out during the discretization. In principle, the equation can be linearized before or after each 
of the approximation levels and this might affect the properties of the final discrete model. 

In most engineering problems, including heat and fluid flow ones, a coupled set of 
nonlinear partial differential equations needs to be discretized and solved. In such cases, the 
inter-equation couplings should also be numerically modeled. Two-dimensional, 
incompressible Navier-Stokes equations, for example, can be written in a form similar to Eq. 
(1) in which   is equal to 1 in the mass balance equation, u  in the x-momentum balance 
equation, v  in the y-momentum balance equation and e  (specific energy) in the energy  
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Fig. 1. Structured and unstructured element-based finite volume grids. 

balance equation. In general, the computational molecule associated with each equation of a 
coupled set includes more than one variable to reflect the fact that the equations and the 
variables are inter-related. Therefore, in the case of a set of equations with two coupled 
variables   and  , the following modified form of Eq. (4) is used to constrain   at the 
nodal point P :  

 
1 1

nb nbN N

P P nb P P nb Pnb nb
nb nb

a a a a S       
 

      (5) 

In this article, we focus on level-2 approximation of Navier-Stokes equations in the context of 
co-located, pressure-based finite volume method. This level of approximation is particularly 
important because it deals with the modeling of physical influences such as upwind and 
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downwind effects and the couplings between variables. A number of famous level-2 
approximations are reviewed and the method of proper closure equations (MPCE), proposed 
by the first author, is introduced. To avoid the complexities associated with multi-dimensional 
problems and to focus on the nature of the approximations in a simple setting, one 
dimensional equations and test cases are discussed in details. Two-dimensional results are 
only briefly presented to show the applicability of the MPCE in multi-dimensional problems. 

2. The semi-discrete form of equations in a 1D context 

A one-dimensional variable-area duct is shown in Fig. 2. The complete set of governing 
equations for unsteady 1D-inviscid compressible flow in this duct, using the momentum 
variable formulation, is as follows (Chterental, 1999): 

 

1

1

1

m

u

da
f S

a dxf
da

f fu p fu S
x a dx

e fe pu
da

pu
a dx






   
     

                        
 
  

 (6) 

Where   is time, f u  is the momentum variable, u  is velocity, p  is pressure and a  is the 
cross sectional area. Note that no artificial energy source term is used in the energy equation. 

In order to close the above set of equations, an auxiliary equation is needed. Here, the ideal 
gas equation of state is used: 

 p Rt  (7) 

Where t  is temperature and R  is the gas constant. Neglecting the potential energy term, the 
total energy per unit mass ( e ) of an ideal gas can be written as follows: 

 21

2
ve c t u   (8) 

Where vc is the specific heat at constant volume. 

By integrating Eq. (6) over the P control volume in Fig. 2 and after using divergence 
theorem, the semi-discrete forms of the governing equations are obtained as follows: 

 

 
     

        

  ( )

0

m
P P P

e e w w
P

pP
P P e w P w a PPe w

P
e we wP

V S V
f a f a

V
F F fu p a fu p a P a a S V

V
E E fe pu a fe Pu a

 




 


          
               
            







 (9) 

Note that capital letters (like F  and P ) are used for the nodal values and small letters (like 
f  and p ) are used for integration point variables. Here, PV  stands for the volume of cell P. 

Closure equations for the integration point variables are discussed next. 
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Fig. 2. Grid arrangement in a one-dimensional variable area duct. 

3. Closure equations for integration point variables 

After obtaining the semi-discrete form of governing equations and linearizing them, closure 
equations are needed to approximate integration point (ip) quantities in terms of the nodal 
values. By employing these closure equations, the semi-discrete equations are converted to 
fully-discrete equations. These ip-equations play a critical role in the robustness and 
accuracy of a collocated scheme. Therefore, different solution strategies for defining ip-
equation are briefly described in this section. Here, we only discuss the closure equations for 
“east” integration point of a typical cell around node P. The closure equations at the “west” 
ip are obtained similarly. 

3.1 Methods based on geometrical interpolation 

Simple symmetric interpolation is the most trivial choice for an ip-value in a uniform grid:  

 
2

P E
e

  
   (10) 

On non-uniform grids, weighted interpolation is used as follows: 

 (1 )e e E e P        (11) 

Where e  is the weight factor for “east” ip, calculated by the following formula: 

 e P
e

E P

x X

X X
 




 (12) 
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This scheme is 2nd-order accurate, but is unbounded so that non-physical oscillations 
may appear in regions with high gradients. To show the problem associated with this 
scheme, consider the 1-D inviscid incompressible flow in a constant area duct shown in 
Fig. 3. The semi-discrete form of continuity and momentum equations in this case are as 
follows: 

   0e wA u u    (13) 

     0e w e wm u u A p p     (14) 

Where A  is the cross sectional area of the duct and m  is the mass flow rate based on the 
most recent available value of velocity. 

 

Fig. 3. A 1-D Co-located grid in a constant cross sectional area duct. 

Using simple symmetric interpolation, Eqs. (13) and (14) are converted to the following 

fully-discrete forms: 

   0
2

E W

A
U U


   (15) 

     0
2 2

E W E W

m A
U U P P   


 (16) 

Combining the above equations, one obtains the following constraint on the pressure at 

nodal point P: 

 E WP P  (17) 

Note that pressure at node P is absent in this equation and this constraint cannot distinguish 

between a uniform pressure field and the wiggly pressure field shown in Fig. 4.  

3.2 Methods based on taylor-series expansion 

It is logical to assume that convected quantities in a thermo-fluid problem are influenced by 

the upstream condition. Therefore, assuming the flow direction from P to E, the following 

truncated Taylor series expansions are both valid approximations for e : 

  e P    (18)  

     e P e P
P

φ
x X

x



   


 (19)  
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Fig. 4. A typical wiggly pressure filed. 

Equation (18) is called the simple or Fist Order Upwinding (FOU) and provides highly 
stable and unconditionally bounded numerical schemes. However, it is only first order 
accurate. Equation (19) provides a Second Order Upwinding (SOU) strategy. One can show 
that a numerical scheme which employs Eq. (10) for integration point pressures and Eqs. 
(18) or (19) for integration point velocities in Eqs. (13) and (14), would not be able to detect 
the checkerboard pressure fields. Such numerical schemes are prone to unphysical pressure-
velocity decoupling symptom. 

3.3 Methods based on momentum interpolation 

Rhie and Chow (Rhie, 1983) employed a co-located grid to solve the flow field around an 
airfoil. To avoid nonphysical, wiggly numerical solutions, they came to the conclusion that 
different closure equations had to be used for the convecting or mass-carrying ( û ) and 
convected or transported ( u ) velocity components at the integration points. The convecting 
velocity, used in the semi-discrete continuity equation, is linked to the pressure through a 
momentum interpolation procedure. Hence, this discretization scheme is called the 
Momentum Interpolation Method (MIM). As compared to the classical schemes on 
staggered grids, one may assume that nodal momentum balances are conceptually 
staggered to obtain closure equations for convecting velocity at integration points. The 
discrete momentum balance for node P can be written as follows: 

  0               nb nb P
P P nb nb P P

P PP P

b UP V P
a U a U V U

x a a x

 
     

 
  (20) 

The convecting velocity at “e” is obtained by staggering the stencil of the “P” computational 
molecule to the “e” integration point:  

 ˆ nb nb e
e

e ee

a U V P
u

a a x


 




 (21) 

Which results in: 

 ˆ 2
2 2

eP E
e

eP E

dU U P P P
u

x x x

        
    

 (22) 
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Where 

 
1

2
P E

e

P E

V V
d

a a

 
  

 
 (23) 

The closure for the convected velocity, and any other transported variable, comes from an 
upwind scheme. The simplest option at the integration point e would be the FOU: 

   if    0e P eu U m 

  (24) 

The interpolation formula, Eq. (22), is not unique as explained in (Acharya, 2007) and one 

might successfully implement the idea using modified forms of this approach. The key 

point, however, is to use different closure equations for the convected and convecting 

velocity components. The convecting velocity should be properly related to the pressure 

field.  

The closure equation for ep  has not been a matter of concern, at least for incompressible 

flows. Taking into account the elliptic behavior of the pressure, the following closure 

equation is used in the MIM: 

 
 

2
E P

e

P P
P


  (25) 

This technique guarantees the required physical pressure-velocity coupling in the numerical 
model and prevents any wiggly solutions (Ashrafizadeh et al., 2009). 

3.4 Methods based on physical influences 

The pleasure of working with all variables on a single nodal position, as opposed to the pain 

of working with staggered grids limited to simple geometries, has made the MIM very 

popular. Therefore, attempts have been made to employ and improve the MIM for the 

solution of flows at all speeds. Schneider and Raw (Schneider & Raw, 1987a, 1987b) 

proposed the physical influence scheme to unify the integration point velocity interpolation 

formulas in co-located grids. They retained a unified definition for the integration-point 

velocity components, but argued that the closure for eu  should not be obtained solely by 

purely mathematical upwind schemes. They suggested the non-conservative form of the 

momentum equation to provide a closure for eu : 

 
 

0
u u P

u u
x x x




   
      

 (26) 

The method, called the physical influence scheme, provides the following closure equation 

in the context of the 1-D test case: 

 ˆ
2

P E
e e p

e

x P P
u u U

u x
 

  


 (27) 
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Where the over bar refers to the most recent available value in the nonlinear iterations. 
Equation (25) is used as the closure for ep  in this scheme.  

While successfully implemented in a number of multidimensional viscous problems, the 

physical influence scheme fails to prevent pressure checkerboard problem in inviscid 

incompressible flows (Bakhtiari, 2008). This failure reinforces the belief that two definitions 

for convected and convecting velocities at integration points are necessary when the 

calculations are carried out on a co-located grid. 

3.5 Methods based on modified physical influences 

To fix the problem associated with the physical influence scheme, Karimian and Schneider 
(Karimian, 1994a) accept the notion of dual velocities at the integration points and employ a 
combination of momentum and continuity equations to provide a closure for the convecting 

velocity ( û ): 

    ˆ      
2 2

P E
e e e

e

U U x
u Momentum Error u Continuity Error

u
 

      (28) 

Which results in: 

 ˆ
2 2

P E P E
e

e

U U P P
u

u
 

   (29) 

They also use Eq. (27) for convected velocity ( eu ) and Eq. (25) as the closure for ep . 
Numerical experiments with the 1-D test case show that this method works well and 
successfully suppresses any oscillatory numerical solution even in time-depended all speed 
flows (Karimian, 1994b). This method has also been extended to 2D flows on structured 
(Alisadeghi et al., 2011a) and unstructured (Alisadeghi et al., 2011b) grids.  

Darbandi (Darbandi et al., 1997) proposed a pressure-based all speed method similar to the 

Karimian's method, in which the momentum components ( f u ) are used as the flow 

dependent variables instead of the velocity components ( u ). They used the following form of 

the momentum equation as the physical constraint on the integration point convected velocity: 

 0
e

f f u P
u f

x x x
            

 (30) 

Where f u  is the momentum variable. Appropriate discretization of Eq.(30) leads to: 

  1 
4

e P P E
e

f F P P
u

    (31) 

In this method, a combination of momentum and continuity equations is used to constrain 

the integration point convecting velocity: 

 0e
e e

f f fu P
u f u

x x x x


 
                       

 (32) 
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Where   is a user-defined weight factor. This equation can be discretized to obtain the 
following formula: 

  1ˆ  
2

e P P E
e

f F P P
u

    (33) 

In this method, like all other methods discussed so far, Eq. (25) is used as the closure for ep . 

Numerical results have shown that this set of closure equations removes the possibility of a 

checkerboard solution and provides strong coupling between pressure and velocity fields. 

Another analysis has shown that the use of momentum-variable formulation, instead of 

primitive variable formulation, improves the stability and accuracy of the solution especially 

in the solution of compressible flows with shock waves (Darbandi, 2004). 

3.6 Method of proper closure equations (MPCE) 

3.6.1 One-dimensional incompressible flow 

Ashrafizadeh et al. (Ashrafizadeh et al., 2009) have shown that it is possible to develop a co-

located numerical scheme without resorting to the convecting and convected velocity 

concepts, originally proposed by Rhie and Chow. The proposed method, called the method of 

proper closure equations (MPCE), employs a proper set of physically relevant equations to 

constrain the velocity and pressure at integration points. It has already been successfully 

implemented and used in the solution of steady 1-D inviscid incompressible and compressible 

flow problems (Ashrafizadeh et al., 2008, 2009) and steady 2-D viscous incompressible flow 

problems on both structured and unstructured grids (Alinia, 2011; Bakhtiari, 2008). 

In this method, following the physical-based approach proposed by Schneider and Raw 
(Schneider et al., 1987) and modifications proposed by Karimian and Darbandi (Darbandi, 
1997; Karimian, 1994a), a combination of non-conservative form of momentum and 
continuity equations is used to obtain an interpolation formula for the ip-velocity:  

     0u ee e
momentum Eq. u continuity Eq.   (34) 

which results in: 

 
     

2

1 2

1 1
0u m

u e

UDS CDS CDS CDSe e

u u da P u da
u u u S u u S

x x A dx x x A dx
     
   

                         

 (35) 

Here uS and mS are artificial momentum and mass source terms, and a  and u  are the ip-
cross sectional area and a scheme control parameter respectively. There are options available 
to the user at this stage. Using UDS or CDS Schemes for terms 1 and 2 and 0,  1,  2u  , as 
discussed in (Rezvani, 2008), different formulas for eu  can be obtained. The most common 
formula is as follows: 

 ( )
2 2

u mP E
e P e e e

e e

P P x
u U S u S

u u 
 

     (36) 
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As mentioned earlier, the classical closure choice for the integration point pressure has 

been the linear approximation, i.e.  Eq.(25). However, the MPCE employs relevant 

governing equations to obtain the required closures for all integration point quantities, 

including the pressure. The momentum equation is a natural choice for obtaining a proper 

closure equation for ep . However, only the pressure gradient appears in the momentum 

equation and CDS-based discretization, physically proper for the pressure, results in 

wiggly solutions. As discussed in (Rezvani, 2010), by taking the divergence of the 

momentum equation, a pressure poisson equation for the pressure is obtained. The 

pressure Poisson equation is an appropriate constraint equation for the pressure 

discretization. Therefore, as compared to Eq. (34), the following closure equation is 

proposed for the integration point pressure: 

     4   . 0
   .

e
P e

e

Divergence of u
Continuity Eq

Momentum Eq x


 
    

 (37) 

Which results in: 

    
2 2

2
2 2 2 4

me e eP E
e P P E P P E P e

e e

u u uP P x u
P U U A A S

a x x

   
   

         
 (38) 

Where 0P   is a scheme control parameter. Numerical test results have shown that the 
method works well with any nonzero positive value for P (Rezvani-2010). 

3.6.2 One-dimensional compressible flow 

Extension of the MPCE to compressible flow problems requires two additional tasks. First, 

the energy equation should also be solved in order to find the temperature filed. Second, 

depending on the chosen unknown variables, proper linearization is crucially important. 

Following approaches presented in (Darbandi et al., 2007; Karimian, 1994a), the Newton-

Raphson linearization strategy is employed to linearize the nonlinear terms in the balance 

equations. For example, term pu  in the energy equation is linearized as follows: 

        pu Rt u u Rt R ft R ft tf ft        (39) 

Closure equation for ef  can be easily obtained using the unsteady-compressible form of Eq. 

(34). First order upwind difference scheme is used for the discretization of momentum 

variable gradient terms. Use of 1u   in the general form of the closure for the momentum 

variable at the east face of the cell, results in the following formula for ef : 

 
 
     

2

   
1 2 1 2 1 2 1 2 1 2

e

P E u meP
e P e e e

e ee
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C P P f C x C x

f F S u S
C u C C C u C





   
     

     



 (40) 

Where, C is the Courant number defined as C u x   and superscript   stands for the 
values from previous time step. 
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Similarly, Closure equation for ep  can be obtained using the unsteady-compressible form of 
Eq. (37) as follow: 

 

   

2

   
2 2 2
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4 2

p p e eP E
e e P E P E

e

pme
p e e

e e

f uP P
p u F F A A

a

ux u
S u x

x x

 

 



    

   
       

 (41) 

The non-conservative form of the continuity equation in Eq. (6), in the absence of its source 
term, is proposed as a proper closure equation for the density (Darbandi et al., 1997; 
Karimian, 1994a). Here, in order to control the stability and accuracy of the code in both 
subsonic and supersonic regimes, a smart blending factor (  ) is used which makes the 
equation hyperbolic in supersonic flow regions [Karimian, 1994a]: 

  1
2 2

e P e e
e ee

fx F A x

u x a x x

    


      
          

 (42) 

 
1

m
e

e m
e

M

M
 


 (43) 

where eM  is local Mach number at the “east” integration point and m=2 is suggested for 
the superscript m. 

The final required closure equation is an interpolation formula for the integration point 
temperature. Here, the non-conservative form of the energy equation in the absence of the 
source term is a natural candidate (Darbandi et al., 1997) and one obtains the following 
expression: 

 
 

  2  
1 2 1 2 1 21 2

e P Ee eP E
e P

P E e v ee v

p A AC p tC F F C
t T

C C c a Cf c C   
 

     
    


 (44) 

The final discrete computational molecules for solving velocity, pressure and temperature 
fields are obtained after closure equations are substituted in Eq. (9): 

 pp pp pf pf pt pt p
P nb P nb P nbP P P Pnb nb nba P a P a F a F a T a T b         (45) 

 ff ff fp fp ft ft f
P nb P nb P nbP P P Pnb nb nba F a F a P a P a T a T b         (46) 

 tf tf tp tptt tt t
P P nb nb P nb P nb PP Pnb nba T a T a F a F a P a P b         (47) 

In this linear algebraic set, , ,...ff fp
P Pa a  are the influence coefficients and , ,...p f

P Pb b  are right 
hand side constant terms.  Subscript nb  stands for the immediate neighbors of node P  (i.e. 
W and E ). The first superscript refers to the relevant equation and the second superscript 
points to the relevant physical variable.  The assembled linear equations can be solved using 
any direct or iterative solver. Here, the Gauss elimination method is used to solve the set of 
simultaneous equations. The coupled set of the algebraic equations might also be solved 
using a semi-implicit (segregated) solution strategy.  
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3.6.3 Two-dimensional incompressible flow 

The MPCE has also been used to solve 2D, incompressible laminar flows on both structured 
and unstructured grids (Bakhtiari, 2008; Alinia, 2011). The implementation follows the basic 
philosophy already described in a 1D context. However, more complex interpolation 
formulas are required to take into account the effect of cell shape and orientation on balance 
equations. Implementation details are not discussed here for the sake of brevity.   

4. One-dimensional test cases 

4.1 Incompressible flow 

Performance of the MPCE for solving incompressible and compressible flows is examined 
here through two different test cases. Steady incompressible flow in a constant area duct is 
the first test case which is used to examine the pressure-velocity coupling in MPCE. Quasi 
1D flow in a convergent-divergent nozzle is another test case used to check the accuracy of 
the proposed method in inviscid incompressible flow problems. 

4.1.1 Steady incompressible flow in a constant area duct 

The 1D incompressible flow in a constant area duct is used to see if oscillatory solutions appear 

when the MPCE equations govern the discrete flow field. For this purpose, artificial element 

and volume sources/sinks are used in continuity and momentum equations. In a domain with 

30 nodes, the artificial element source terms are located at the 10th and 20th cell-faces and 

control volume source terms are activated at the 10th and 20th nodal positions.  

Numerical results show that the effects of sharp variations in velocity and pressure due to the 
artificial source terms are quickly damped out and MPCE works well even with 0p  . 
Figures 5 and 6 show the effects of control-volume artificial sources on the numerical solution. 
These results show that numerical oscillations are developed in both velocity and pressure 
fields for 0p  . However, oscillations are strongly damped for any non-zero value of p . 
Note that the notation “N-D” in these figures stands for “Non-Dimensional” and velocity is 
normalized with the inlet velocity and pressure is normalized using the exit pressure. 

  

Fig. 5. Velocity and pressure fields in a constant area duct with control-volume mass 
source/sink. 
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Fig. 6. Velocity and pressure fields in a constant area duct with control-volume momentum 
source/sink. 

4.1.2 The quasi-1-D test case 

Ideal flow in a converging-diverging nozzle is another test case to examine the performance 

of MPCE. Figure 7 compares the non-dimensional velocity and pressure distributions along 

the nozzle with the analytical solutions. Excellent agreement is observed. 

Fig. 7. Velocity and pressure field in a 1D converging-diverging nozzle ( 1p  ). 

4.2 Compressible flow 

For compressible flow, performance of MPCE is examined in three different test problems. 

Steady subsonic compressible flow in convergent-divergent nozzle, steady compressible 
flow with normal shock in convergent-divergent nozzle and unsteady compressible flow 
with normal shock and expansion waves in a shock tube.  

4.2.1 Steady subsonic compressible flow in a convergent-divergent nozzle 

Results of solving subsonic compressible flow in a symmetric convergent-divergent nozzle 
with aspect ratio 2 using 51 nodes is shown in this section. For the boundary condition 
implementation, mass flow rate and the static temperature are specified at the inlet and the 
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static pressure is provided at the outlet. In order to assess the accuracy of the proposed 
method, numerical solutions corresponding to inlet Mach numbers of 0.05, 0.1, 0.15, 0.2, and 
0.25 are presented in Fig. 8. Flow with the inlet Mach number of 0.3059, for which the nozzle 
is choked, is also considered. In this test case, 1p   is used and pressure, temperature, and 
density are nondimensionalized with the outlet pressure, inlet temperature, and inlet 
density, respectively. 

4.2.2 Steady flow with shock waves 

In the divergent section of the previous test case, normal shock waves appear for certain 
inlet boundary conditions while the position and the strength of the shock can be controlled 
by regulating the back pressure. Figure 9 presents the Mach number, non-dimensional 
pressure, temperature and density distributions along the nozzle for the pressure ratios 
( outlet inletP P ) of 0.65, 0.75 and 0.85 using 81 nodes. It is seen that the normal shock is well 
captured using a few nodes in all cases and no numerical oscillation is developed along the 
nozzle. Note that this results are computed using 2m   in Eq.(43) and p  takes values 
lower than 1 in the supersonic parts of the solution domain and values higher than 1 in the 
subsonic regions.  

 

 

Fig. 8. Steady subsonic compressible flow in a convergent-divergent nozzle. 
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4.2.3 Unsteady compressible flow in a shock tube 

As the final unsteady 1D test case with both compression and expansion waves, shock tube 

problem is discussed. The geometry shown in Fig.10 is a constant area duct divided into two 

regions separated by a diaphragm at the middle of the duct. At 0   the gas temperature is 

298 K, the pressure at the right side of the membrane is 100 KPa and the pressure at the left 

side of the membrane is 1000 KPa.  The time step for the marching numerical solution is 

equal to 64 10     seconds. Figure 11 shows the numerically calculated distributions of 

Mach number, non-dimensional pressure, temperature, and density after 
30.42 10 seconds. Here, the Courant number is 0.229 which is computed using the 

maximum magnitude of velocity in the domain. The pressure, temperature and density are 

non-dimensionalized using the low pressure side values. Good agreement with the exact 

solution is observed.  

 

 

Fig. 9. Steady flow with shock waves in a convergent-divergent nozzle. 

5. Two-dimensional incompressible flow test cases 

The MPCE has also been used to solve many 2D benchmark test problems. Here, only the 
results for two standard test cases are presented. 
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Fig. 10. Geometry and the flow pattern for the shock tube problem. 

 

 

Fig. 11. Results of unsteady compressible flow in shock tube 
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5.1 Flow in a 2D lid-driven cavity 

Flow in a lid-driven cavity, shown in Fig. 12, is a widely used test case for 2D steady 
incompressible flows governed by Navier-Stokes equations. Numerical solution via MPCE 
on an unstructured grid with 12656 triangular elements, shown in Fig. 13, is compared to the 
numerical results of Erturk (Erturk, 2005). Flow patterns at different Reynolds numbers are 
shown in Fig. 14. Excellent agreement between the calculated velocities at cavity centerlines 
and the benchmark results in Fig. 14 is also observed.  

 

Fig. 12. Lid-driven cavity boundary conditions with an schematic of flow features. 

 
Fig. 13. Generated unstructured mesh for lid-driven cavity test case. 

5.2 Flow over a backward facing-step 

The backward step flow is another commonly used test case for numerical solution 
algorithms. The geometry of this test case is shown in Fig. 15. Forty nodes are used across 
the channel, 300 nodes are used from the step to 30h and 50 nodes are used from 30h to 50h 
along the channel. Nodes are distributed uniformly. Figure 16 shows the calculated 
streamlines at Re=800, in which a recirculation zone appears at the upper wall.  Normalized 
locations of the re-attachment point at the lower wall (X1), the separation point at the upper 
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wall (X2), and the re-attachment point at the upper wall (X3) are compared with the results 
obtained by Gartling (Gartling, 1990) for flow at Re = 800. Comparison results are shown in 
Table 1 and excellent agreement is obvious (Erturk, 2008). A comparison has also been made 
between numerical results via MPCE and the benchmark results in (Gartling, 1990) and 
shown in Fig. 18. Again, excellent agreement is observed. Similar calculations and 
comparisons have also been made for a backward-step flow model with an inlet channel. 
Excellent results, not shown here, are also obtained in this test case. 

 
(a) Streamlines at Re = 1000.  (b) Velocity Profiles at Re = 1000. 

 
(c) Streamlines at Re = 5000.  (d) Velocity Profiles at Re = 5000. 
 

 

Fig. 14. Schematic view of the backward facing-step flow problem. 
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Fig. 15. Calculated streamlines in the backward-step flow problem at Re = 800. 

X3 – X2 X3 X2 X1  

11.2565 20.80939.552812.0419MPCE 
11.26 20.969.7012.20Erturk 

Table 1. Comparison of normalized X1, X2 and X3 locations and length of the first 
recirculating region on the upper wall (X3 – X2) for Re = 800 

 

Fig. 16. Horizontal velocity profiles across the channel at X/h = 14 and 30 for Re = 800. 

6. Conclusion 

Different pressure-based finite volume discretization schemes for the solution of fluid flow 
problems are explained and compared in the context of co-located grid arrangements and a 
new scheme, called the Method of Proper Closure Equations (MPCE), is proposed. The 
proposed method is the only discretization scheme on co-located grids which employs only 
one definition for the integration point velocity and successfully solves incompressible as 
well as compressible flow problems. Simple one-dimensional test cases are presented to 
discuss different available schemes and the building blocks of MPCE. Implementation of the 
MPCE on 2D structured and unstructured grids has also been carried out but the details are 
not reported here for the sake of brevity. Numerical solutions via MPCE, however, are 
presented for both 1D and 2D problems which clearly show the satisfactory performance of 
the MPCE in the numerical solution of fluid flow problems.    
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