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Osservatorio Etneo, sezione di Catania, Catania, 
Italy  

1. Introduction  

The necessity of understanding volcanic phenomena so as to assist hazard assessment and 

risk management, has led to development of a number of techniques for the tracking of 

volcanic events so as to support forecasting efforts. Since 1980s scientific community has 

progressively drifted research and surveillance at active volcanoes by integrated approach. 

Nowadays, volcano observatories over the world record and integrate real or near-real time 

data for monitoring and understanding volcano behaviour. Among the geophysical, 

geochemical, and volcanological parameters, the tracking of temperature changes at several 

volcanic features (e.g. open-vent systems, eruptive vents, fumaroles) and variations in 

sulphur dioxide flux and concentration at volcanic plumes are key factors for studying and 

monitoring active volcanoes.  

Temperature is one of the first parameters that have been considered in understanding the 

nature of volcanoes and their eruptions. Thermal anomalies have proved to be precursors of 

a number of eruptive events (e.g. Andronico et al., 2005; Dean et al., 2004; Dehn et al., 2002), 

and once an eruption begins, temperature plays a major role in lava flow emplacement and 

lava field development (e.g. Ball et al., 2008; Calvari et al., 2010; Lodato et al., 2007). At 

active volcanoes, temperature has been measured by direct and indirect methodologies (Fig. 

1a, c). Direct measurements represent the traditional thermal monitoring carried out at 

fumaroles, hot springs, molten lava bodies, and crater lakes, using thermocouples (e.g. 

Aiuppa et al., 2006; Corsaro & Miraglia, 2005). Indirect measurements, also known as 

thermal remote sensing, can be performed by satellite, ground, and airborne surveys (e.g. 

Calvari et al., 2006; Spampinato et al., 2011; Wright et al., 2010). Owing to the danger of most 

kinds of eruption, and the need of monitoring inaccessible areas on volcanoes (e.g. Wright & 

Pilger, 2008), indirect measurements are especially attractive. Among them, thermal imagery 

is one of the most widespread and results from the capability to detect the infrared radiation 

emitted from the surface of hot bodies, and to provide the radiometric map of heat 

distribution of the body’s surface (Spampinato et al., 2011). This has been of primary 

importance for capturing the evolution of thermal anomalies, which shed light on magma 

movements at shallow depths (e.g. Calvari et al., 2005). While magma is rising, hot gases 
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separate from the melt and escape either directly from the main conduits, or indirectly by 

leaking through fumaroles, fractures, and faults, or by dissolving within crater lakes and hot 

spring waters, resulting in variations in their temperature and chemical composition. At the 

surface, these phenomena are also associated with radiative heat fluxes, which can be 

detected by infrared thermal detectors. The application of thermal imaging to volcanology 

was largely performed using satellite surveys (e.g. Harris et al., 2011; Vicari et al., 2008), but 

in the last decade there has been increasing application of compact (hand-held) thermal 

imagers used from the air or ground (Spampinato et al., 2011).  

 

Fig. 1. Different modes for temperature and volcanic gas sampling. Conventional in situ 
measurements of (a) the temperature of Hawaiian pāhoehoe lava flow fields (photo by P. 
Mouginis-Mark, volcano.oregonstate.edu), and (b) volcanic gas from the summit fumarole 
field of Kīlauea volcano in 2005. In (c) and (d) ground-based thermal imagery of the Laguna 
Caliente crater lake (Poás volcano, Costa Rica; 2009) and UV-DOAS measurements of the 
Santiago crater (Masaya volcano, Nicaragua; 2009) volcanic plume, respectively.  

Volcanic degassing plays a key role in magma transport and style, and timing of volcanic 
eruptions observed at the Earth’s surface (e.g. Carroll & Holloway, 1994; Gilbert & Sparks, 
1998; Huppert & Woods, 2002; Sparks, 2003). The assessment of volcanic gas composition 
and flux has become a standard procedure for volcanic monitoring and eruption forecasting, 
since degassing regimes are fundamentally linked to volcanic processes (e.g. Aiuppa et al., 
2007, 2010; Edmonds, 2008; Noguchi & Kamiya, 1963; Oppenheimer, 2003; Sutton et al., 
2001). Magma contains dissolved gases that are released into the atmosphere during both 
quiescent and eruptive degassing phases (e.g. Oppenheimer, 2003). At high pressures, deep 
beneath the Earth’s surface, gases are dissolved in magma; however as soon as magma rises 
toward the surface, where pressures are lower, gases start to exsolve according to the 
solubility-pressure relationship of each species, as well as compositional and diffusional 
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constraints (e.g. Carroll & Holloway, 1994; Carroll & Webster, 1994; Oppenheimer, 2003; 
Spilliaert et al., 2006; Villemant & Boudon, 1999). The abundance and final gas phase 
composition of the emitted plume depends on magma composition(s), volatile fugacities, 
crystallisation, and on the dynamics of magma degassing, including kinetic effects (e.g. 
Giggenbach, 1996; Oppenheimer, 2003; Symonds et al., 1994, 2011). However, at the surface, 
the composition and flux of volcanic gases may change with time, reflecting variations in the 
magmatic feeding system of the volcano. Hence, by studying and tracking this variability a 
number of parameters, such as magma residing depths and the amount of degassing magma 
bodies can be determined (Allard, 1997; Steffke et al., 2010). 

Among the volcanic gas species, sulphur dioxide (SO2) is one of the most well 
investigated in remote sensing (e.g. Bluth et al., 2007; Carn et al., 2003; Galle et al.,  
2010; Hamilton et al., 1978; McGonigle et al., 2009; Salerno et al., 2009a; Williams-Jones,  
et al., 2008; Sweeney et al., 2008; Thomas & Watson, 2010). As for temperature, SO2 
concentration and emission rates can be measured using both direct sampling and  
non-contact remote sensing techniques (Fig. 1b, d; e.g. Finnegan et al., 1989; Giggenbach 
& Goguel, 1989; McGee & Sutton, 1994; McGonigle & Oppenheimer, 2003; Mouginis- 
Mark et al., 2000). The latter carried out during air- and ground-based surveys and on 
satellite platforms, are based on optical spectroscopy. Since the 1970s, SO2 flux has been 
remotely measured using the COrrelation SPECtrometer (COSPEC; Newcomb & Millán, 
1970; Stoiber & Jepsen, 1973; Stoiber et al., 1983) at several volcanoes worldwide (e.g. 
Caltabiano et al., 1994; Malinconico, 1979; Realmuto, 2000; Sutton et al., 2001; Williams-
Jones et al., 2008). Over the last 10 years the advent of small, commercial and low cost 
spectrometers (Mini-DOAS, Galle et al., 2003; RMDI, Wardell et al., 2003; MUSE, 
Rodriguez et al., 2004; Flyspec, Horton et al., 2006; Dual-Field of View, McGonigle et al., 
2009) offered a valuable replacement to the outdated COSPEC. In particular, the 
combination of Ultraviolet (UV) spectrometers with the Differential Optical Absorption 
Spectroscopy (DOAS) analytical method (Noxon, 1975; Platt, 1994; Platt & Stutz, 2008) 
improved significantly data collection, offering a number of advantages such as the 
possibility of obtaining measurements in the challenging environments typical of volcanic 
areas, detection of other plume species (Bobrowski et al., 2003; O’Dwyer et al., 2003; 
Oppenheimer et al., 2005), and collection of high-resolution SO2 flux by permanent 
scanner networks (e.g. Arellano et al., 2008; Edmonds et al., 2003; Salerno et al., 2009a, 
2009b).  

Our intent here is to discuss findings and implications arising from the integration of 
thermal imaging-derived temperature and SO2 emission rates by UV-DOAS spectroscopy 
collected in March 2009 at Masaya volcano, Nicaragua. Calibrated temperatures from 
thermal imagery can provide qualitative as well as quantitative information, fundamental 
insights and parameters contributing to understanding and modelling of several eruptive 
features. Anomalies in SO2 emission rates have been often documented at several volcanoes 
prior to eruptive crisis (e.g. Casadevall et al., 1981; Daag et al., 1996; Kyle et al., 1994; 
Malinconico, 1979; Sutton et al., 2001; Williams-Jones et al., 2008; Young et al., 1998; Zapata 
et al., 1997). In syn-eruptive stages, anomalies in the SO2 flux pattern might indicate 
variations in the eruptive style and regime associated with changes in the volcano shallow 
feeder system (e.g. Andronico et al., 2005; Delgado-Granados et al., 2001; Olmos et al., 2007; 
Spampinato et al., 2008a; Spilliaert et al., 2006). At open-vent systems, in non-eruptive 
phases, changes in SO2 flux emission have provided information on increases or decreases 
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of magma supply in the shallow plumbing system (Allard, 1997; Wallace & Gerlach, 1994) 
suggesting likely volcanic unrests or magma migration towards peripheral areas of the 
volcano edifice, respectively.  

There is still much to explore about volcano behaviour and eruptive mechanisms, however, 

the combination of different types of monitoring techniques is crucial for constraining 

baselines for predicting phases of volcano unrests and for gaining useful insights for 

volcano hazard assessment. 

2. Masaya volcano  

Masaya is an open-vent, basaltic shield volcano (560 m a.s.l.) sited in western Nicaragua 

(Central America). The volcano edifice includes a 11  6 km-elongated caldera that formed 

~2,500 yrs ago as a result of a 8 km3-basaltic ignimbrite eruption (Williams, 1983). The 

caldera hosts a complex of lavas and cinder cones, with cones cut by pit craters, of which the 

Santiago is the presently active (e.g. Harris, 2009; Roche et al., 2001; Fig. 2). Over time, the 

Santiago pit crater has been characterised by the development of ephemeral lava lakes 

 

Fig. 2. (a) Photograph of Masaya volcano taken from NNE (geoalba.com).  

(b) Satellite image of Masaya volcano summit area (googleEarth 2011). San Pedro, Nindiri, 

Santiago, and Masaya craters are shown (see Harris, 2009 for more details). The Santiago 

crater is the currently active and the site of our investigation. The yellow and red dots 

indicate the sites from which thermal imagery and SO2 amount measurements were 

respectively carried out in March 2009. 
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(Allen et al., 2002), explosive activity (e.g. Duffell et al., 2003; Perez et al., 2009; Rausch & 

Schmincke, 2010) effusive eruptions (e.g. Harris, 2009), intense degassing (e.g. Branan et al., 

2008; Kern et al., 2009a; Williams-Jones, 2001), and phases of inner crater collapses (e.g. 

McBirney, 1956; Harris, 2009; Rymer, et al., 1998). The volcano activity has consisted of 

phases of quiescent degassing for over 150 years, punctuated by intermittent gas crises 

associated with high SO2 emissions (e.g. Delmelle et al., 2002; Stix, 2007), and minor 

explosive phases throwing ejecta around the summit area, of which the most significant 

event of the last 30 years occurred in 2001 (e.g. Branan et al., 2008; Duffell et al., 2003).  

The persistent loose of gas has been interpreted as the result of periodic magma convective 

overturn within the volcano shallow feeding system (Delmelle et al., 1999; Horrocks, 2001; 

Horrocks et al., 1999). It has been estimated that during the last 150 years, degassing has 

been supplied by ~10 km3 of magma (e.g. Rymer et al., 1998; Stoiber et al., 1986).  

The easy accessibility of Masaya summit area has made the volcano an ideal natural 

laboratory, where a number of different monitoring techniques, direct and indirect 

observations, have been carried out since the onset of the post-1993 degassing crisis (e.g. 

Allen et al., 2002; Galle et al., 2003; Mather et al., 2003; Martin et al., 2009; Nadeau & 

Williams-Jones, 2009). Tracking of Masaya’s activity has been of primary importance not 

only for the understanding and modelling of the volcano deep processes (e.g. Stix, 2007; 

Williams-Jones et al., 2003), but also for the potential health hazard posed by the volcanic 

gas emissions (Delmelle et al., 2002). In fact, due to the low altitude of the volcano edifice, 

the continuous degassing from the Santiago crater represents a threat for people living close 

to the volcano foot (Fig. 3). 

 

Fig. 3. (a) Satellite image showing the persistent volcanic plume from Santiago crater 
(zonu.com). (b) Photograph of Masaya volcano and its volcanic plume taken in March 2009 
from ENE. 

The persistent degassing from Santiago crater has been extensively studied by remote 
sensing methodologies, spanning from infrared to ultraviolet spectroscopy, carried out 
during ground-based surveys or by satellite platforms (e.g. Branan et al., 2008; Burton et al., 
2000; Horrocks et al., 2003; Martin et al., 2010; Nadeau & Williams-Jones, 2009; Thomas & 
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Watson, 2010). Here we report on the Santiago’s crater activity that we observed, between 20 
and 24 March 2009, carrying out simultaneous volcanic plume measurements using a 
portable infrared imager and an ultraviolet spectrometer.  

3. Infrared and ultraviolet remote sensing  

Following we shortly report the main techniques for the acquisition of thermal imagery and 
SO2 fluxes and amounts, and the instrumental specifications and details on the methodology 
of data collection during the March 2009 field campaign at Masaya volcano.  

3.1 Thermal imagery 

During the 20-24 March 2009, we recorded thermal imagery of the Santiago crater using a 
P25 FLIR (Forward Looking InfraRed Systems) portable thermal camera from the Sapper 
car park on the south-western crater rim. The instrument is an uncooled microbolometer 

with a 320  240 pixel array sensitive to the 7.5-13 µm wave band with a 24  18° field-of-
view (FOV). Its quoted precision is ±2% and the thermal sensitivity is less than 273.23 K at 
303.15 K. The camera is equipped with three dynamic temperature ranges 233.15 to 393.15 
K, 273.15 to 773.15 K, and 623.15 to 1773.15 K, of which we used the middle one. In order 
to make a first-order correction for the atmospheric effects (e.g. Spampinato et al., 2011), 
we input in the camera internal software the measured line-of-sight from the crater 
bottom (~340 m; see yellow dot in Fig. 2 for the camera site), and the daily mean 
temperature and relative humidity of the air (306.15 K and 38% on 20 March; 306.15 K and 
32% on 21 March; 303.15 K and 40% on 22 March; 303.15 K and 42% on 23 March; and 
306.15 K and 35% on 24 March). Considering the camera instrumental specifications and 
the path length of ~340 m, the nominal pixel size was of ~0.47 m. According to Branan et 
al. (2008), we used an emissivity (ε) value of the hot source of 1, and given that emissivity 
has non-Lambertian behaviour, we measured the inclination angle of the camera (70°) for 
error evaluation (e.g. Ball and Pinkerton, 2006; Spampinato et al., 2011). Images were 
collected every 8 seconds between 17:06:27 and 18:48:29 (here after all times are in GMT) 
on 20 March, 20:10:47 and 21:40:45 on 21 March, 15:53:04 and 18:22:54 on 22 March, 
16:05:26 and 18:31:47 on 23 March, and 15:39:02 and 17:07:34 on 24 March. Along the five 
days of the survey, thermal imagery was recorded from the same identical position and 
viewing inclination (Fig. 2).  

A recent account on the uncertainty in thermal imagery-derived data was provided by 
Spampinato et al. (2011). 

3.2 UV spectroscopy 

On 20, 21, 23 and 24 March 2009, we carried out SO2 flux measurements (tonnes day-1) by 
car-based traverses along the Llano Pacaya road (15 km downwind of the Santiago crater, 
see Martin et al., 2010) and along the Ticuantepe road (5 km downwind of the Santiago 
crater, see Martin et al., 2010). Optimal integration time for the collection of spectra in the 
traverse technique was 100 ms, and 50 spectra were co-added to improve the signal-to-noise 
ratio. Spectra were time- and position-stamped using a USB GPS receiver. In addition, 

between 20, 21, 22, and 23 March, we collected also SO2 column amounts (CA, in ppm  m) 
using a UV spectrometer and scattered sunlight as the light source. Individual spectra were 
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recorded from fixed position from the eastern flank of the Santiago crater, ~400 m far from 
the plume (see Fig. 2 for the measurement sites) at sampling rate between 14 and 17 s. 

For both kinds of measurement techniques, we used an Ocean Optics USB2000 
spectrometer. The instrument comprises a 2048 pixel-detector-array and diffraction grating 
with 3600 grooves per mm, which combined with a 200 μm entrance slit, delivers a spectral 
resolution of ~0.44 nm FWHM in the 295-375 nm wavelength range. To perform SO2 flux 
traverses the instrument was mounted inside a car and connected via fibre optic cable to a 
telescope (8 mrad FOV) oriented vertically upwards.  

SO2 CA were retrieved using the WinDoas software package (Fayt & van Roozendael, 2001) 
applying the standard DOAS method (Platt & Stutz, 2008). The ring spectrum (e.g. Fish & 
Jones, 1995; Solomon et al., 1987) was calculated from the clear sky-spectrum (spectrum 
collected out of the plume) following the approach of Chance (1998). Both laboratory spectra 
of SO2 and O3 (Malicet et al., 1995; Vandaele et al., 1994) and the Ring spectrum were 
convolved to the spectrometer’s resolution. UV spectra were evaluated in the 305-316 nm 
window to yield the time-series of the SO2 CA in the FOV of the spectrometer. SO2 flux was 
evaluated following Stoiber et al. (1983). Wind speed was measured every 10 minutes using 
a portable hand-held anemometer. In the days of our observations, mean wind speed and 
direction were of ~5 m s-1 toward the SW. Error in SO2 flux detection by UV spectroscopy 
depends mainly on the uncertainty in the plume-wind speed (e.g. Doukas, 2002; Mather et 
al., 2006). Stoiber et al. (1983) estimated uncertainty in flux calculation between 10-40%. 
Negligible uncertainty arises from the error in the retrieved SO2 CA (e.g. Kern, 2009; Platt & 
Stutz, 2008), multiple scattering (e.g. Kern et al., 2009b; Millan, 1980), the presence of 
volcanic ash in the plume (Andres & Schimd, 2001), or SO2 depletion (McGonigle et al., 
2004; Nadeau and Williams-Jones, 2009; Oppenheimer et al., 1998). During our campaign, 
the plume always appeared to be bright and free from ash and situated below the clouds, 
thus we can consider the influence of multiple scattering and ash to be negligible.  

4. Observations of the Santiago crater activity 

Along the 5 day-observation period, the Santiago activity consisted of persistent degassing 
from two vents opened at the crater floor (Martin et al., 2010; Vent 1 and Vent 2 in Fig. 4). 
From the Santiago crater SW rim, from which we carried out thermal imagery (Fig. 2), Vent 
2 was clearly visible at the naked eye, whereas Vent 1 was hidden by Vent 1 plume, and 
thus recognisable only by infrared optics (Fig. 4c). Thermal imagery showed that Vent 2 was 
eventually wider than Vent 1 (Fig. 4c). Applying an apparent temperature threshold of 300 
K on thermal images and considering the nominal pixel size of ~0.47 m, we estimated an 
area of ~450 and ~715 m2 for Vent 1 and Vent 2, respectively. Owning to the oblique 
imagery, we consider such areas as minimum estimates.  

The two vents were both persistently degassing with the two plumes joining together a few 
seconds after the emission (Fig. 4b). Qualitatively, the plume seemed to be whitish and 
denser next to the crater floor (Fig. 4b) and transparent and more diluted close to crater rim 
(Fig. 4a). Plume conditions varied also according to the time of day, i.e. more transparent in 
the morning and more condensed in the evening (Burton et al., 2001; Martin et al., 2010; 
Mather et al., 2003). Along the 5-day-survey, we did not detect any explosion; however 
thermal images showed that the quiescent degassing observed at the crater exit, had in 
reality a pulsating behaviour at the vent region (Fig. 5).  
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Fig. 4. (a) Photograph of the Santiago crater rim and its volcanic plume taken from the SSE 
rim on 22 March 2009. (b) Photograph of the two degassing vents opened at the Santiago 
crater floor taken from the SW rim on 22 March 2009. (c) Zoom of the satellite image of 
Masaya volcano summit area (googleEarth 2011) shown in Fig. 2. The overlapped thermal 
image localises the position of Vent 1 and Vent 2 within the Santiago crater. The thermal 
image was recorded on 22 March 2009 from the SW crater rim. 

 

 

Fig. 5. (a-f) Thermal image sequence showing the degassing pulsating behaviour at both 
vents. The sequence was recorded on 21 March 2009 from the Santiago crater SW rim. 
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In addition, thermal images revealed that the magma level inside the two vents remained 
below both vent rims allowing estimation of the crusted crater floor thickness; that was of 
~10-15 m (Fig. 5). Next to the degassing vents, the crater floor was characterised by talus 
coverage due to the collapses of the eastern crater inner walls (Fig. 4b).  

5. Results and discussion 

Following we report results of the analysis of thermal image and SO2 CA and flux data, 
providing interpretation of the relationship between temperature pattern and heat flux, and 
SO2 concentration and emission rates.  

5.1 Thermal imaging-derived data  

In figure 6, we have plotted the variability of the maximum and mean apparent 
temperatures (K) of Vent 1 (Fig. 6a, b, d, f, and h) and Vent 2 (Fig. 6c, e, g, and i) over time, 
along the five days of measurements (of which we lack Vent 2 imagery of the first day). 
Overall, Vent 2 plume showed somewhat higher temperatures than those of Vent 1 with 
peak values of ~500 K and maximum means of ~400 K, with respect to the ~460 K and ~380 
K of Vent 1. However, the temperature difference between the two vents might have 
resulted from the viewing angle difference with which the two vents were imaged (Fig. 5).  

In detail, Vent 1 maximum temperatures varied between 360-454 K on 20 March, 374-475 K 
on 21 March, 372-453 K on 22 March, 355-466 K on 23 March, and between 376-452 K on 24 
March (Fig. 6a, b, d, f, and h). The vent mean values ranged between 338-384 K, 346-388 K, 
344-384 K, 336-392 K, and 348-386 K, from 20 to 24 March, respectively (Fig. 6a, b, d, f, and 

h). Vent 2 maximum temperatures fluctuated between 385-510 K, 363-488 K, 376-500 K, and 
373-504 K on 21, 22, 23, and 24 March, respectively (Fig. 6c, e, g, and i). Mean temperatures 
of Vent 2 varied between 343-405 K, 332-394 K, 340-397 K, and 336-396 K from 21 to 24 
March, respectively (Fig. 6c, e, g, and i). Both the maximum and mean temperature trends of 
the two vents are characterised by the overlapping of waveforms of different amplitudes 
that we consider in section 5.3.  

Using the estimated areas of 450 and 715 m2 respectively for Vent 1 and Vent 2, ε = 1, and 

the most representative thermal images (i.e. those with the highest mean temperature values 

and the lowest standard deviations; e.g. Spampinato et al., 2008b), we have calculated 

magma heat loss by radiation (Qrad; MW) from the two vents between 20 and 24 March 2009 

(Fig. 7).  

Figure 7 shows the variability of the daily mean Qrad of the two vents (Vent 1 grey line and 

Vent 2 black line). As previously argued, given that the areas considered are minimum 

values, the Qrad estimates in figure 7 correspond to minimum daily mean values. Along the 

days of observation, the total Qrad from the two vents remained quite stable varying between 

1.2 and 1.8 MW.  

Note that we have considered only the radiated flux as we have assumed that the incidence 
of heat loss by conduction (Qcond) and convection (Qconv) was reduced. In particular, at 
Santiago crater, Qcond implies heat dissipation from the walls of the conduit; however, 
following Giberti et al. (1992), we have assumed that after years of persistent activity the 
volcano shallow system is likely long-established and well insulated. Thus, we have  
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Fig. 6. Temporal variability of Vent 1 (on the left; a, b, d, f, and h) and Vent 2 (on the right;  
c, e, g, and i) maximum and mean apparent temperatures during the 20-24 March 2009 
ground-based thermal surveys. 
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supposed that conduction to the country rock was irrelevant with respect to Qrad. At the same 
manner, we have neglected the contribution of Qconv. In fact, during the 5-day survey, wind 
conditions were quite stable (~5 m s-1; free convection, e.g. Keszthelyi & Denlinger, 1996; 
Keszthelyi et al., 2003; Neri, 1989), and the magma level was confined at least ~15 m below the 
crater floor (Fig. 5). Hence, magma surface was not directly exposed to wind action. 

 

Fig. 7. Variability of Vent 1 and Vent 2 radiant heat flux from 20 to 24 March 2009. The grey 
line refers to Vent 1, the black line to Vent 2, and the black-dotted line to the total heat flux 
radiated by the two vents. 

5.2 SO2 column amounts and fluxes 

Figure 8 reports the SO2 CA collected between 20 and 23 March 2009 at the Santiago crater 
volcanic plume (a, b, c, and d). Given that measurements were taken out of the crater (Fig. 

2), the amounts represent the contribution of both vents.  

The highest SO2 concentrations were detected on 20 March when the maximum CA was 
5430 ppm  m (mean of 1832 ppm  m; Fig. 8a), with respect to the maxima of 2185, 2672, 

and 2590 ppm  m (means of 472, 966, and 885 ppm  m) recorded on 21, 22, and 23 March, 
respectively (Fig. 8b, c, d). As for the temperature data sets of figure 6, the SO2 CA time-
series show several high amplitude fluctuations on which higher frequency components are 
superimposed. In particular, on the 20 March time-series we recognised at least four main 

fluctuations peaking at 5430 (17:34:36), 5360 (17:56:01), 5240 (18:07:03), and 4800 ppm  m 
(18:21:52). In terms of maximum SO2 concentrations, the fluctuations are characterised by a 
decreasing trend (Fig. 8a). On 21 March, we observed a more defined trend in which we 
clearly recognise three fluctuations of the SO2 CA with maximum values of 1998 (20:42:51), 
2186 (21:05:17), and 1583 (21:25:03) ppm  m (Fig. 8b). In the 22 March time-series, we 
distinguished four main fluctuations (Fig. 8c) with maximum SO2 CA of 2058 (15:41:08), 
2672 (16:26:04), 1794 (17:12:57), and 1942 ppm  m (17:43:51). Note that due to the length of 
the time-series, we could not determine the exact end of the last fluctuation (Fig. 8c). The 
last time-series, recorded on 23 March, displays four main SO2 CA fluctuations with peaks 
of 2088 (16:42:43), 2257 (17:03:13), 2104 (17:40:54), and 2590 ppm  m (18:04:16), respectively 
(Fig. 8d). As for the maximum and mean temperature trends of figure 6, the nature of the 
overlapped waveforms, recognised in figure 8, are investigated in section 5.3.  
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Fig. 8. Temporal variability of SO2 CA from Vent 1 and Vent 2 between 20 and 23 March 

2009. The CA were collected from fixed position and from different sites (see Fig. 2b for 

details). 

During the March 2009 field campaign, we measured also the SO2 flux by car-based 
traverses (Fig. 9; see also Martin et al., 2010). In detail, we carried out three traverses on 20 
March (from 20:20:00 to 21:30:00), six on the 21st (from 16:40:00 to 18:30:00), four on the 23rd 
(from 20:30:00 to 22:10:00), and ten on 24 March (from 15:15:00 to 16:50:00).  

 

Fig. 9. Daily mean SO2 flux measured during the 20, 21, 23, and 24 March 2009 by car-based 
traverses. 

Overall, the daily mean SO2 flux was characterised by an increasing trend from 20 to 24 

March, when the flux reached values of 1350 and 1325 tonnes day-1 (Fig. 9). Daily mean 

www.intechopen.com



Heat and SO2 Emission Rates 
at Active Volcanoes – The Case Study of Masaya, Nicaragua 

 

119 

fluxes (±1 standard deviation) were 580±180 (20 March), 470±100 (21 March), 490±170 (23 

March), and 930±280 tonnes day−1 (24 March). The average SO2 flux measured during the 4-

day survey was of 690 tonnes day−1 (Martin et al., 2010). 

5.3 Comparative signal processing and results 

Figure 10 shows the behaviour of the mean apparent temperatures of Vent 1 and Vent 2 
with respect to the pattern of the SO2 CA from 20 to 23 March 2009. In order to make a 
reasonable comparison between temperatures and SO2 CA, we have plotted the 10-point 
running means of both parameters. The black and grey lines refer to Vent 1 and Vent 2 mean 
temperatures, respectively, and the red line to the SO2 CA. In addition, moving average has 
allowed us to filter the very high frequency signals, which are commonly related to noise 
effects of variable nature such as turbulence of the volcanic plume next to the vent area and 
drifting of the plume within the FOV of the UV spectroscopy system.  

 

Fig. 10. Comparison between the temporal trends of Vent 1 and Vent 2-10 point running 

mean apparent temperatures and the 10-point running mean of the SO2 CA.  

Along the four days of measurements, temperatures and SO2 CA are well correlated, though 
they show a somewhat shifting due to the different sites from which temperatures and CA 
were measured, i.e. the thermal camera pointed directly at the vents whereas SO2 
concentrations were taken out of the Santiago’s crater rim (Fig. 2). Both temperatures and 
CA are characterised by superimposed cycles of different periods (Fig. 10). In order to 
investigate the reliability of the qualitatively observed cycles, we have carried out time-
series analysis by Fast Fourier transform on both mean apparent temperatures and SO2 CA 
(Fig. 11). Figure 11 shows the power spectra and the statistical significance calculated 
considering the hypothesis of a background red noise, and thus we have considered reliable 
only the peaks lying above the green line, which represents the 95% confidence spectrum 
(e.g. Spampinato et al., 2008b; Torrence & Compo, 1998).  
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Vent 1 shows significant periods of 1-2 min and 8 min on 20 March, 1-3 min and 15 min on 

21 March, 1-3 min, 5 min, 7 min, and 13 min on 22 March, 2 min, 4 min, and 46 min on 23 

March, and of 1 min, 6 min, 11 min, and 18 min on 24 March (Fig. 11). Vent 2 is 

characterised by significant peaks of 1 min and 7 min on 21 March, 1-3 min, 7 min, and 21 

min on 22 March, 1 min, 7 min, and 28 min on 23 March, and of 1 min, 7 min, and 15 min on 

24 March (Fig. 11). The SO2 CA time-series display major peaks at 1-2 min and 4 min on the 

20th, 2-3 min, 4-5 min, 7 min, and 10 min on the 21st, 1-3 min, 5 min, 8 min, and 11 min on 

the 22nd, and at 1-3 min and 4 min on 23 March (Fig. 11). 

 

Fig. 11. Power spectra and statistical significance of Vent 1 and Vent 2 mean temperature 

time-series and of the SO2 CA data sets collected between 20 and 24 March 2009. The green 

and red lines represent the 95% and 75% confidence spectra, respectively. In the figure, we 

have reported only the period of peaks above the green lines. The cyan dashed rectangles 

enclose low spectral power peaks with periods below 1 minute.  

Observing in details the power spectrum time-series of figure 11, we detected also peaks 
that, though they do not overcome the green line, they are above the red lines representing 
the 75% confidence spectra. Most of these peaks consist of low frequency signals, between 
~40 and 50 min in the temperature time-series and ~30 and 50 min in the SO2 
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concentrations, which due to the reduced length of the data sets have a low spectral power 
(Fig. 11). 

5.4 Data interpretation and concluding remarks 

Here we have reported on the integration of thermal imaging-derived data with both SO2 

fluxes and concentrations from the Santiago active crater of Masaya volcano in March 2009. 

As already reported by Martin et al. (2010), in that period the crater activity was fed by two 

vents opened at the crater floor. The opening and closure of vents over time (e.g. Branan et 

al., 2008), combined with results from structural and geophysical studies (Rymer et al., 1998; 

Williams-Jones et al., 2003), has suggested that the vents result from the collapses of the thin 

crusted roof of the volcano shallow magma accumulation zone (Martin et al., 2010). Thermal 

imagery collected during our campaign allowed us to infer that the magma surface within 

the two vents was at least ~10-15 m below the surface (Fig. 5a; Martin et al., 2010), 

suggestive of drop of the magma level over time. Magma level fluctuations have been 

commonly detected at several basaltic volcanoes (e.g. Stromboli, Calvari et al., 2005; Kīlauea, 

Tilling, 1987). In particular at lava lakes such as Erta 'Ale volcano in Ethiopia, variations in 

magma level within the crater have been related to magma pressures in the connected 

reservoir (Oppenheimer & Francis, 1997), thus to changes in the magma supply rate (e.g. 

Oppenheimer et al., 2004; Spampinato et al., 2008b). 

Although Masaya is currently at minimum in its degassing cycle (Williams-Jones et al., 

2003), during the time of our observations, the eruptive activity consisted of steady intense 

degassing from the two vents (the total volatile flux was of 14,000 tonnes day-1; Martin et al., 

2010). Except for the first day of survey, SO2 CA recorded between 21 and 23 March were in 

agreement with those previously observed by Branan et al. (2008), marking the overall 

stable state of the volcano activity over long time-scales (Martin et al., 2010). 

Peaks in brightness temperature of Vent 2, where somewhat higher with respect to Vent 1 

(Fig. 6), likely due to vent geometry combined with the oblique imagery. However, they are 

comparable with temperatures recorded by Branan et al. (2008) in February 2002 and March 

2003 using a thermal infrared thermometer. Whilst maximum apparent temperatures 

showed greater variability, mean apparent temperatures of both vents ranged between ~340 

and 380 K, thus marking the quite stable background of the degassing mode.  

The minimum total radiant heat power outputs estimated for the two vents did not display 
any remarkable variation as well, ranging from ~1.2 to 1.8 MW. The increasing trend of the 
radiant heat power output from 20 to 24 March can be found also in the pattern of the daily 
mean SO2 fluxes, whose values pass from ~460 to 1350 tonnes day-1. This suggests that, 
during our campaign the day-to-day variability of mean SO2 flux might not be largely 
affected by wind speed uncertainty (Martin et al., 2010), as thermal imagery and SO2 
traverses were carried out from different sites and with different geometrical viewing, i.e. 
pointing directly the vents and crossing the plume from below. The simultaneous variations 
of both fluxes suggested to us that within the long-term degassing cycles (on the scale of 
years) of Masaya (Williams-Jones et al., 2003), there might be shorter-term sub-cycles (on the 
order of days) related to processes occurring within the volcano shallow feeding system 
(Martin et al., 2010; Nadeau & Williams-Jones, 2009; Witt et al., 2008). In detail, we believe 
that the increase in heat and SO2 release might be connected to the rising of a new hot and 
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gas-rich batch of magma from the volcano shallow reservoir feeding the persistent 
degassing of this volcano, through processes of magma overturning (Harris et al., 1999; 
Martin et al., 2010).  

Figure 10 shows that both the thermal and SO2 column amount time-series are not only 

correlated but they are both characterised by high and low frequency cycles, of which we 

have recognised periodicities on the order of minutes, of tens of minutes, and wider 

fluctuations of almost a hour. Owning to instrumental limitations, we could not record 

frequencies of tens of seconds associated with gas puffing characteristic of Santiago’s 

degassing (Branan et al., 2008; Williams-Jones et al., 2003). Combining our observations 

with previous interpretations of lava lake dynamics and models (e.g. Spampinato et al., 

2008b; Witham et al., 2006), we propose that cycles on the scale of minutes might relate to 

rates of gas bubbles/trains of bubbles bursting at the magma surface. Instead longer 

fluctuations in both thermal and SO2 concentration trends might result from gradual 

variations in gas supply rate. However longer time-series are needed in order to better 

understand the meaning of these degassing cycles, especially those referring to the long 

fluctuations. In a site like Masaya volcano representing the ideal natural laboratory, the 

install of multi-parametric permanent stations will open up opportunities of long-term 

observations of the volcanic activity allowing refinement of models developed for open-

vent volcanic systems.  
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