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1. Introduction 

Remote sensing images provide very rich and useful information linked to relevant 

biophysical parameters such as the LAI (Leaf Area Index), fCOVER (fraction of vegetation 

cover) or fAPAR (fraction of Absorbed Photosynthetically Active Radiation). At the 

moment, several techniques for estimating such variables are available and widely used in 

many applications, such as estimation of the total biomass and monitoring the dynamics in 

canopy vegetation (Baret et al., 2007; Lecerf et al., 2008). For several years, a large number of 

Very High Spatial Resolution (VHSR) satellites, such as Quickbird, Geoeye and Ikonos, have 

been launched, and very important missions such as the Venus and the Sentinel-2 are 

expected in 2012 and 2013. This provides possibility of having more or less temporal 

consistency in VHSR observations of the land use on relevant agricultural sites. However, 

because of the heterogeneity of the available VHSR data, in particular due to their different 

wavelengths sensibility and of the intrinsic errors induced by the estimation processes, the 

resulting time series of biophysical parameters are more or less noisy. As a matter of fact, 

the estimated variables may only poorly fit their actual dynamics. The estimation of the 

complete sequence of such parameters is then of prime importance, in particular if one 

wants to analyze the evolution of the biomass. 

In this chapter, we propose to explore the possibilities of using tools issued from tracking 
techniques, in particular particle smoothing, to recover time-consistent series of LAI (Doucet 
et al., 2001; Kitagawa, 1996) from noisy and incomplete observations. Such techniques, 
based on Monte-Carlo strategies, allow performing the estimation of an unknown state 
function, LAI in current case, according to a given dynamical model and to possibly 
corrupted measurements. The dynamical model on which we rely on is GreenLab model, a 
functional-structural plant model simulating plant development and growth (Yan et al., 
2004). Given model parameters, GreenLab can compute the evolution of LAI, the biomass 
production and partitioning, the organ size and biomass. Inverse method can be applied to 
estimate hidden model parameters by fitting model output with measured data (Kang et al., 
2008).  We suppose that from remote sensing data observing agricultural parcels, the type of 
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crops can be identified, on which some GreenLab hidden parameters can be initialized. 
Besides, we suppose that the noisy time series of LAI has been estimated from remote 
sensing images, which have occluded area due for instance to cloud coverage, aerosols, etc. 
The objective is to construct a continuous LAI series by re-estimating GreenLab model 
parameters. This finally enables to simulate the complete plant growth and to output 3D 
evolution of the observed crops, using empirical geometrical parameters for the given crop. 
The overall strategy is illustrated in Fig. 1. The different steps of the methodology are 
presented in following sections.  
 

 

Fig. 1. Illustration of overall process of estimating biomass dynamics from remote sensing 
images 

2. Overall framework 

In section 2.1, we first introduce methods of estimating parameters from remote sensing 
images. In section 2.2, the concepts of GreenLab model are presented. Section 2.3 introduces 
the filtering technique used to recover time consistent series of LAI. 

2.1 Estimating type of crop and LAI from remote sensing data 
Estimating the type of crop of an observed field from remote sensing data is an old problem 
that has been widely studied by the computer vision and remote sensing community. This 
belongs to the classification issue where various families of approaches exist. One can 
roughly identify two methodologies: pixel-based and region-based classification techniques, 
see for instance Congalton (1992) and Yan et al. (2006). The first family aims at assigning to 
each pixel of the image a label corresponding to the nature of the culture, independently to 
its neighborhood. This performs efficiently when the spatial resolution of the data is low, 
yielding more or less homogeneity of the pixel reflectance for a given culture. On the other 
hand, the region-based techniques are useful when dealing with images of high or very high 
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resolution. In this case, the variability of the image luminance inside a given culture is high, 
and the pixel reflectance is not informative. Texture analysis strategies can be used to 
characterize and label the different crops, which use 1st or 2nd order statistical criteria or 
more advanced techniques like wavelets (Lefebvre et al., 2010). Many commercial software 
(e.g. Idrisi, ENVI or eCognition) allow this kind of classification. 
Estimating the biophysical variables, such as LAI, fCOVER or fAPAR, from satellite 
observations can provide crucial information for numbers of applications, for instance, 
monitoring changes in canopy vegetation at global or regional scales, identifying bare soils, 
or detecting grassland areas. Among the different techniques available, there is a technique 
based on the inversion of the SAIL+PROPSPECT radiative transfer model (Verhoef, 1984; 
Jacquemoud and Baret, 1990) using training samples and neural networks, as introduced in 
(Baret et al., 2007). The SAIL model deals with light scattering by leaf layers with application 
to canopy reflectance model, and PROSPECT is about leaf optical properties spectra. It has 
been proved in (Baret et al., 2007; Lecerf et al., 2008) that this approach performs efficiently 
for low, medium, high and very high-resolution data and is therefore adapted to the 
variability of satellite images available. 

2.2 GreenLab model 
GreenLab model simulates the two basic processes of plant: development (organogenesis) 
and growth (organ expansion). In GreenLab, the organogenesis is simulated by an 
automaton, which gives the dynamics of number, age and type of organs in plant 
architecture (Yan et al., 2004). The organ expansion is simulated by a source-sink approach. 
At each time step t, the source function gives the biomass production of a plant, Qt, as a 
function of plant leaf area St and environmental factor Et, see Eqn. (1).  

 1-exp - t
t t P

P

S
Q E r S

S

  
        

 (1) 

In Eqn. (1), SP represents the projection area of an individual plant, which is equivalent to 

the inverse of planting density d when crop canopy is closed, i.e, SP=1/d. r is a model 

parameter that can be estimated inversely (Kang et al., 2008; Guo et al., 2006; Dong et al., 

2008). In case that Et represents the intercepted light by crop, r means light use efficiency. 

The ratio St/SP gives a LAI series.   

The produced biomass is shared among all growing organs in proportion to their current 

sink strength, based on common pool hypothesis. For an organ of type O and age j, its 

increment is biomass in computed as in Eqn. (2). 

 , /O O O
t j j t tq P f Q D    (2) 

In GreenLab, each type of organs (e.g. blade, sheath, internode, female organ) has certain 
relative sink strength PO, which may vary during the expansion of an individual organ, 
described by an empirical function fOj. Total plant demand Dt is sum of sink strength from 
all growing organs. The organ biomass, which is the accumulation of biomass increment 
during its life time, is dependent on the ratio between biomass production and demand 
(Qt/Dt), called source-sink ratio. According to the appearance time of each individual organ 
given by the automaton, and its increment in biomass since appearance, the biomass of all 

www.intechopen.com



  
Remote Sensing of Biomass – Principles and Applications  

 

220 

individual organs in plant can be computed. As the ratio between blade biomass and 
specific leaf weight, at any time, leaf area St and consequently LAI, can be computed 
recursively in GreenLab model. For some simple case, analytical equation can be written 
explicitly. For example, for maize, LAI at a given time t can be written as in Eqn. (3). 
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Where qBt,j is biomass of a j-aged leaf blade, NBt,j is the number of such leaf (being one or 
zero for maize of single stem structure), λt is specific leaf weight, TB is expansion duration 

of a leaf.  
GreenLab model is a generic model that has been applied to different crops, such as wheat 
(Kang et al., 2008), maize (Guo et al., 2006), and tomato (Dong et al., 2008; Kang et al., 2010), 
from which the dynamic growth and development process of crop are rebuilt. In model 
calibration, the hidden model parameters controlling the source and sink function, such as 
organ sink strength PO, were estimated inversely from the measured plant data, such as total 
organ biomass and individual organ size, using weighted root square error as the criterion 
(Guo et al., 2006). LAI can be thus reconstructed by the calibrated model and compared with 
measured data, as in Fig. 2. 
 
 
 
 

 
 
 
 

Fig. 2. LAI from measurement (dots) and GreenLab simulation (solid lines): (a) wheat  

(Kang et al., 2008), (b) chrysanthemum (Kang et al., 2006). 
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Initialisation of GreenLab parameters is dependent on the crop type, for which a common 
development and growth pattern exists. For example, a maize plant generally starts by 
vegetative growth with short internodes and finishes with a tassel, although the amount of 
leaves and position of cob in main stem may vary. Such development pattern is considered 
in initializing GreenLab organogenesis model. As to functional parameters, it is found that 
some are more or less stable for different seasons and population densities (Ma et al., 2008) 
for a given cultivar. Initialization of these parameters may be done according to previous 
modelling experience, and they will be re-estimated in following stage. In building 3D plant, 
an organ geometry library will be called and transformed according to their computed size 
and position to assemble the full plant structure. Geometrical parameters, such as organ 
insertion angle, are set empirically.  
Compared to traditional processed-based models (PBM), the feature of GreenLab lies in 
the modelling of plant architecture and its effect of biomass production, thereby making 
simulation of plant plasticity possible. Besides, GreenLab simulates plant growth as a 
whole dynamic system, and different variables like leaf area, stem height, spike weight 
are linked to each other, instead of being modeled independently. Nevertheless, the two 
types of model can build interface by fitting LAI from GreenLab simulation with LAI 
from a PBM (Feng et al., 2010). On this basis, crop fields can be simulated and visualized 
dynamically, giving the expected LAI. The similar principle can be applied to fitting noisy 
LAI from remote sensing data.  

2.3 Filtering technique 
To cope with temporal inconsistencies likely to occur when one estimates LAI on each image 
independently, we suggest the imposition of a temporal constraint, here, the GreenLab plant 
growth model.  
The dynamic coherence can be enforced by embedding the estimation problem within a 
filtering process. Roughly speaking, two main families can be used: variational or stochastic 
approaches. Variational techniques, also known as variational data assimilation, perform the 
estimation by minimizing a cost-function issued from a deterministic formalization in a 
Bayesian framework of the problem. It extracts the best compromise between observations, 
dynamic model and confidence measure. Due to a rewriting in a dual space (Lions, 1971), 
the gradient of the cost-function can efficiently be obtained using a forward-backward 
integration of the dynamical model, and such techniques are very adapted when one deals 
with large system states. On the drawback, non-linear dynamic models need to be managed 
in an incremental framework corresponding to a succession of linearized problems. On the 
other hand, when one deals with smaller system’s state and non-linear dynamic models, 
stochastic techniques as the particle filter or the particle smoother, related to Monte Carlo 
approaches, are strongly adapted. The main idea consists in manipulating a set of particles 
more or less connected to the final state to estimate, the latter resulting from linear 
combination of such particles. In the next paragraph we introduce the main principles. 
The system state to recover at time t, noted xt, is submitted to a dynamical model f up to 
some uncertainties. This results in a stochastic process of the form in Eqn. (4) 

 xt = f(xt-1)+ nt  (4) 

where nt is a centered Gaussian noise of variance σn2. In addition to this dynamic process, 
we are able to observe the system state as in Eqn. (5): 

 yt = g(xt)+ vt (5) 
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where g is a (linear or not) observation operator and vt a Gaussian noise of varianceσv2. 

Particle filtering, also known as Sequential Monte Carlo (Doucet et al., 2001), is an attractive 
way to recover the system state xt for all t∈[1,T]. It can be shown that a sequential estimation 
of xt can be obtained through the following system, starting from (a) an available sequential 
observation of sequence y1:t = y1,…, yt ; (b) an initial distribution of the system’s state p(x1) ; 
(c) transition model p(xt|xt-1) and observation model p(yt|xt) respectively, related to the 
stochastic processes f and g presented above. See (Doucet et al., 2001) for details. Steps 
include: 
1. Choose a set of N samples (or particles) x1i, i=[1, …, N] randomly taken from the initial 

distribution p(x1) and compute p(y1|x1); 
2. Prediction step: for all t∈[2,T] and the set of samples x t-1| t-1 i, generate the predicted 

samples xt| t-1i=f(xt-1|t-1i)+ nti for each particle and get Eqn. (6): 

 1: 1 1 1 1: 1 1( | ) ( | ) ( | )t t t t t t tp x y p x x p x y dx       (6) 

3. Correction step: from the distribution p(xt| y1:t-1) and the new observation yt, we have a 
result as in Eqn. (7): 
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Eqn. (7) can be approximated from the set of particles using Eqn. (8): 
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 where δxti is the dirac function in xti and the weight function is as in Eqn. (9): 
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Therefore, once the system at time t-1 has been obtained, the process consists in generating a 
prediction of all particles at time t thanks to the transition p(xt|xt-1) and the available 
observations y1:t-1 = y1,…, yt-1. These predictions are then corrected by taking into account the 
new observation yt in a second step. The final estimated distribution is obtained from the set 
of particles and their associated weights w(xt| t-1i). This is the main principle of the 
sequential particle filtering.  
When the whole sequence is available, i.e. all observations y1:T = y1,…, yT are available for all 
time t, a smoothing version of the previous technique can be applied by taking into account 
future observations. From the first estimation issued from the previous process, the idea 
consists in performing a backward exploration in order to correct the weights of the 
different particles. This is the so-called forward-backward smoother. 
The idea consists in reweighting the particles recursively backward in time, starting from 
the end time T to the initial one. It can be shown that rewriting the distribution p(xt|y1:T) in 
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terms of backward transitions p(xt|xt+1,y1:T) yields, after several manipulations, to reweight 
all the particles with Eqn. (10): 
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Therefore, the process consists in first performing a sequential filtering and then, to 

reweight the particles backward in time. More details can be found in (Doucet et al., 2001). 

This is the process we suggest to use in this application to recover consistent LAI values 

from noisy observed ones.  

3. Computational experiment 

In this computational experiment, we rely on the filtering technique to recover LAI sequence 

using the GreenLab model. We suppose the noisy LAI can be obtained from remote sensing 

data. Here we use synthetic data from GreenLab model so that the true values of yt are 

known for evaluation.  

3.1 Case study 
We chose maize plant for a case study on application of the filtering method presented 

above. According to previous study on maize plant (Guo et al., 2006), we set model 

parameters in GreenScilab, an open source software for implementing GreenLab model. 

The LAI can is part of model output, as shown in Fig. 3 (a). By arranging the simulated 3D 

maize plant according to the given density, a virtual maize field can be simulated. Fig. 3 

(b) shows such an image at a plant age. It is supposed that the aim is to recover this LAI 

sequence from noisy data of LAI obtained from remote sensing images at several different 

stages. 
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Fig. 3. Synthetic result from GreenLab model. (a) simulated LAI dynamics of virtual maize 

from GreenLab model; (b) top view of a virtual maize field;  
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3.2 Recovering consistent series of LAI 
We tested our smoothing approach on the sequence of synthetic values of LAI generated 
from the GreenLab model, see Fig. 4 (blue line). From this sequence, we have randomly 
extracted some points on which we have added noise (black points). We assume that these 
points correspond to measurements obtained on the corresponding field from remote 
sensing images. They represent an incomplete time series of noisy values of LAI. From these 
inconsistent series, we have generated a smooth version from the forward-backward 
smoother presented in the previous section, using GreenLab as a dynamic model. This is 
depicted in Fig. 4 (green line). From this synthetic example, it is obvious to observe that the 
new series is consistent with the expected ground truth. This is confirmed when observing 
the quantitative values of the Root Mean Square Error between the ground truth, the noisy 
and reconstructed data shown in Table 1.  
In order to highlight the benefit of the use of a dynamical model, we have blurred in a 
stronger way the series. We have assumed that during a long time period in which the 
variation of LAI is maximal, no observations are available (due, for instance, to the 
maintenance of the sensor, a too large cloud covering during the winter, etc.). In addition, to 
take into account the errors related to the acquisition process itself, we have also blurred the 
remaining data. This results in a strongly noisy sequence of LAI, as shown with the black 
points in Fig. 5.  
 
 

 
 
 

Fig. 4. Recovering LAI series from noisy data, with a synthetic LAI sequence (blue line), a 
noisy version (black points), and a recovered time series under the GreenLab model (green 
line) 
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Fig. 5. Recovering LAI series from strongly noisy data, with a synthetic LAI sequence (blue 
line), a strongly noisy version (black points), and a recovered time series under the 
GreenLab model (green line) 

From Fig. 5, one can immediately observe that during the period corresponding to the main 
evolution of LAI where no data are acquired, a simple interpolation technique without any 
prior model would result in incorrect values and dramatically underestimate the LAI. At the 
opposite, using the forward-backward smoother, the recovered series of Fig. 5 (green line) is 
very closed to the original one, despite this difficult testing situation. The RMS error is 
slightly higher than the previous situation (when observations are less noisy) but is still very 
competitive. These results demonstrate the great benefit of recovering the data under the 
constraint of a dynamic model. 
 

 RMSE Original data RMSE Reconstructed data 

Noisy series (Fig. 4) 
0.6145 

for 25 observed values 

0.09341 

for 256 recovered time steps 

Strongly noisy series 

(Fig. 5) 

0.9951 

for 18 observed values 

0.10055 

for 256 recovered time steps 

Table 1. Root Mean Square Errors for the two noisy sequences tested 

These experiments on noisy and strongly noisy synthetic data demonstrate the possibility of 
the framework presented in this chapter (schematized in Fig. 1) to recover time consistent 
series of LAI with fine time resolution from a small set of noisy image observations. The 
practical issue with real images is under development.  
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3.3 Plant growth reconstruction 
Using the estimated hidden GreenLab parameters in recovering the series of LAI, one can 

simulate the dynamics of biomass production and partitioning, as shown in Fig. 6(a), and 

the 3D model of the observed plants, as shown in Fig. 6(b). As for a maize plant, Fig. 6(a) 

gives the total plant biomass (g) in black line, and the allocation to leaf blade (green), sheath 

(blue), internode (brown), cob (red) and male flower (purple). Recall that empirical 

geometrical parameters are used in building the 3D structure.  
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Fig. 6. Computed result from calibrated model. (a) biomass production and its allocation 
among different type of organs; (b) a 3D maize plant. 

4. Conclusion 

In this chapter, we have presented a framework of estimating LAI series from remote 

sensing images using filtering techniques and GreenLab model. Computational experiment 

was done on synthetic data to show the feasibility of full process. The result shows that by 

embedding a dynamic model, the LAI series can be recovered even if the source data from 

remote sensing images are very noisy and sparse. And in doing so, the GreenLab model can 

be calibrated partially to simulate biomass production and allocation. The advantage of 

embedding a crop model is that the knowledge on crop development and growth can be 

used in recovering LAI series, and the link between LAI and biomass production make it 

possible to estimate biomass production from remote sensing data, which is the ultimate 

aim of estimating LAI. 

Yet this theoretical work needs to be further tested by real remote sensing sources. 
Challenges include the initialization of model parameters, such as the setting on topological 
parameters and initial source and sink parameter. Detection of crop type can help to solve 
this issue by providing empirical parameters. Yet their values are not necessary to be 
accurate, and other information from remote sensing, such as leaf chlorophyll content and 
leaf water content, may compensate. On the other hand, the combination of a functional-
structural plant model as GreenLab brings many possibilities. For example, as the three-
dimensional structures of crop are built, it is possible to run radiative transfer model in 
virtual canopy. Although the result will be dependent on the definition of geometrical 
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structure and optical properties of individual organs, it provides a possibility of validating 
the reconstructed canopy dynamics by comparing the virtual canopy with the obtained high 
resolution source images. The development of remote sensing technique and advance in 
plant modelling are increasing the interdisciplinary research of these two areas. 
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The accurate measurement of ecosystem biomass is of great importance in scientific, resource management

and energy sectors. In particular, biomass is a direct measurement of carbon storage within an ecosystem and
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measurements and modeling. The chapters in this book are separated into five main sections.
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