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1. Introduction  

This chapter is written to give developers and machine operators a better idea how to install 
robust processes or how to review and optimize these. The clear structure moves from basic 
introduction to in-depth application of the methods and tools, thus guiding readers through 
these processes. While this paper cannot replace a further deepening in this matter, it can 
assess its usefulness. 

Since the publication of my article “Effective Run-In of an Injection Molding Process”, 
(Moser & Madl, 08/2009) I have noticed that both the start phase of an optimization process 
and the end phase (“verification / validation”) are the most critical parts. Due to this 
problem, I have decided to extend the upcoming article with the following chapters. 
Increasingly, “Processes Capability” is a necessary basis for accomplishing design transfer 
with the customer on a valid foundation. Also “Quality by Design” and “Design Space 
Estimations” are no longer foreign words within the injection molding business. Especially, 
the medical and automotive businesses call for process validation. This new chapter will, 
therefore, be divided into the following sections: 

 Familiarization  

 Screening 

 Optimization  

 Robustness 

 Validation  

 Summary 

This procedure will help process’ manager move through the setup or optimization process. 
Most students who joined, for instance, a “Process Capability Statistics”- or a “Design of 
Experiments” course, have difficulties finding the fulcrum or lever to complete the first steps. 
Consequently, they often just invest in “trial and error methods” to get their process to work. 
Also, common paradigms like “change one parameter at a time” will not help accelerate 
optimization or enable the improvement team to map the whole process, including 
interactions or nonlinear behaviours. Therefore, this chapter will outline tools to collect the 
main process factors, identify the disturbance factors and also some more special tools to 
interpret the impact of these on the process. The best way to get a run in or on optimization 
process started is to get a "complementary" team of experts at the table. Within in this team, it 
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is important to lift the members into a mode where they are willing and motivated to work on 
the problem in an open, cooperative, and productive atmosphere. Beside this, because of its 
rules and structure, "team leading", "mediation skills", and "creativity tools" comprise an 
indispensable base to build up a mutual attitude towards the improvement process. 
Furthermore, these tools will lead the team from reflecting to describing a problem and to joint 
agreement on supported decisions, work-methods and actions. An additional advantage will 
be a clear structure, such as, for instance, the "DMAIC Cycle". 

 

Fig. 1. DMAIC Cycle (Lunau, 2006, 2007).  

The DMAIC Cycle „which as a logical further development of the Deming cycle, provides a 
good structure to get into the “problem solving process”. Within this approach, the question 
“what is the ‘real problem’?” is asked. Two different symptoms form cause and effect, so it 
is helpful to discuss this in the team of experts, for instance, with the following tools and 
methods. After the “Real Problem” has been defined, it is necessary to find a way to 
measure cause and effect of the problem. This might sound straight forward and logical, but 
in most cases, it is not done. This means, for instance, that a check of the capability of the 
measuring equipment is often not requested for measuring the whole process variation 
range of the “Process working space”. Measurement methods and also the equipment 
calibration and capability should be validated (each time) prior to execution of the 
experiments. Otherwise, it may happen that a lot expensive, time- consuming experiments 
are preformed and also a lot of measurements are taken, but these are not adequate to 
describe cause and effect. (Process space)  

The next step to get factor settings and systems- or product-attributes measurably defined is 
to analyze their correlation with a structured approach. Design of Experiments is a very 
powerful tool to do this. During the experiments, it is recommended to request every step in 
planning, such as:  

 It has to be verified whether the latest setup (factor variation) of the worksheet is 
adequate for focusing on the desired responses of the targets (Fig. 18) 
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 if some responses are not measurable or quantifiable, continuing without adaption 
leads to fuzziness, respectively to bad “goodness of prediction models”  

 It is not beneficial for the experimental room to extend far beyond the realm of objective 
target functions. Because this will automatically lead to more experiments and 
fuzziness due to more complex mathematics which is needed to describe cause and 
effect. (Fig. 18) 

After the “test and analyzing phase” the gap between cause and effect could be closed with 
a mathematical prediction model. The purpose of the model is to reflect how factors and 
responses are related. On the basis of this, “model contour plots” (Fig. 29) can be generated 
and potential optima could be calculated and visualized.  

Within in the oncoming Improve Phase, the optimum should be verified. After this 

verification, the robustness of this optimum setting could be rechecked with a reduced 

factor variation around this optimum to ensure the model-based calculations. In a last or 

parallel step to the robustness testing, the capability of the optimal setting, including the 

naturally given process variation, can be determined by using “Monte Carlo Simulations”. 

The output will be, for instance: “Cpk”-value or “defects per million„ within an estimation 

of the work-point design space. These, “key process indicators” (which will be explained 

later) will then be a base for validating the process and making it comparable to other sub-

processes. (Cf.3) 

2. Familiarization  

But again where to start? The following small collection of tools is a good start to get the first 
steps done, to reflect and research the process setup or process problem.  

2.1 Ask why 5 times! (Michael L. George, 2005)   

One of the easiest and most straightforward tools for getting familiar with a process setup or 
process problems is just to ask why, why and why again. Inquire if tree- or bubble diagrams 
can be used to document the root cause analysis. This and the following tools should be 
performed in a team only after it is certain that it follows the basic rules of good 
brainstorming / communication practice. This means: no direct "pointers" or school 
assignments should take place. Also there should be no criticism during the creative phase 
but rather only at the right time and then only constructively expressed. 

Small Example of constructive, drill-down questioning:  

Why is the injection part not of sufficient quality? 
 Because it contained some color strikes and dells. 
Why does the part contain color strikes and dells? 
 Because the filling and cooling process are not as robust as they should be.  
Why are the cooling and filling process not robust?   
 Because the density of the melted polymer is not homogenous. 
Why is the melted polymer-density-distribution not as it should be? 
 Because the polymer granulate was not dry enough. 
Why did the drier not work as it was supposed to? 
 Because the service hadn’t been properly done. 
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2.2 Cause effect diagram  

In addition to the “5xWhy”, the cause effect diagram (Fig. 2), is very effective if there are 
people who already know a lot about the process. If they are used to it, they like thinking 
within cause and effect but still will be affected by suggestions from other team members to 
review their thought against the inputs from others and be motivated to think out of the box 
to find even more detailed reasons for product-rejects or process-failures. In combination 
with Brainstorming or the “5xWhy”, it is even more focused and powerful.  

 

Fig. 2. Cause and effect diagram(Rauwendaal).  

2.3 Ishikawa diagram 

The Ishikawa diagram (Fig. 3) is the standard diagram to summarize cause and effect when 

concentrating on root cause and process-influence analysis. It is a good tool for discussing 

issues beyond the first impressions of why a process did and does not work or a product 

will not fulfill quality requirements. This is because this tool will guide the focus from 

different sources to a correlation of sources each time with a focus on a different reject-

reason or process-failure. When meetings get stuck (because thoughts are spinning around) 

focus can be easily reset to another M-block1. In many cases, the output can be transferred to 

a FMEA “Failure Mode and Effects Analysis” or vice versa. The source of costs and process 

rejects are always defined by the product specification. Lowering these by adapting 

tolerances will instantly guide to lower costs, but may be critical for the next customer in a 

process line or the end customer who buys the product. The factor and its correlated target 

tolerances should be as wide as possible and as narrow as necessary.  

2.4 AHP: Analytical Hieratical Process  

Things are not always easy to interpret. Therefore, the AHP (combined with a grid analysis) 

is a very powerful tool to extract insights from a complex or fuzzy process. With process 

diagrams, Ishikawa diagrams or mind maps, the most influential factors are collected and 

can now be ranked according to Pareto’s 20/80 law. This can be done by giving every team  
                                                                 
1 M-blocks are: Man, machine, management, measurement, method, material, milieu  

Degradation 

Air entrapment 

Volatieles 

Cooling too fast

Moisture 

Contamination

Vent flow 

Inefficient venting 

Plugged vent port 

Not enougth vacuum 

Voids in 
products 
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Fig. 3. Ishikawa diagram, (Rauwendaal).  

member the chance to write the numbers from one (very important) to ten (less important) 
behind the collected factors on a white board, or perform a simple hand-up voting (each 
number only one time). 

After this is done, a maximum of ten factors of importance should be placed in the following 

matrix and weighted pairwise according to the importance of their influence. The direction 

of the questions is row versus column (Fig 4). Within the AHP, importance is leveled after 

the following scheme. (Vester, 2002) (Klein, 2007) 

 

Weighting Weights Weighting counterpart Weights 

Extremely more important 9 Extremely less important 1/9 

Significantly more important 7 Significantly less important 1/7 

More important 5 Less important 1/5 

Somewhat  important 3 Somewhat less important 1/3 

Equal important 1 Equally important 1 

Table 1. Analytical hieratical process Weight basis. 

In general, I recommend doing the weighting vice versa instead of filling the counterpart 
question automatically (space below grey diagonal). Asking the questions “how much more is 
“Factor A” important than “Factor B”” and asking the opposite question staggered “how 
much more is ’Factor B‘ important than ‘Factor A‘”- again, will show the uncertainty of the 
knowledge and make it possible to reflect this fact within the grid diagram. In most cases, it 
is helpful to visualize the customers' demands prior to the factor ranking. A valuable input 
for defining customer values against product/process costs is for instance the “Kano model. 
If the prioritized quality criterion is not available, it needs to be developed because, in most 
cases, some target functions are more important to achieve then others, so compensating 
factor settings need to be developed after ranked target functions. On the grid-diagram (Fig. 
5) the factors “holding pressure” and “nozzle temperature” are displaced a little bit laterally; 
this is because of the contradictorily ranked answers summarized in the matrix. Because of 
this inconsistency, influence of these factors should be discussed again. At some places, due  
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Fig. 4. AHP Matrix2. 

 

Fig. 5. AHP Grid.   

to the complexity and a time reduction approach, it is sometimes recommended to do just a 
bilateral comparison-matrix with the part either below or on top of the grey diagonal. The 
other counterpart could also be filled out by asking or by being automatically computed. 
Often, therefore, the simplified schematic “2” = “more important”; “1” = “equal” and “0” = 
“less important” is used. This is also a good approach but will not be as differentiated as the 
previous AHP method. 

In both cases, the factors can be weighted after importance by calculating the ranked row 
numbers at column “sum active ranked”. This number and the calculated counterpart “sum 
passive rank” have to be plotted into the grid to visualize the factors’ influence.  

Now a new level of information has been extracted from the discussion. And the factors’ 
importance can now be documented with the support of the whole team.  

                                                                 
2 Software Excel 2010, software operator S. Moser  
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Field Meaning  

Field “active”: factors  with strong influence 

Field “critical” :   factors with ambivalent influence 

Field “less important” : factors with less impact  

Field “ interactions” :   factors with possible interactions 

Table 2. Interpreting of the grid (Fig. 5).  

2.5 Contradictions and correlation 

Besides the factor ranking, it is also important to get an understanding how these factors 

influence each other. For this reason, a similar matrix can be used in addition to a new 

question structure. Now the question should be: “Does factor ‘A’ reinforce the influence of 

factor ‘B’?”. In posing this question, one can get a better understanding of how the factors 

are correlated to each other or, in other words, how strong the interactions between these 

factors are. Thus the impact of potential contradictions can be exposed and documented. 

This is one of the most important project-management steps because of the necessary risk 

assumption. If the contradictions in the requirements are too stark to be compensated, the 

team needs to discuss whether the project should be stopped because of these “show 

stoppers” or “scope creepers”. In any case, the risks should be displayed in a diagram which 

illustrates the probability of occurrence over the importance/impact of the risks. If there are 

any show-stoppers (i.e. risks with a large negative influence on the project and a high 

potential to occur) and they cannot be prevented, tools like TRIZ3 may be helpful in 

resolving the contradictions. "TRIZ is  problem-solving, analysis and forecasting tool 

derived from the study of patterns of invention in the global patent literature". In English 

the name is typically rendered as "the Theory of Inventive Problem Solving", and 

occasionally goes by the English acronym TIPS. 

2.6 System modelling 

A more recent approach to understanding process and complexity is to model the system 

interaction or dynamic. One interactive, easy-to-use software is the Consideo Modeler, which 

was used for Fig. 6, 7, 8, 9. At the beginning, this approach works similarly to mind mapping 

but can calculate feedback loops later on in order to visualize the system’s dynamic. After the 

most influential factors have been collected and ranked due to importance, those factors can be 

connected with arrows to describe their impact. These arrows can be defined with the intensity 

of the factor-effect, the cause-direction (enhancing, reducing), and the time-dependence of their 

effect (Fig. 6). One other advantage of this software-approach is that also “attributive” and 

“qualitative” factors can be embedded into the net-diagram. These factors are treated 

mathematically equally to quantitative factors in a first step. This is possible because the 

impact of the feedback loops of each factor (factorarrowsfactor loops) will be calculated 

iteratively. From this, the influence of the factors to a response can be interpreted. This method 

is also useful for visualizing what has been worked out in a “team problem discussion” by 

displaying the result of the extracted process on a net diagram (Fig. 6). After this, plots such as 

a “weighting matrix “(Fig. 9), in addition to the AHP (see 2.4) “root cause” and “cause and 

                                                                 
3 TRIZ / TIPS for more information see http://en.wikipedia.org/wiki/TRIZ  
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effect” diagrams (Fig. 8) can be easily generated, as well as the “insight matrix” (Fig. 7), to 

show how the factors affect responses. 

 

Fig. 6. Example “net diagram”4. 

 

Fig. 7. Example Insight Matrix4 of factor “color steaks”.  

                                                                 
4 Software Consideo Modeler, www.consideo.com , software operator S. Moser  
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Fig. 8. Cause tree 4. 

 

Fig. 9. Weighting matrix 4. 

2.7 Restrictions within familiarization steps 

This approach (and also the shortly described preceding methods) will not deliver a whole picture 
of the process or an ideal setup, but it will help to concentrate on the really important 
factors. Furthermore, these tools will help to document the problem-solving process and to 
support the team in working results oriented and step by step -- in order to do the right 
things right.  

So within difficult problems, tools are capable of raising the creative nouveau of generating 
innovative ideas or solutions. Instead of  only endless problem-focused discussions, which 
only lead to “questions of power”, “influence”, ”the problem history” and “particular 
blame” of team members, using supporting tools means the team can concentrate on solving 
problems by using the tools right! This helps to minimize distracting, time-consuming and 
conflicted meetings.  

2.8 Reflecting the familiarization steps  

After the “root cause analysis”, factor prioritization and response target definition are done, 
it is necessary to review these values with a focus on “good project management practice”. 
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Therefore, it has to be considered that doing a research on all desired functions will take 
time and will consume money and resources. In most projects, there is the sword of 
Damocles over the project team, which means that there is always not enough time, money 
and resources. In this context, one often hears a contradiction in terms such as, "We do not 
have the time for experiments “. This interaction is visualized in Fig. 10.  

To briefly illustrate, it can be assumed that the functions to be examined need too much 
time. These circumstances can only be compensated by moving the timeline or tapping 
additional resources. Both options will impact the budget. Thus, it is always important to 
check at regular intervals if any (planned) actions are still result-related and necessary.  

 

Fig. 10. Interaction between the main components of project management. 

3. Screening  

The challenge for machine operators is to get the run-in process done as quickly as possible. 

This means a minimum number of experiments with a maximum ability to describe cause 

and effect. The operators should be sensitized to the fact that small adjustments in the setup 

of the machine can have a great impact on the quality of the injection molding parts. 

Therefore, a well-structured approach and high quality data are needed. To reach these 

goals, the method of “Design of Experiments” will be introduced on the basis of the 

software “Modde”5. This is done because further steps “optimization” and the “Design 

Space Estimation” are incorporated tools within the software “Modde”.  

In general, the software is used when there is a lack of knowledge how cause and effect are 

related. 

The use of "Design of Experiments" is an admission that the correlation of factors and effect 
could not be fully captured. This condition is depicted as a black-box (Fig. 11). By varying 
the factors within and according to a structured design, a regression model can be derived. 
From this model, the effect of the factors can be calculated. Since the experiments and thus 
the factors are varied to an estimated optimal range, some of the results are, of course, likely 
to deviate from the optimal targets. Nevertheless, all experiments and their results are very  

                                                                 
5 Modde is a software product of Umetrics, a company of MKS Instruments Inc.  
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Fig. 11. Process Black-Box. 

important because the basis of an entire image of it can be mapped on the work-space. The 
screening-process starts to extract the most influential factors from the familiarization 
process. These factors will be used to start with the Design of Experiments method. But not 
necessarily all factors must be examined in light of variability. So, some of these less 
important factors should be frozen at a certain level, which still ensures a good product 
quality. This is because the number of factors substantially affects the sum of the 
experiments; the number of evaluation criteria (responses) is of secondary importance. In 
the best case, the factors are quantitative, and so simple geometric designs can be generated. 
It is more difficult when they are qualitative, e. g. “machine 1” or “machine 2”. Such 
qualitative or attributive parameters increase the number of experiments because they 
hamper the generation of the design. Once the factors have been identified, it is necessary to 
assess their effect. The effect is that which is exerted on the target variable when the factor is 
varied from its minimum to its maximum setting. Since all the factors are changed 
simultaneously in a factorial design, this effect is difficult to estimate.  

It is therefore useful to debate and determine the factor variations within a group of 
experienced staff. Some factors are even trickier to formulate than the qualitative factors, such 
as temperature or pressure profiles. Just as in the machine, in the factorial experiment, the 
profiles can be programmed with some nodes such as (initial value + 9 nodes). The start and 
end values of the profile are known. Moreover, the process specifies a sloping curve (Fig 12, 
13). If the profiles were programmed with real numbers, the sloping profile would necessitate 
the use of a great many programmed extra constraints. These factor restrictions limit the choice 
of experimental models and greatly increase the number of necessary experiments. For this 
reason, a mathematical formulation of the profiles is recommended which allows restrictions 
to be dispensed with entirely. Thus, the pressure profile is calculated, for instance, from the 
given initial value and the maximum decrease in pressure (in bar) per node: 

 Δp ൌ initial	value max.െ end value min.number of nodes െ ͳ  

The following variation thus 
arises for each node in (2): 

(1) 

 Node (i +1) = node (i) – (min. 0, max. Δp)  (2) 

Another way to represent the profile is the use of a simple two point (FU 3).  

 value	of	factor settingሺ୶ሻ ൌ mx ൅ ܾ଴ ൅  ߝ
m = Cf. (4) ; x = node of  factor profile;  

b0 = bias ; ߝ ൌ ݁ݏ݅݋݊  
(3)
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Fig. 12. Injection profile 2. 

 

Fig. 13. Hold pressure 2. 

For this, the initial value and the maximum slope (FU 4) of “initial valuemax“ and “end 

valuemin” is required. From this data the increasing/decreasing constant slope/node can be 

described with two factors instead of several nodes (Fig.14, 15). These factors are the “start-

value” and the constant amount to increase/ decrease per node, both must have a 

min./max. variation. Therefore, a constraint (FU 4) needs to be defined that, if decreasing, or 

increasing with a bigger constant amount beginning from a varied  start level cannot lead to 

exceeding the final max. or min. final-profile-levels.  

 m ൌ ൬initial	value୫ୟ୶ െ end value୫୧୬ʹ ൰ Δp = const. for each node, note (5) (4)

  

Node (i +1) = node (i) – Δp Value୫୧୬ ൏ራ node୧୧ୀଽ୧ୀଵ ൏ Value୫ୟ୶ (5)

 

Fig. 14. Injection profile 2. 
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Fig. 15. Hold pressure 2. 

Considering that the individual nodes from the first approach can be quantitatively 
described independently of each other, the experimental scope and so the following 
experiments are extremely reduced due to freezing of these node factors at a promising level 
or due to explaining them with the second formula approach (constant amount/node) and 
smaller variance space. The formulation with the second approach (slope) is also a good 
approach to describe the constraints with a very limited number of experiments, but not as 
independent and individual an approach as the first described approach. In the most 
circumstances, the more effective second approach is recommended. The profile of the 
injection values could be formulated in the same manner.  

3.1 Responses and targets 

The target variables could be geometrical variables, various criteria pertaining to surface 
quality, as well as some measured process parameters. Because the model which will be 
calculated later on could only be as good as the quantified quality of the test runs, it is very 
beneficial if the response or target values could be measured as quantitative numbers. If this 
is not the case, a qualitative ranking method should be discussed and implemented which 
contains at least 3 graduations or even better several more to support a better predictive 
model. If it is necessary to set up new qualifications-judgments, one should ensure that the 
ranking is symmetrical for instance “1” = too hard, “5” = optimum, “10” = too soft. 
Otherwise, if for instance “1” is optimal-filling and “5” could be more easily less-filled or 
over-filled, two sources of failure are mixed up, which is suboptimal to the predictability 
model. The mathematical reason is that the distribution model will be skewed (Fig. 16). Also  

 

Fig. 16. Skew distribution (From Wikipedia). 
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the special responses (as results of product-life-tests) tend to deliver a Weibull distribution 
(Fig. 17) or skew distributed data; so, to handle this, additional knowledge of data, very 
sensitive factor-settings and possibly transformation of the response data are required in 
order to achieve good prediction models. For more detailed mathematical information see 
(From Wikipedia). 

 

Fig. 17. Weibull probability distribution (From Wikipedia). 

Also it should be verified that the quality judgments are reproducible, as well as have been 

measured with same accuracy over the whole experimental space (Fig. 18). Before any 

experiments are performed, the capabilities of test methods and test equipment need to be 

verified. The minimum of such tests should be a test of linearity and reproducibility, 

representative at the extreme factor settings within the experiment space. If the experimental 

procedure and the measurement tasks of more than one person are carried out, it should 

also be verified that the tasks are equally well conducted and reproducible. Optionally, the 

participants of the experimental design are documented as block variables (uncontrollable 

factors). In an ideal case, the person-dependent influence can later be repudiated in a 

hypothesis test. The influence of the employee should then in such a case appear in a very 

small bar annonation in the diagram “coefficient plot” and therefore assessed as “not 

significant”.  

3.2 Safeguarding experiment design space/worksheet  

The factorial design is the foundation upon which all further analyses are developed. 
Because the experimental scale is kept to a minimum, it is essential to measure the target 
variables of almost all experiments, as otherwise it is difficult to model reality from the 
results. The circumstances in which the experiments are preformed should as equal as 
possible (same raw material, same machine, same operator and room condition); otherwise, the 
occurring side effects will be represented by the model noise or modeled fuzzy into the 
terms of the model. Because some of all possible factors need to be assumed as constant in 
order to keep the number of varied factors small, the number of varied lasting factors and 
their variation will always describe a reduced reality. Factors which cannot be controlled,  
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Fig. 18. Response-factor interaction. 

like relative humidity or changes in raw-material, should be, if potentially influential, 

documented as uncontrolled factors. Later on, if the disturbance variation affects the 

responses, the correlation can be calculated and interpreted to a certain degree. The 

calculations want be as cause and effect but could be analyzed as a trend to work out a plan 

of verification or compensation if necessary. The reason why the factor influence could not 

be ideally assessed is because the uncontrolled factors vary randomly and not as 

geometrically organized within the design (Fig. 19).  

 

Fig. 19. Example of two factor design adjustment. 

To specify the minimum and maximum of the target factor values, only a few preliminary 
tests integrated into the factorial design are needed -- usually, two successful experiments  
are commonly sufficient in which all factors are set to the lowest or the highest levels. This 
ensures that variation in the factors is still measurable in the outcome (responses). 
Otherwise, the variation in individual factors would have to be reduced as displayed  in  
Fig. 19 or extended in a modified factorial design. Once the min., max. and one-center-point 
experiments have been performed, it should also be considered if the range of the factor 
variation is necessary because if these variations are too big, non- linear behavior of some 
factors will probably occur. In most cases only a small linear area is of interest (Fig. 18). At 
the start, because of the lack of knowledge about the factors‘ effects and especially because 
of the reinforcing interactions, the factor ranges are often sub-optimally set. If this is the 
case, the factors’ impact could be non- linear. Usually, factorial experiments commence with 
a large number of factors which are initially studied only for their linear influence. This 
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approach has the advantage of requiring just a few experiments to find out which factors 
influence the targets, and to what extent. It is also possible to obtain an initial indication of 
the suitability of the evaluation criteria and the measuring technology. Since the focus of the 
investigation is on linear correlations, experiments are not conducted on the interaction 
between the factors. Were all factors and their interactions to be investigated, the 
experimental effort would be much greater. A complete linear description of the factors is 
given by the following rule of thumb. (FU 6) 

 Number	of	experiments	 ൌ ʹ୬୳୫ୠୣ୰		୭୤	୤ୟୡ୲୭୰ୱ (6) 

within full factorial designs. It is recommended that designs with more than four factors 

should be examined with advanced designs in order to keep the number of experiments 

small. A comparison of the linear design is in (Tab. 3). 

 

No of Factors Full Factorial Frac. Factoriall 

2 4 4 

3 8 4 

4 16 8 

5 32 16 

6 64 16 

7 128 16 

8 256 16 

9-16 >512 32 

Table 3. Summary of fractional factorials designs, excluding replicates (AB, 2009). 

Now one could say “With this many experiments, I can do it without a plan/ design.” This 

is probably right and therefore, there are more efficient designs in Tab. 4. But the difference 

will be that, in case there is no statistic software available, results cannot be visualized 

adequately; hence, most of standard spreadsheet programs are limited to 2 parameter 

diagrams. Besides, the whole statistic has to be calculated by hand, which makes this 

approach highly susceptible to calculation errors6. In the case of evolutionary-by-hand-

experiments, some time is always necessary between the experiments to discuss and decide 

what has to be done next. In contrast to this approach, the structured Design of Experiments 

method enables more experimentation within shorter intervals. From the perspective of 

identical-process-conditions, the time-consuming, by hand process is also more susceptible 

to errors and must be more critically conducted. Fig. 20 represents the “by-hand” versus the 

“statistically-structured” process. The Fig. 20 also highlights another benefit of the 

structured approach: after each set of experiments, the number of factors to be discussed 

could be reduced on the basis of the regression models. This will further decrease the 

number of factors and so the experimental design experiments by freezing the unimportant 

factors to promising levels.  
                                                                 
6 One option could also be to not calculate anything but just perform experiments. Not performing any 

statistics at all, will never enable experimenters to judge the quality of their process-setup. And even 
more important is the fact that if the process is running less sufficiently, the room for improvement 
cannot be described and project sense and definition cannot be estimated.  
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Fig. 20. Structured versus random experiments (AB, 2009). 

The solid line in Fig. 21 visualizes, that within the structured Design of Experiments 
approach, the largest proportion of experiments is done at the project beginning. This 
ensures a better and faster process-knowledge growth and a more robust production 
launch. While in the other case (dotted line) a lot of resources are needed for improvements 
after the production launch, which block resources needed for instance for developing the 
next product- or process generation.  

 

Fig. 21. DoE vers. COST (Kennedy, 2003). 

Table 4 shows number of runs (excluding replicates) and alternative supported models. 

With six or more factors for instance, “Rechtschaffner”designs (L. Eriksson) may constitute a 

viable alternative to the fractional factorial designs (for the interaction models).  

 

Number of 
Factors 

Factorial / fractional 
factorial Design 

Plackett 
Burmann 

design 

Rechtschaffner 
design 

L-design 

2 4 8_l n/a 9_l(q) 
3 8 8_l 7_i 9_l(q) 
4 16 8_l 11_i 9_l(q) 
5 16 8_l 16_i 18_l(q) 
6 16_l or 32_i 8_l 22_i 18_l(q) 
7 16_l or 32_i 8_l 29_i 18_l(q) 
8 16_l or 32_i 12_l 37_i 18_l(q) 
9 32_l or 64_i 12_l 46_i 27_l(q) 

10 32_l or 64_i 12_l 56_i 27_l(q) 

Table 4. Summary of screening design families l= linear; i= interaction; q= quadratic (AB, 2009). 
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3.3 Reproducibility  

So- called center-points experiments serve to evaluate the reproducibility of the measuring 
method and the process relative to the variation within the factorial experiment. In order for 
the influence of the respective factors to be determined, these are varied about a mean value 
upward and downward in equal measure. The software “Modde” visualizes these 
relationships with the replicate plot (Fig. 22) and the 4th bar within the summary plot (Fig. 
27, 28). If the center points are not close together within the replicate plot, the reason must 
be analyzed.  

Deviating center points could, for instance, be potentially caused by missing factors, 
incapable measurement equipment or measurement methods, different machine operators, 
different machines, different batches of raw material and much more. Also it must be 
assumed that other experiments’ results fluctuate the same as the center- point experiments, 
otherwise the quality of the prediction model would be weak.  

3.4 Design 

A common geometric factorial design is chosen to create the following exemplary but 

actually performed experiment (Moser & Madl, 08/2009). This fractional factorial design 

entails far fewer experiments than full factorial design. For comparison: Were a full dual 

level factorial design to be applied to this factorial experiment, 227 experiments would be 

needed. Although other designs, such as “Plackett Burmann” designs (L. Eriksson), would 

entail fewer experiments (28+), they would rule out the possibility of studying interactions 

or quadratic terms at a later date. 

This screening design consists of two profiles, each of which has ten nodes and seven 

quantitative factors. This yields 27 factors from which, with the aid of fractional factorial 

design, an experimental scale of 64 + 3 center-point experiments are generated. This number 

is derived from the experimental design in which all the factors are studied independently 

and without interaction at two levels (min./max.). A feasibility study was conducted in 

which the part is injected in a 1-cavity mold. To ensure constant melt and mold 

temperatures in the process, 30 moldings were initially produced. Two molded parts were 

then produced and characterized. After the experiments, the moldings were measured in a 

coordinate measuring table.  

The values were transferred to the software. Before a model can be generated out of the 
data, it is very important to look at the raw data. Therefore, common statistical software 
supplies the replicate, histogram and correlation plots. The first plot to look at is the 
replicate plot (Fig. 22), which plots all the experiments in a row in order to see if 
experiments with equal factor settings (center- points and replicates) cause equal results. 
The second plot is the histogram (Fig. 23), which is important for reviewing the data and 
ensuring a symmetrical Gaussian distribution (Fig. 34, bell distribution). Because of the 
limited number of experiments it is very important to have close to normally distributed 
data in order to get a good regression model, fitted with the method of least squares.  

After this, the “black box” (Fig. 11) between factor setting (cause) and targets (effect) can be 
graphically modeled. The model itself is a tailor polynomial, the mathematical formulation 
of the relationships being derived from the results of the factorial experiment. Since  
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Fig. 22. Replicate plot 5. 

 

Fig. 23. Histogram 5. 

 
Fig. 24. Coefficient plot 5. 

screening examines only the linear correlations, only the linear effects of all factors are 
plotted in a coefficient bar graph (Fig. 24).The next set up to study is the “N- residual 
probability plot” (Fig. 25).  
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Fig. 25. N-Residual Plot 5. 

  
Fig. 26. Variable importance plot 5.  

The residuals are plotted on a cumulative normal probability scale. This plot makes it easy 

to detect normality of the residuals. If the residuals are normally distributed, the points on 

the “N- residual probability plot” follow close to a straight line and will also support  

detection of outliers.  

Points deviating from the normal probability line with large absolute values of studentized7 

residuals, i.e. a larger than 4 standard deviations indicated by red lines on the plot.  

According to the Pareto Principle, about 20 % of the factors account for 80 % of the effect. In 

line with this hypothesis, any factor without influence (significance) can be graphically 

removed from the coefficient plot, while the software works in the background to calculate 

the updated model from the remaining terms8. In the next step, the experimenter can focus 

on the significant factors. To see what factors are important for all considered responses, the 

“variable importance plot” (Fig. 26) could be analyzed. This is crucial because the number of 

factors decisively determines the extent of further experiments. The quality of the test series 

and its calculated model are also illustrated as several four bar plots (Fig. 27, 28). These  

                                                                 
7 For more details see Student’s t-distribution at (From Wikipedia) 
8 For this reason, the order in which non-significant terms are removed is important. 
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Fig. 27. Summary plot after screening 5. 

 

Fig. 28. Summary plot after optimization 5. 

stand for the quality of the results (1th bar), the prognosis for targets in new experiments (2th 
bar), validity (3th bar) and the reproducibility of the model (4th bar). The bars are shown 
normalized (0 to 1), i. e. the closer the values are to 1, the better. The model calculated after 
the screening phase (Fig. 27) was of surprisingly good quality. Fig. 28 is the summary of the 
enhanced “optimization model”. In detail the “summary plot” is calculated as follows: (L. 
Eriksson) (AB, 2009) 

R² (Fig.27, 28; 1St bar): Quality of results or the Goodness of fit is calculated from the fraction 
of the variation of the response explained by the model (FU 7): The R2 value is always 
between 0 and 1. Values close to 1 for both R2 and Q2 indicate a very good model with 
excellent predictive power. 

 

ܴ² ൌ ܵܵோாீܵܵ  

SSREG = the sum of squares of the Response (Y) 
corrected for the mean, explained by the model. 
SS = the total sum of squares of Y corrected for the 
mean. 

(7) 
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The second column in the summary plot is Q2 (Fig.27, 28) and is the fraction of the variation 

of the response predicted by the model according to cross validation and expressed in the 

same units as R2. Q2 underestimates the Goodness of fit (FU 8). The Q2 is usually between 0 

and 1. Q2 can be negative for very poor models. With PLS negative Q2 are truncated to zero 

for computational purposes. Values close to 1 for both R2 and Q2 indicate a very good 

model with excellent predictive power. 

 Q² ൌ ͳ െ PRESSSS  

PRESS= the prediction residual sum of squares 
SS = the total sum of squares of Y corrected for the 
mean. 

(8) 

The third column in the summary plot is the “model validity” (Fig.27, 28) and a measure it. 
(FU 9). When the model validity column is larger than 0.25, there is no lack of fit of the 
model. This means that the model error is in the same range as the pure error. When the 
model validity is less than 0.25 there is a significant lack of fit and the model error is 
significantly larger than the pure error (reproducibility). A model validity value of 1 
represents a perfect model.  

 Validity ൌ ͳ ൅ Ͳ.ͷ͹͸Ͷ͹ ∗ logሺplofሻ where  plof = p for lack of fit. (9) 

The forth column in the summary plot is the Reproducibility (Fig.27, 28) which is the 
variation of the response under the same conditions (pure error) (FU 10), often at the center 
points, compared to the total variation of the response. A reproducibility value of 1 
represents perfect reproducibility. 

 Reproducibility ൌ ͳ െ MSሺPure errorሻMSሺtotal SS correctedሻ MS	 ൌ	 Mean	 squares,	 or	Variance ሺͳͲሻ
4. Optimization (of process parameters) 

The screening experiments for this project revealed the region in which the profiles for 

holding pressure and injection speed must lie. This enables the nodes to be dispensed with 

in favor of a description of the profiles with a varying initial value that decreases constantly 

Formula (FU 3). Every experimental approach also got less significant factors, such as in this 

case: The back pressure and the temperature of the hot runner nozzles. These factors were 

frozen at a calculated optimal value. This reduced the number of factors to be varied from 

twenty-seven to six. These six factors holding pressure, injection speed, mold temperature, 

cooling time, switching point and barrel temperature have been studied further in a 

multilevel geometrical experimental design (“Central Composite Face”) with 44 experiments 

and three center-points. After executing the additional experiments the raw data analysis 

has to be performed again, such as checking the data for normal distribution and possibly 

transformation of responses, checking the reproducibility and pruning the model terms at 

the “coefficient plot” in order to get the best possible prediction model. The summary plot is 

visualized within (Fig. 28):  

Now with regard to the predictive quality of the model, contour plots (Fig. 29) can be 

generated. These plots are like a map of a process; the ordinate and abscise represent factors, 

and the contour lines visualize response values.  
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Fig. 29. Contour plot 5. 

4.1 Finding an optimal process-setup  

While the color shading is value-neutral, it is predefined by default with blue as low and red 
as high response values.  

Since humans are incapable of thinking in more than three dimensions, it is difficult to 
display more than two factors, plus a target. However, it is possible for software to calculate 
the degree of fulfillment of any number of evaluation criteria as a function of several factors. 
This can be shown in a sweet-spot plot (Fig. 30). 

 

Fig. 30. Sweet spot plot 5. 

As in set theory, the target functions obtained are displayed on top of each other in different 
colors. The region in which all targets are met is called the sweet spot (green).  

The injection prototype tool was created to ascertain the process capability of the tool. The 
determination of the process optimum from the model proved to be so good and 
reproducible that the project team eschewed a study of the robustness of the optimum. On 
production tools, and especially when it comes to large piece numbers of very high 
requirements to produce, further verification steps are inevitable.  
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5. Robustness testing  

In most cases, some of the target definitions could be fully met, others only to a certain 
degree. Sometimes a compromise has to be defined to outline actionable new demands of 
targets and specifications to be derived from this updated knowledge.  

After this important step of reflecting the possible and defining new process specifications 
in the light of costs over benefits, a potential optimum can be calculated with the optimizer 
and visualized with the sweet spot plot. The Modde-Optimizer is a software tool which 
cannot optimize anything but is a very helpful tool for searching in a multidimensional 
space for a setting in which all targets are met max. To do this, the target limits and the 
factor settings have to be taken or updated.  

At this point, it is also possible to narrow the factor limits or to expand them. This inter- or 
extrapolation is combined with the possibility of estimating the accuracy of the factors 
setting; this means how accurately this factor can be adjusted to a certain limit. From this 
data, a reduced linear design will be used to place small, mathematical isosceles triangles 
into the multidimensional working space. From there, these triangles will be mirrored on 
their flanks in order to check if the new additional peaks of the mirrored triangles (Fig. 31) 
are better positioned to fulfill the predefined targets’ requirements. 

  

Fig. 31. Sketch: simplex algorithm, (L. Eriksson). 

This process will be repeated iteratively till no better solution can be found. Because one of 
the small triangles could be easily trapped at local maxima or minima, a small proportional 
number of triangles are used to form a different position of the factor space. This can be seen 
with the ending lines in Fig. 32. This so-called “simplex algorithm” is a very simple but is 
powerful tool to check to which degree targets’ values can be simultaneously fulfilled. The 
previously discussed target priorities can be weighted within the response target settings. 
The process model serves as a basis for finding a setting in which the molded part can be 
produced within the required quality. For the purpose of evaluating robustness in the 
region of the calculated optimum, it often takes only a few experiments, so that the effect of 
the factor variations may be adequately described. To do this in fine-tuning or a robustness 
check, a new small set of linear experiments with a factor variation similar to realistic 
process conditions should be performed. After executing the experiments and doing the 
repetitive data analysis, the results can be summed up in one of these four cases: 
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Fig. 32. Response simplex evaluation 5. 

1. Case one: All target values are fulfilled; a good predictive model can be developed. This 
means the process is robust, but the variation of the factors is still influential on the 
target functions. It should be discussed if some of the process conditions should be 
improved.  

2. Case two: All target values are fulfilled; no model can be achieved. This is the best 
outcome because factor variations seem to be too small to affect the results. This case 
should also be discussed if the process setup can be simplified in order to make the 
process more cost efficient  

3. Case three: No target values are fulfilled; a model can be developed. This means that 
the model prediction was not as accurate as expected. The quality of the “predictive 
basis model” should be rechecked; maybe the Q2 and the validity are not as good as 
supposed, or there are outliers in the experiments. By implementing these test 
experiments in the Modde-File, the model-quality can be checked as to whether it can 
be enhanced or whether these results deviate and if so, for which the reasons.  

4. Case four: No target values are fulfilled; no model can be developed. Typical reasons 
for this outcome are that process conditions have been changed among the 
experimental blocks, likewise different raw materials, machines, operators, tools etc. 
Another common reason is that due to the models’ quality, the requirement has been 
underestimated. 

6. Validation/process capability  

Finally after a process setup has been found and verified to produce parts with a sufficient 
quality, the process capability should be checked. This is a very important step for 
summarizing the quality and robustness of the process. Within this step, a variation caused 
by realistic production conditions can be attached to the calculated optimum of the 
regression model. This is done by performing a Monte Carlo Simulation. This means that 
100,000 simulations are computed while the uncertainty of factor settings is randomly 
applied. One way is to define a narrow factor range, such as in a robustness model or a 
certain factor setting spot within an optimization design. To explain the concept, a more 
practical Fig. 33 is shown, where the process target borders are displayed by the road 
shoulders and the process itself as a car on this road. 
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Fig. 33. Car example. 

The smaller the car, in comparison to the road width, the more easily the process can be 
controlled. If a grid is applied on the street and the horizontal car positions during driving is 
added up, the positions within the grid intervals can be plotted as bars in a histogram (Fig. 23) 
or distribution plot (Fig. 34). Again, it is easy to interpret how close the car is driving right-
handed relative to the middle lane marking and thus how safe the driving is. If the standard 
deviation to the “ideal driving line” is checked as a critical indicator between the expected 
value (ideal driving line) and each process border (road shoulder), then the process can be 
described in terms of quality and robustness. Consequently, it can be assumed that process 
quality can be described as a function of tolerance and process variation. This number is called 
Cpk (FU 9), the process capability or capability index and has its origin in “SixSigma” 
statistics. Within in Fig. 35 normal distributions with differed sigma levels are plotted. At 
higher CpK levels the underlying data is centered closer to the expected value (µ).  

 

Fig. 34. Normal distribution. 

 

Fig. 35. Sigma distributions 1-6 sigma. 
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 Cpk ൌ min	 ൤USL െ μ͵ ∗ σ , μ െ LSL͵ ∗ σ ൨ 

USL = Upper specification limit, LSL  = Lower 

specification limit and µ = estimated standard deviation 

for predictions. 
(9) 

ܱܯܲܦ    ൌ ݋ܪ		 ∗ ͳ ͲͲͲ ͲͲͲܰܵ  
Ho = Hits outside specifications, Ns = Number of 

simulations based on an infinite number of predictions. 
(10) 

Another way to describe the process quality is to calculate the DPMO which is short for 
“Defects per Million opportunities outside specifications” and is used as stop criteria in the 
design space estimation (FU 10).  

Within the Table 5 higher the Cpk is, the better the process capability and robustness are. 
This can be seen also within the numbers of “DPMO” or the “%Outside” specification. To 
calculate these numbers from the Design of Experiments  experiment data, the “Monte Carlo 
simulation” (MCS) can be computed round the previously calculated optimal. The factor 
variance is adjusted to the approximated variance of the process settings within normal 
working conditions (Assumption 5%). The response variance calculated by the MCS is 
caused then by the factor setting -- and the model uncertainty. At Fig. 36 The black T-bars 
represent the space in which one factor can be varied while freezing the other factors and 
still keeping the calculated response fulfillment (Fig. 37). This is a very important 
information to set the process tolerances as closely as necessary and as wide as possible. 

 

Cpk DPMO % Outside 
0,4 115070 11,51 
0,6 35930 3,59 
0,8 8198 0,82 
1,0 1350 0,13 
1,2 159 0,02 
1,5 3,4 7,93328E-05 
1,8 0,03 3.33204E-06 
2,0 0,0010 9.86588E-08 

Table 5. Six Sigma, source: (From Wikipedia). 

 

Fig. 36. Design space estimation 5. 
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Fig. 37. Predictive design space histogram 5. 

Chart legend of Modde-predicted response profile  

 The yellow line represents target value for the responses as specified in the Optimizer. 

 The red lines are the specification limits for each response as specified in Optimizer. 

 The faded green region represents the probability of a prediction for a random 
distribution of factor settings in the given ranges (low-optimum-high), the design space.  

 The black T-bars represent the space in which one factor can be varied while freezing 
the other factors and still keeping the calculated response fulfillment.  

The histograms of Fig. 37 represent the response targets based on the regression model at an 
optimal factor setting including the factor uncertainty variation calculated by the MCS.  

7. Success with restrictions 

Assuming the predictive model is of good quality, the responses and its degree of 
achievement can be evaluated against priorities of the projects’ definitions. Within the most 
experimental setups, responses targets are optimistically defined and with a high degree of 
safety. Sometimes not all of these targets can be fully achieved. Therefore, and as described 
in the optimization, responses can be weighted again according to their priorities and their 
targets, in order to find a sufficient compromise. This compromise could mend not only the 
factors and responses that need to be adjusted but could also mean that conditions that act 
as disturbances need to be compensated. Potential disturbance factors are, for instance: 
Relative air humidity, temperature, water content in raw materials, using different machines 
or bad machine calibration.  

Also predictive models are only as good as their data. Even if factors are sufficiently enough 
arranged to describe the target functions, there are still a lot of things which could impair 
the prediction model such as bad pruning of the model terms, bad distributions or deviating 
experiments, missing factors, bad measurement (calibrated) equipment.  
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In addition to this, the approach is always to minimize the work, time and budget with 
efficient designs (fewer experiments) and fewer factors, so that not all important factors are 
implanted or the effect of factors are underestimated, and are, for instance, of a higher order 
than assumed. So, if a process is not linear and linear designs are used, the predictive 
capability of this model is very limited. If necessary due to interaction-, squared- or cubic 
factor-terms, the design could be complemented step-wise. The design of higher-order 
processes, complex designs are not recommended at the beginning, since these drastically 
increase the number of experiments. Complexity can always be reduced by focusing only on 
a small process space (Fig. 18).  

8. Conclusion/summary  

After reading the chapter, the readers should now have a good understanding how far the 
combined methods could help them to achieve the predefined requirements. In addition, 
they should also be sensitized to the fact that non-structured approaches are weak and time- 
consuming. It is also important to understand that while the design of experiments “DoE” 
does not necessarily lead to good results or capable processes, they can help to describe and 
document the potential of a process. Even if the targets could not be achieved, it is still 
possible to derive useful, cost-effective and robust knowledge with this structured approach 
in order to identify and assess possible disturbance factors or possible process constraints. 
This can provide beneficial clues for fine-tuning the factors and conditions in order to 
ensure and optimize process capability and success.  

By following this good “DoE” practice recommendation, the iterative difficulties in finding 
the fulcrum or lever at the beginning of an optimization process first hand can now be 
reduced--- if not eliminated. And by following this consistently structured approach, the 
right things can be done in the right way with the right tools. Thus, Pareto’s law can be 
intelligently leveraged, and finally, the optimization team can operate in the most efficient 
and effective fashion.  
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