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1. Introduction  

Immunosensors are compact analytical devices in which the event of formation of antigen-
antibody complexes is detected and converted, by means of a transducer, to an electrical 
signal, which can be processed, recorded and displayed. Different transducing mechanisms 
are employed in immunological biosensors, based on signal generation (such as an 
electrochemical or optical signal) or properties changes (such as mass changes) following the 
formation of antigen-antibody complexes. In this chapter, the basics of immunosensors are 
presented focused on the different transduction techniques used in immunosensing.  

2. The concept of biosensor: a convergence of biology, physical chemistry, 
and electronics  

Most clinical analysis are carried out by specialized staff in laboratories employing desk-top 
instruments, thus assuring the highest possible confidence in the obtained results. However, 
there are many cases in which a critical clinical analysis cannot be performed in those 
optimal conditions because of the lack of trained analysts or the required facilities, as is 
often the case in underdeveloped or isolated areas. In those cases, biosensors, which are 
compact analytical devices for the detection of specific analytes, can be the only option to 
make a trustworthy medical diagnosis. Especially immunosensors, a type of biosensors 
aimed at the detection of the presence of specific antibodies or antigens, are particularly 
important for the diagnosis of diseases in remote environments, where carrying out 
immunoassays such as ELISA (Enzyme-Linked Immunosorbent Assay) is not an option. The 
advantages of point of care (POC) testing versus laboratory testing can be summarized in 
the diagram introduced by von Lode (Fig. 1). 

Although the possibility of carrying out in situ or point of care diagnosis with a minimum 
required training is a major reason for the development of biosensors in general and 
immunosensors in particular, there are many other reasons. For instance, fast, non-
expensive, multiple assays can ideally be performed with immunosensors and could be of 
help in epidemics to make proper diagnosis and follow the epidemic spreading.  

In the rest of the chapter, we will present the basics of different types of immunosensors. We 
will begin considering the general outline of biosensors, which compromise three main 
components: a sensitive biological element, a transducer, and a signal processor. These three  
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Fig. 1. Process of clinical testing in outpatient situations using central laboratory versus POC 
testing methods. The processes are shown in a simplified format and may sometimes 
contain additional steps (adapted from von Lode, 2005). 

elements work together in integrated fashion as schematically shown in Fig. 2. The sensitive 

biological elements are usually biological materials such as enzymes, antibodies, cell 

receptors, nucleic acids, or microorganisms, although artificial biomimetic materials can also 

be employed. The sensitive biological element in the biosensors specifically recognizes the 

analyte in the sample generally via the formation of lock-and-key complexes: enzyme-

substrate, antigen-antibody, and so on. The formed complex generates chemical signals or 

produces property changes, which are converted into an electrical signal by means of a 

transducer. There are several types of transducers and will be discussed with some detail in 

the rest of the chapter, the main ones being optical, electrochemical, and piezoelectric.  

 

Fig. 2. Scheme of the basic integrated units that conform a biosensor. 

Immunosensors make use of specific interactions between an antibody and an antigen. 
Antibodies are proteins generated by the immune system to identify bacteria, viruses, and 
parasites. The affinity between antibodies and antigens is very strong but of non-covalent 
nature. The development of sensitive and stable biological recognition elements is a key task 
in biosensors (Hock, 1997). However, biosensors, as a consequence of being highly 
integrated compact devices, are at a crossroad of different fields of knowledge. Biology and 
biotechnology are behind the key component of biosensors, as the sensitive biological 
elements provide the necessary specificity for the test. The generation of an electrical signal 
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following the event of biological recognition involves the mastering of the transducing 
components, a field associated with chemical physics. Additionally, all these processes must 
be carried out at a small scale, with samples volumes in the order of microlitres, which 
requires the use of microfabricated structures and microelectronic circuits. Finally, biosensors 
can profit from the benefits of nanomaterials and nanostructures, such as large area to volume 
ratio, superparamagnetism, and surface enhanced resonance spectroscopy among many 
others, so nanotechnology has an increasing participation in the development of biosensors. 
Therefore, the biosensors field is by no means an exclusively biological field, but a truly 
multidisciplinary one.  

3. Recognition and transducing in immunological biosensors  

While biosensors can be used to detect many different analytes (not necessarily of biological 

nature as long as they interact specifically with the sensitive biological element), 

immunosensors are aimed mainly to the detection of the presence of certain antibodies or 

antigens in body fluids, especially in serum, although there is also a significant concern in 

the development of immunosensors employing antibodies for the detection of different 

analytes in diverse media, e.g. the quantification of TNT in groundwater via the formation 

of antibody-TNT complexes (Bromage et al., 2007). Therefore, the sensitive biological 

elements in immunosensors are antigens and antibodies (although in this chapter we will 

also include aptamers, which are single-stranded DNA molecules that work in fact as 

artificial antibodies forming aptamer-analyte complexes). Immunosensors can be designed 

for the detection of either antibodies or antigens; however, the detection of antibodies is 

preferred because the use of antibodies as sensitive biological elements may lead to a loss of 

affinity as a consequence of the immobilization of the antibodies onto a surface. Due to the 

high stability of the antigen-antibody complex once it is formed and the fact that the 

biological sensitive element is usually immobilized onto the surface of the transducer, most 

immunosensors are single use. Because some transducers are costly, there is a great concern 

in the regeneration of immunosensors, mainly by washing with an appropriate solution of 

high ionic strength or low pH.  

Signal transducing in immunosensors can be carried out by different means, taking 

advantage of different properties changes or signal generation, which occurs following the 

formation of antigen-antibody complex. Although there are many kinds of transducers, this 

chapter is concerned with biosensors where the transducing mechanisms are related to the 

measurement of electrons, photons, and masses. Other mechanisms of transduction include 

thermal changes and pH variation. Therefore, the main transducers employed in 

immunosensors that this chapter will deal can be summarized as follows: 

 Electrochemical transducers. In this case, an electrical signal is measured, which shows 
significant differences in magnitude if antigen-antibody complex are formed. The main 
electrochemical transducers are amperometric (measuring of current), potentiometric 
(measuring of electrode potential or voltage differences) and conductimetric (measuring 
of conductivity or resistance).  

 Optical transducers. In this case, either an optical signal is generated (e.g. color or 
fluorescence) or a change in the optical properties of the surroundings following the 
antigen-antibody complex formation is measured.  
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 Piezoelectric transducers. The formation of antigen-antibody complexes implies an 
increase of mass as compared with the antigen or the antibody alone that is detected 
with piezoelectric devices, such as a quartz crystal balance or a cantilever. 

In the following sections, these transducing mechanisms will be reviewed with selected 
examples from the literature.  

4. Electrochemical immunosensors  

In electrochemical immunosensors, the event of the formation of antigen-antibody complex 
is converted into an electrical signal: an electric current (amperometric immunosensors), a 
voltage difference (potentiometric immunosensors), or a resistivity change (conductimetric 
immunosensors).  

The most common type of amperometric immunosensors can be regarded as ELISA tests 
with electrochemical detection, where redox species generated by a redox enzyme 
(enzymatic label) are converted into a measurable current. The aim of the test is to detect the 
presence of antibodies in serum via the formation of antigen-antibody complexes. An usual 
strategy is to immobilize the antigen onto the surface of a conductive electrode such as gold 
through adequate molecular linkers, for instance amino or carboxylic acid thiols. Thiols 
strongly bond to the gold surface, forming a self-assembled monolayer and providing the 
amino or carboxylic groups at the end of a small hydrocarbonated chain to which proteins 
can be covalently bonded. During an incubation time (typically from 30 to 60 minutes) with 
a positive serum, antigen-antibody complexes are formed. After rinsing, a second incubation 
is carried out with a solution containing anti-human Ig antibodies labeled with a redox 
enzyme, such as horseradish peroxidase (HRP). The formation of the antigen-antibody-
labeled antibody complex is detected after the addition of the enzyme substrate and a 
proper redox mediator (cofactor). In the case of HRP, the substrate is hydrogen peroxidase 
and the redox mediator must be an adequate electron donor (a reduced species such as 
hydroquinone). HRP enzymatic activity converts the reduced redox mediator 
(hydroquinone) into an oxidized one (benzoquinone), which is further electrochemically 
reduced at the electrode surface. Thus, a steady-state current is established in a process 
schematically shown in Fig. 3. For negative sera, no antigen-antibody-enzyme labeled 
antibody complexes are formed in the first place so that the measured current values are 
considerably lower. Thus, high current values are indicative of a positive result.  

  

Fig. 3. Schematic representation of the electrochemical detection of enzyme-linked 
immunoassay with antigens immobilized onto a gold electrode (adapted from Longinotti et 
al., 2010a). 
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In order for the immunosensor to work properly, it is necessary that the enzyme employed 
as a label must be close to the electrode surface. If the antigen is immobilized onto the 
electrode surface, this requisite is complied. The immobilization of the biological recognition 
element onto the surface of the transducer is by far the most common configuration 
employed in biosensors. Nevertheless, it is possible to devise different immobilization 
carriers, such as magnetic beads, which can be placed onto the electrode surface by applying 
magnetic fields. Antigens can be immobilized onto the surface of the magnetic beads. The 
formation of antigen-antibody is more efficient and faster when using nanoparticles with 
respect to direct electrode immobilization. As a consequence, the incubation time has been 
reduced to a few minutes (Melli, 2011). After incubation, the magnetic beads can be placed 
onto the electrode surface by means of a magnet and removed once the test has been 
completed (Fig. 4). This strategy also allows the electrodes to be re-utilized several times. 

 

Fig. 4. Schematic representation of the electrochemical detection of enzyme-linked 
immunoassay with antigens immobilized onto silica-coated iron oxide nanoparticles 
(adapted from Longinotti et al., 2010b). 

A promising type of immunosensors with electrochemical detection employs aptamers as 
the sensitive biological element. Aptamers are synthetic, single-stranded DNA molecules, 
which specifically bond to molecular targets, such as proteins and haptens, and can be 
regarded as synthetic antibodies. An interesting aspect of using aptamers as the recognition 
element in place of proteic antibodies is that it makes possible label-free biosensors. Plaxco 
et al. have been pioneering the development of such biosensors, which has been proved 
effective for the recognition of thrombin by electrochemical methods (aptamers have been 
previously used for the detection of thrombin in optical biosensors). In this type of 
biosensors, the single-stranded DNA that forms the aptamer is immobilized onto an 
electrode surface from one end and linked to a redox label from the other end. The event of 
formation of aptamer-target molecule complex leads either to an activation or to a 
deactivation of the redox probe (Fig. 5). In both cases, the change in redox activity can be 
measured as a current, usually employing a highly sensitive electrochemical technique such 
as AC voltammetry.  

Field-effect transistors (FET), which have found wide application in ion sensing (i.e. ion-

selective field-effect transistors, ISFETs), can also be employed in biosensors, and open a very 

promising field. Briefly, a FET consists of three terminals, called gate, drain, and source. The 

gate controls the current between the source and the drain and, what is most important in  
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(a) (b) 

Fig. 5. (a) An electrochemical, aptamer-based sensor comprises a redox-tagged DNA 

aptamer directed against the bloodclotting enzyme thrombin. Thrombin binding reduces the 

current from the redox tag, readily signaling the presence of the target (Xiao et al., 2006). (b) 

Utilizing double-stranded DNA as a support scaffold for a small molecule receptor, sensors 

for the detection of protein-small-molecule interactions have been fabricated, for instance, 

for the detection of low nanomolar concentrations of antibodies against the drug 

digoxigenin (Cash et al., 2009). 

 

  
Before recognition 

 

 
After recognition 

Fig. 6. Schematic of a FET immunosensor. The formation of antigen-antibody complex at the 
gate terminal modulates the charge carrier flow between source and gate, generating an 
increase in current (adapted from Ivanoff Reyes et al., 2011). 
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sensors applications, can be made sensitive to particular substances. For instance, in the 

scheme shown in Fig. 6, biofunctionalization of gate with antibodies enables the exposed 

channel direct interaction with the antigens detected. The formation of antibody-antigen 

complex causes the majority carriers of the n-type channel to accumulate and facilitate a 

conduction path for the charge carriers’ flow from drain to source. It is a compact, label-free 

immunosensor in which an electrical signal is generated as a consequence of the formation of 

the antibody-antigen complex. Of course, FET biosensors are compatible with microelectronics 

technology, which allows a high degree of integration between all components of the 

biosensors: detection, transducing, and signal processing.  

5. Optical immunosensors  

In optical biosensors, the biological sensitive element is immobilized onto the surface of the 
transducer and respond to the interaction with the target analyte either by generating an 
optical signal, such as fluorescence, or by undergoing changes in optical properties, such as 
absorption, reflectance, emission, refractive index, and optical path. The optical signals are 
collected by a photodector and converted into electrical signals that are further electronically 
processed. There are many reviews on optical biosensors, the one by Borisov & Wolfbeis, 
2008, is highly recommended. The main optical phenomena employed in optical 
immunosensors are summarized in Table 1.  

 

Optical Signal Transducing technique 

Absorbance Light intensity measurement 

Reflectance Light intensity measurement 

Fluorescence  Total internal reflection fluorescence 

Refraction index Interferometry 

 Surface plasmon resonance (SPR) 

 Total internal reflection 

Optical path Interferometry 

Spectroscopies Surface enhanced Raman scattering (SERS) 

Table 1. Main optical phenomena employed in optical immunosensors. 

The geometric design of optical platforms is a key point to achieve efficient and integrated 
optical immunosensors. There are several geometric layouts, the most usual being strips, 
waveguide fibers (Leung et al., 2007), planar optical waveguide systems, capillary sensors, 
and arrays. Planar waveguide systems are especially attractive because of the possibility of 
innovative designs and the integration of multiple functionalities onto a single sensor. 
Planar geometry is compatible with microfabrication technologies and can be integrated with 
microfluidic systems (lab-on-a-chip). These attributes have made planar waveguides an ideal 
platform for development of integrated optical sensors. Several optical transducing 
techniques can be employed in planar waveguide systems: interferometry, surface plasmon 
resonance, and light-coupling strategies to transduce refractive index changes. Planar 
waveguide platforms comprise a planar substrate made of glass, plastic, or silicon that forms 
the basis of the sensor platform (Yimit et al., 2005). In some cases, this substrate acts as the 
waveguide, while in others an additional waveguide layer is deposited onto the substrate. All 
examples given in this section are considered for a planar configuration.  
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Fig. 7. Principle of the total internal reflection fluorescence. On reflection at dielectric 
interface, light penetrates into the second phase that has a lower refractive index than that of 
the core. Intensity decreases exponentially over the penetration (which typically is about as 
long as the wavelength of the light employed). Any labeled antibodies located close to the 
glass-aqueous medium interface are excited to produce fluorescence, while those located 
further into the solution will not. 

Fluorescence is one the most widely methods employed in immunosensors, especially in 
ELISA-like immunosensors where the conjugate antibody is labeled with a fluorescent 
probe. Using an evanescent wave spectroscopic technique, such as total internal reflection 
fluorescence, can enhance the sensitivity of the biosensor. When light is transported by total 
internal reflection in an optical guide, an evanescent field is generated at the interface 
between the guide and the external medium. The penetration depth of this exponential field 
is of the order of the incident wavelength. Therefore, if the optical guide is placed in contact 
with a solution containing fluorophores, only those within the evanescent field are excited 
by light. In this way, fluorescent labels can be employed in conjunction with total internal 
reflection in ELISA-like immunosensors as schematically shown in Fig. 7. Unbound labeled 
species in solution remain unexcited and do not contribute to the background signal. An 
additional advantage of total internal reflection fluorescence measurements is that it can be 
performed in absorbing or turbid media. 

The measurement of changes in the refractive index that takes place at the interface between 
the guide and the external medium is the basis for optical transducing techniques employed 
in refractometric immunosensors (Fig. 8). Surface plasmon resonance is one of the main 
optical biosensor technologies and has been the subject of numerous reviews (Mullett et al., 
2000; Homola, 2003; Scaranoa et al., 2010). 

 

Fig. 8. Schematic representation of the surface plasmon resonance immunosensor.  
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Many refractometric immunosensors are based on interferometric techniques. The Mach-

Zehnder interferometer is one of the most commonly employed interferometers in 

immunosensors (Fig. 9). In the Mach-Zehnder interferometer, the optical power is transported 

by a single-input waveguide, which is split equally between two parallel waveguides and 

recombined by means of two Y-splitters. When used in immunosensors, both branches are 

coated with the biological sensitive element (antigen or antibody). One of the waveguides is 

exposed to the sensing environment while the other branch serves as a reference waveguide. 

Changes in the refractive index of the sensing layer environment influence the effective 

refractive index in the sensing channel, which induces a phase shift in the optical signal that 

propagates through this channel. Upon recombination, interference of the two optical 

signals occurs and the measured output power changes depending on the phase shift 

between these two signals.  

 

Fig. 9. Schematic of a Mach-Zehnder interferometer used for immunosensing. 

Other interferometric immunosensors are based on changes in optical path rather than in 

the refractive index. Changes in the thickness of the thin film deposited on a substrate due 

to swelling upon interaction with the analyte of interest can be detected as shifts in the 

interference pattern. 

6. Piezoelectric immunosensors  

The mass changes that take place after the formation of antigen-antibody formation can be 

measured by means of piezoelectric transducers, such as quartz crystal microbalances and 

microcantilevers, which vibrate at a certain frequency sensitive. Antigens or antibodies can 

be immobilized onto the surface of piezoelectric devices and the formation of the antigen-

antibody complex can be detected as a vibration frequency shift with a high sensitivity 

(Janshoff et al., 2000; Raiteri et al., 2001). 

Microcantilevers are especially attractive for immunosensors because of the possibility of 

microfabrication at low cost. Microcantilevers can also be employed in a static, non-

vibrating mode, detecting the event of formation of antigen-antibody complexes via the 

deflection of the cantilever as a result of the surface stress it provokes (Fig. 10).  
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Fig. 10. Microcantilever working in static mode. The formation of the antigen-antibody 
complexes provokes a surface stress and, consequently, a deflection of microcantilever, 
which is detected optically. 

Analyte Transducing technique References 

 

Escherichia coli O157:H7 Tokarskyy & Marshall, 2008 

 Surface plasmon resonance Fratamico et al., 1998 

 Piezoelectric Su & Li, Y. 2004 

 Electrochemical Radke & Alocilja, 2005 

 Fluorescence Yu et al., 2002

  

Antibodies 

 

Antibody aimed at foot-and-
mouth disease  

Electrochemical Longinotti et al., 2010 

Various antibodies aimed at 
Chagas disease 

Electrochemical and 
fluorescence 

Melli, 2011  

  

Tumoral markers  Chen et al., 2009 

 

Prostate-specific antigen (PSA) Amperometric Meyerhoff et al., 1995 

PSA Amperometric Rusling et al., 2009 

PSA, C-reactive protein Cantilevers Wee et al., 2005 

PSA, PSA-1-antichymotrypsin, 
CEA, mucin-1 

Field-effect Zheng et al., 2005 

CA 125, CA 153, CA 199, CEA Chemiluminescence Fu et al. 2007

 

Toxins and pollutants

 

Aflatoxins Electrochemical Owino et al., 2007 

TNT Fluorescence Bromage et al., 2007 

Clostridium botulinum toxin A Fluorescence Ogert et al., 1992 

Table 2. Some examples of analytes detected with immunosensors and immunoassays. 
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7. Prospects and future of immunosensors 

Immunosensors have been used for the detection of pathogens, antibodies, toxins, 

biomarkers, among other analytes (Table 2). The wide spectrum of application of 

immunosensors ascertains a great future for this type of biosensors. Especially attractive is 

the possibility of carrying out point of care testing (Skottrup et al., 2008), as discussed 

previously in the introduction. Although all transducing techniques have advantages and 

disadvantages, much of the success of immunosensors in point of care testing depends on 

the intrinsic detection limits, the required sample preparation (e.g. the possibility of direct 

detection of the analyte), and the degree of integration of the units that conforms a 

biosensor. All these crucial aspects are conditioned by the type of transducer employed in 

immunosensors. For instance, the limit of detection of fluorescence is eventually a single 

molecule (Table 3), but fluorescence transduction in immunosensor usually requires a 

fluorescent label, and a rather complex optical instrumentation that compromises a high 

degree of integration among the biological sensitive element, the transducer and the 

electronic instrumentation. It is in this sense that field-effect transistors seem to be the 

optimal transducers, because they do not require a label and the biological sensitive element 

is immobilized onto the surface of the transducer that itself forms part of the electronic 

instrumentation. 

 

Technique 
Limit of detection 

(molecules per mμ2) 
References 

Fluorescence 1  

Hollow cantilevers 10 Burg et al., 2007 

Surface plasmon resonance 102 Myszka, 2004 

Quartz crystal balance 103  

Microcantilevers 106 Braun et al., 2005 

Table 3. Estimated order of magnitude of the limits of detection for different transducing 
techniques. 

A diagram with a comparison of the compromise between the ease of integration and the 

ease of sample preparation for the different transducing techniques is presented in Fig. 11.  

The future of biosensors will be greatly influenced by the inclusion of nanomateriales, which 

provide new tools to improve the performance of immunosensors (Chen et al., 2009). There 

is a great interest in including carbon nanotubes in biosensing (Jacobs et al., 2010), taking 

advantage of their conductive properties. Also nanoparticles can provide new strategies for 

immunosensors design, and especial interest is in the use of quantum dots in optical 

transducers, with a higher fluorescence efficiency. Superparamagnetic nanoparticles are also 

been increasingly used in biosensing (Longinotti et al., 2008; Lloret et al., 2010). A point of 

care testing device aimed at the diagnosis of foot-and-mouth disease, brucellosis, and 

Chagas disease has been recently presented (Longinotti et al., 2011, Fig. 12) in which the 

biological sensitive element is immobilized onto the surface of silica-coated superparamagentic 

iron oxide nanoparticles. The use of nanoparticles reduces the incubation time to a few 

minutes, while an analog ELISA usually would require 30-60 minutes incubation.  
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Fig. 11. Comparison of ease of sample preparation and integration for different transducers 
employed in immunosensors.  

Finally, multiple analytes detection (Chen et al., 2009), microfluidics (Bange et al., 2005) and 
lab-on-a-chip (Hart et al., 2011) concepts are clearly in the future of immunosensors, and 
many devices have been presented that may also find soon wide application, with great 
impact in health care assessment, especially in developing countries. 

 

Fig. 12. Point of care electrochemical immunosensing platform Nanopoc®, designed for the 
diagnosis of foot-and-mouth disease, brucellosis, and Chagas disease (Longinotti et al., 2011). 
The sample preparation is carried out in the blue sector, which involves magnetic separations. 
The final amperometric measurement is carried out in the 8-channel electrochemical cells at 
the front of the device. Data are processed by a PC via a USB connection.  

8. Conclusions  

The field of immunosensors is an exciting, fast growing one, as can be seen from the 
evolution of the number of scientific publications from 1990 to 2011 (Fig. 13). Especially, 
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electrochemical immunosensors seem to lead the trend, possibly because of the ease of 
integration with electronic instrumentation, while optical and piezoelectric transducers are 
more demanding in this regard. However, due to the high sensitivity of optical and 
piezoelectric transducers, these kinds of transducers may soon find many practical 
applications. It is expected that the research in this field will continue to grow in the next 
years and point of care testing platforms will soon find wide applications that will greatly 
improve the health caring situation. 

 

Fig. 13. Evolution of published articles on immunosensors (source: Scopus database). 

9. Acknowledgment  

This work has been supported by the Instituto Nacional de Tecnología Industrial and by FS 
Nano 005 granted by the Ministry of Science, Technology and Innovative Production of the 
Argentine Republic. 

10. References  

Bange, A.; Halsall, H.B. & Heineman, W.R. 2005. Microfluidic immunosensor systems. 
Biosensors and Bioelectronics. Vol. 20, pp. 2488–2503. 

Burg, T.P.; Godin, M.; Knudsen, S.M.; Shen, W.; Carlson, G.; Foster, J.S.; Babcock, K. & 
Manalis, S.R. 2007. Weighing of biomolecules, single cells and single nanoparticles 
in fluid. Nature. Vol. 446, pp. 1066-1069. 

Braun, T.; Barwich, V.; Ghatkesar, M.K.; Bredekamp, A.H.; Gerber, C.; Hegner, M. & Lang, 
H.P. 2005. Micromechanical mass sensors for biomolecular detection in a 
physiological environment Physical Review E (Statistical, Nonlinear, and Soft Matter 
Physics). Vol. 72, pp. 031907. 

Borisov, S.M. & Wolfbeis, O.S. 2008. Optical Biosensors. Chem. Rev., Vol. 108, pp. 423-461. 
Bromage, E.S.; Vadas, G.G.; Harvey, E.; Unger, M.A. & Kaattari, S.L. 2007. Validation of an 

antibody-based biosensor for rapid quantification of 2,4,6-trinitrotoluene (TNT) 
contamination in ground water and river water. Environ. Sci. Technol., Vol. 41, pp. 
7067–7072.  

www.intechopen.com



 
Advances in Immunoassay Technology 

 

78

Cash, K. J.; Ricci, F.; Plaxco, K.W. 2009. An electrochemical sensor for the detection of 
protein-small molecule interactions directly in serum and other complex matrices. 
J. Am. Chem. Soc. Vol. 131, pp. 6955–6957. 

Chen, H.; Jiang, C.; Yu, C.; Zhang, S.; Liu, B. & Kon, J. 2009. Protein chips and nanomaterials 
for application in tumor marker immunoassays. Biosensors and Bioelectronics. Vol. 
24, pp. 3399–3411. 

Fratamico, P.M., Strobaugh, T.P., Medina, M.B., Gehring, A.G. 1998. Detection of Escherichia 
coli O157:H7 using a surface plasmon resonance biosensor. Biotech. Tech. Vol. 12, 
pp. 571–576. 

Fu, Z.; Yang, Z.; Tang, J.; Liu, H.; Yan, F.& Ju, H. 2007. Channel and substrate zone two-
dimensional resolution for chemiluminescent multiplex immunoassay. Anal. Chem. 
Vol. 79, pp. 7376–7382. 

Hart, R.W.; Mauk, MG; Liu, C.; Qiu, X; Thompson, J.A.; Chen, D.; Malamud, D.; Abrams, 
W.R. & Bau, H.H. 2011. Point-of-care oral-based diagnostics. Oral Diseases. Vol. 17, 
pp. 745–75. 

Hock, B. 1997. Antibodies for immunosensors. A review. Analytica Chimica Acta. Vol. 347 pp. 
177-186. 

Homola, J. 2003. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. 
Chem. Vol. 377, pp. 528–539. 

Ivanoff Reyes, P.; Ku, C.-J.; Duan, Z.; Lu, Y.; Solanki, A. & Lee, K.-B. 2011. ZnO thin film 
transistor immunosensor with high sensitivity and selectivity. App. Phys. Lett., Vol. 
98, 173702. 

Jacobs, C.B; Peairs, M.J. & Venton, B.J. 2010. Review: Carbon nanotube based 
electrochemical sensors for biomolecules. Analytica Chimica Acta. Vol. 662, pp. 105–
127. 

Janshoff, A.; Galla, H. & Steinem, C. 2000. Piezoelectric mass-sensing devices as biosensors - 
An alternative to optical biosensors? Angewandte Chemie - International Edition. Vol. 
39, pp. 4004-4032. 

Lazcka, O.; Del Campo, F.J. & Muñoz, F.X. 2007. Pathogen detection: A perspective of 
traditional methods and biosensors. Biosens. Bioelec., Vol. 22, pp. 1205-1217.  

Lee, J.H.; Kang, D.Y.; Lee, T.; Kim, S.U.; Oh, B.K. & Choil, J.W. 2009. Signal enhancement of 
surface plasmon resonance based immunosensor using gold nanoparticle-antibody 
complex for β-amyloid (1-40) detection. J. Nanosci. Nanotechnol. Vol. 9, pp. 7155–
7160. 

Leung, A.; Shankar, P. M. & Mutharasan, R. 2007. A review of fiber-optic biosensors. Sensors 
and Actuators B. Vol. 125, pp. 688–703. 

Lloret, P.; Longinotti, G.; Ybarra, G.; Socolovsky, L.; Halac, B. & Moina, C. 2010. Synthesis, 
characterization, and functionalization of magnetic core-shell flower-like 
nanoparticles. Proc. XIX International Materials Research Congress, Cancún, México, 
August 15-19, 2010.  

Longinotti, G.; Lloret, P.; Peter-Gauna, R.; Ybarra, G.; Ciochinni, A.; Hermida, L.; Malatto, L.; 
Fraigi, L. & Moina, C. 2010b. Natural polymer coated magnetic nanoparticles for 
biosensing. Proceedings of the XIX International Materials Research Congress, Cancún, 
México, 15-19/8/2010. 

Longinotti, G.; Ybarra, G.; Lloret, P.; Moina, C.; Ciochinni, A.; Hermida, L.; Milano, O.; 
Roberti, M.; Malatto, L. & Fraigi, L. 2008. Screen-printed electrochemical biosensors 

www.intechopen.com



 
Fundamentals and Applications of Immunosensors 

 

79 

based on magnetic core-shell nanoparticles, Proceedings of the 6th Ibero-American 
Congress on Sensors, November 24-26, 2008, São Paulo, Brazil. 

Longinotti, G; Ybarra, G.; Lloret, P; Melli, L.; Rey Serantes, D.; Comerci, D.; Ciochinni, A.; 
Ugalde, J.; Moina, C.; Malatto, L; Mass, M.; Roberti M.; Brengi, D.; Tropea, S; Fraigi, 
L. & Lloret, M. 2011. Point of care diagnosis of infectious diseases. INTI Spring 
Meeting, Buenos Aires, Argentina, October 2011. 

Longinotti, G.; Ybarra, G.; Lloret, P.; Moina, C.; Ciochinni, A.; Rey Serantes, D.; Malatto, L.; 
Roberti, M.; Tropea, S. & Fraigi, L. 2010a. Diagnosis of foot-and-mouth disease by 
an electrochemical enzyme-linked immunoassay. Proceedings of the 32nd Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society 
"Merging Medical Humanism and Technology", Buenos Aires, Argentina, September 
2010. 

Melli, L. 2011. Development of optical and electrochemical immunosensors for the diagnosis 
of Chagas disease. Thesis. Universidad Nacional de Gral. San Martín. 

Meyerhoff, M.E.; Duan, C. & Meusel, M. 1995. Novel nonseparation sandwich-type 
electrochemical enzyme immunoassay system for detecting marker proteins in 
undiluted blood. Clin. Chem. Vol. 41, pp. 1378–1384. 

Myszka, D.G. 2004. Analysis of small-molecule interactions using Biacore S51 technology. 
Anal. Biochem. Vol. 329, pp. 316. 

Mullett, W.M.; Lai, E.P.C; Yeung, J.M. 2000. Surface plasmon resonance-based 
immunoassays. Methods. Vol. 22, pp. 77-91. 

Ogert, R.A.; Brown, J.E.; Singh, B.R.; Shriverlake, L.C. & Ligler, F.S. 1992. Detection of 
Clostridium botulinum toxin-A using a fiber optic-based biosensor. Anal. Biochem. 
Vol. 205, pp. 306–312. 

Owino, J.H.O.; Ignaszak, A.; Al-Ahmed, A.; Baker, P.G.L.; Alemu, H.; Ngila, J.C. & Iwuoha, 
E.I. 2007. Modelling of the impedimetric responses of an aflatoxin B1 
immunosensor prepared on an electrosynthetic polyaniline platform. Anal. Bioanal. 
Chem. Vol. 388, pp. 1069. 

Radke, S.M. & Alocilja, E.C. 2005. A high density microelectrode array biosensor for 
detection of E. coli O157:H7. Biosens. Bioelectron. Vol. 20, pp. 1662–1667. 

Raiteri, R.; Grattarola, M.; Butt, H.-J. & Skládal, P. 2001. Micromechanical cantilever-based 
biosensors. Sens. Actuators B. Vol. 79, pp. 115-126.  

Rusling, J.F., Sotzing, G. & Papadimitrakopoulosa, F. 2009. Designing nanomaterial-
enhanced electrochemical immunosensors for cancer biomarker proteins. 
Bioelectrochemistry. Vol. 76, pp. 189–194. 

Scaranoa, S.; Mascinia, M; Turnerb, A.P.F. & Minunnia, M. 2010. Surface plasmon resonance 
imaging for affinity-based biosensors. Biosensors and Bioelectronics. Vol. 25, pp. 957–
966. 

Skottrup, P.D.; Nicolaisen, M. & Justesen A.F. 2008. Towards on-site pathogen detection 
using antibody-based sensors. Biosensors and Bioelectronics. Vol. 24, pp. 339–348. 

Su, X.-L. & Li, Y. 2004. A self-assembled monolayer-based piezoelectric immunosensor for 
rapid detection of Escherichia coli O157:H7. Biosens. Bioelectron. Vol. 19, pp. 563–574. 

Tokarskyy, O. & Marshall, D.L. 2008. Immunosensors for rapid detection of Escherichia coli 
O157:H7 —Perspectives for use in the meat processing industry. Food Microbiology. 
Vol. 25, pp. 1–12. 

www.intechopen.com



 
Advances in Immunoassay Technology 

 

80

von Lode, P. 2005. Point-of-care immunotesting: Approaching the analytical performance of 
central laboratory methods. Clinical Biochemistry. Vol. 38, pp. 591 – 606. 

Wee, K.W., Kang, G.Y., Park, J., Kang, J.Y., Yoon, D.S., Park, J.H., Kim, T.S. 2005.  
Novel electrical detection of label-free disease marker proteins using piezoresistive 
self-sensing micro-cantilevers. Biosens. Bioelectron. Vol. 20 , pp. 1932–1938. 

Xiao, Y.; Lubin, A. A.; Heeger, A. J.; Plaxco, K. W. 2005. Label-free electronic detection of 
thrombin in blood serum by using an aptamer-based sensor. Angew. Chem., Int. Ed., 
Vol. 44, pp. 5456–5459. 

Yimit, A.; Rossberg, A.G.; Amemiya, T. & Itoh, K. 2005. Thin film composite optical 
waveguides for sensor applications: a review. Talanta. Vol. 65, pp. 1102–1109. 

Yu, L.S.L.; Reed, S.A. & Golden, M.H. 2002. Time-resolved fluorescence immunoassay for 
the detection of Escherichia coli O157:H7 in apple cider. J. Microbiol. Meth. Vol. 49, 
pp. 63–68. 

www.intechopen.com



Advances in Immunoassay Technology

Edited by Dr. Norman H. L. Chiu

ISBN 978-953-51-0440-7

Hard cover, 180 pages

Publisher InTech

Published online 23, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

From the basic in vitro study of a specific biomolecule to the diagnosis or prognosis of a specific disease, one

of the most widely used technology is immunoassays. By using a specific antibody to recognize the

biomolecule of interest, relatively high specificity can be achieved by immunoassays, such that complex

biofluids (e.g. serum, urine, etc.) can be analyzed directly. In addition to the binding specificity, the other key

features of immunoassays include relatively high sensitivity for the detection of antibody-antigen complexes,

and a wide dynamic range for quantitation. Over the past decade, the development and applications of

immunoassays have continued to grow exponentially. This book focuses on some of the latest technologies for

the development of new immunoassays.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Carlos Moina and Gabriel Ybarra (2012). Fundamentals and Applications of Immunosensors, Advances in

Immunoassay Technology, Dr. Norman H. L. Chiu (Ed.), ISBN: 978-953-51-0440-7, InTech, Available from:

http://www.intechopen.com/books/advances-in-immunoassay-technology/fundamentals-and-applications-of-

immunosensors



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


