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1. Introduction  

The management of river water quality is a major environmental challenge. One of the 
major challenges is in determining point and non-point sources of pollutants. Industrial and 
municipal wastewater discharges can be considered as constant polluting sources, unlike 
surface water runoff which is seasonal and highly affected by climate. According to Aiken et 
al. (1982), 42 tributaries in Peninsular Malaysia are categorized as very polluted including 
the Langat River. Until 1999, there were about 13 polluted tributaries and 36 polluted rivers 
due to human activities such as, industry, construction and agriculture (Department of 
Environment, Malaysia (DOE), 1999). In 1990, there were 48 clean rivers classified as clean 
but the number is reduced to 32 rivers in 1999 (Rosnani Ibrahim, 2001). 

Surface water pollution is identified as the major problem affecting the Langat River Basin 

in Malaysia. Increase in developing areas within the river basin has in turn increased 

pollution loading into the Langat River. To avoid further degradation, the DOE have 

installed telemetric stations along the river basin to continuously monitor the water quality. 

As a result, abundant data were collected since 1988. There are 927 monitoring stations 

located within 120 river basins throughout Malaysia. Water quality data were used to 

determine the water quality status and to classify the rivers based on water quality index 

(WQI) and Interim National Water Quality Standards for Malaysia (INWQS). WQI provides 

a useful way to predict changes and trends in the water quality by considering multiple 

parameters. WQI is calculated from six selected water quality variables, namely dissolved 

oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), 

suspended solid (SS), ammonical nitrogen (AN) and pH (DOE, 1997). It is a well-known 

phenomenon that the contribution of pollution loading into river systems from the 

environment involves a complex interaction of many factors (e.g. chemical, physical and 

meteorological interaction). These primary pollutants are emitted from land use activities 

surrounding the river basin (e.g. agriculture, forest, urban, industrial and others) Rapid 

urbanization along the Langat River plays an important role in the increase of point source 
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(PS) and non-point source (NPS). In view of this complex interaction, use of modelling 

techniques to solve this problem, is needed. However, the problem of obtaining models that 

adequately represent the dynamic behaviour of field data is not easy. Lack of good 

understanding and description of the phenomena involved, the availability of reliable and 

complete field data set and the estimation of the numerous parameters involved are the 

major factors contributing to this problem. Beck (1986) noted that, increase in model 

complexity will undoubtedly increase the number of parameters, leading to the problems of 

identification.  

Applications of ANN (Artificial Neural Networks) to environmental problems are becoming 

more common (Silverman and Dracup, 2000; Scardi, 2001; Recknagel et al., 2002; Bowden et 

al., 2005; Muttil and Chau, 2007). The applications of ANN, which are computing systems 

that were originally designed to simulate the structure and function of the brain (Rumelhart 

et al, 1986) is a relatively new concept in environmental modeling. If trained properly, a 

neural network model is capable of ‘learning’ linear as well as the nonlinear features in the 

data (Elsner and Tronis, 1992).  

ANN consists of a set of simple processing units (neurons) arranged in a defined 

architecture and connected by weighted channels which act to transform remotely-sensed 

data into a classification. The classification techniques of ANN are unlike the conventional 

ones. It is distribution-free, may sometimes use small training sets (Hepner et al., 1990) and, 

once trained; it is rapid computationally, which will be of value in processing large data sets 

(Gershon and Miller, 1993). Furthermore, ANNs have been shown to be able to map land 

cover more accurately compared to many widely used statistical classification techniques 

(Benediktsson et al., 1990; Foody et al., 1995) and alternatives such as evidential reasoning 

(Peddle et al., 1994). 

It has been proposed that the best tool to model non-linear environmental relationship is 

ANN (Zhang and Stanley, 1997; Jain and Indurthy, 2003). Research have been undertaken at 

Imperial College, London which attempts to investigate the capability of ANN approach in 

modelling spatial and temporal variations in river water quality (Clarici, 1995). ANNs were 

used as a predictive model to predict cyanobacteria Anabaena spp.  in the River Murray, 

South Australia (Maier et al., 1998). DeSilets et al. (1992), have also used ANN to predict 

salinity. Ha and Stenstrom (2003), proposed a neural network approach to examine the 

relationship between storm water quality and various types of land use.  

ANN has been successfully applied on the study of river water quality in Malaysia (Zarita 

Zainudin, 2001; Mohd Ekhwan Toriman and Hafizan Juahir, 2003; Hafizan Juahir et al., 

2003a,b; Hafizan et al, 2004a,b; 2005; Ruslan Rainis et al., 2004). An approach for identifying 

possibilities of water quality improvement could be developed by using this concept. Such 

information could provide opportunities for better river basin management to control river 

water pollution in Malaysia. In the Malaysian context, Hafizan Juahir et al. (2003a) showed 

that the ANN model gives a better performance compared to the autoregressive integrated 

moving average (ARIMA) model in forecasting DO. The use of ANN for river regulation 

(Mohd. Ekhwan Toriman and Hafizan Juahir, 2003) and the application of the second order 

back propagation method (Hafizan Juahir et al., 2004a) on water quality of the Langat River 

have also been demonstrated. 
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In natural environment, water quality is a multivariate phenomenon, at least as reflected in 
the multitude of constituents which are used to characterize the quality of water body. 
Water quality is very difficult to model because of the different interactions between 
pollutants and meteorological variables. The principal component analysis (PCA) is one of 
the approaches to avoid this problem and has received increasing attention as an accepted 
method in environmental pattern recognition (Simeonov et al., 2003; Wunderline et al., 2001; 
Helena et al., 2000; Loska and Wiechula, 2003)  

The objective of this study is to use the PCA method to classify predictor variables according 
to their interrelation, and to obtain parsimonious prediction model (i.e., model that depend 
on as few variables as necessary) for WQI with other physico-chemical and biological data 
as predictor variables to model the water quality of the Langat river. For this purpose, 
principal component scores of 23 physico-chemical and biological water quality parameters 
were generated and selected appropriately as input variables in ANN models for predicting 
WQI. 

2. Methodology 

2.1 The data and monitoring sites 

The water quality data in this study were obtained from seven stations along the main 
Langat River (Fig. 1).  

 

Fig. 1. Data from seven water quality stations (Sb) were selected in this study along the main 
river. 
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The water quality monitoring stations are manned by the DOE and Ministry of Natural 
Resource and Environment of Malaysia. The selected stations are illustrated in Table 1. The 
data used in the study is from September 1995 to May 2002. Seven sites were chosen, 
namely, Teluk Panglima Garang (site 7), Teluk Datok (site 6), Putrajaya (site 5), Kajang (site 
4), Cheras (site 3), Hulu Langat (site 2), Pangsoon and Ulu Lui (site 1). Sites 3 to site 7 are 
located in the region of high pollution load as there are a several wastewater drains situated 
in the middle and downstream of the Langat River basin. Site 2 is partly situated in the 
middle stream region, designated as moderately polluted.  Site 1 and a part of site 2 are 
located upstream of the Langat River, in an area of relatively low river pollution. It is worth 
mentioning here that some stations have missing data and not all stations were consistently 
sampled. 

Although there are 30 water quality parameters available, only 23 completely monitored 

parameters were selected. A total of 254 samples were used for the analysis. The 23 water 

quality parameters were dissolved oxygen (DO), biological oxygen demand (BOD), 

electrical conductivity (EC), chemical oxygen demand (COD), ammoniacal nitrogen (AN), 

pH,  suspended solids (SS), temperature (T), salinity (Sal), turbidity (Tur), dissolved solid 

(DS), total solid (TS), nitrate (NO ), chlorine (Cl ), phosphate (PO ), zinc (Zn), calcium (Ca), 

iron (Fe), potassium (K), magnesium (Mg), sodium (Na), E.coli and coliform. 

 
 
 

DOE Station 
No. 

Study 
Code 

Distance From 
Estuary (km) 

Grid Reference Location 

2814602 Sb07 4.19 2O. 52.027’N  101O 

26.241’E 
Kampung Air Tawar 
(penghujung jalan) 

2815603 Sb06 33.49 2O 48.952’N  101O 
30.780’E 

Telok Datuk, near Banting 
Town 

2817641 Sb05 63.43 2O 51.311’N  101O 
40.882’E 

Bridge at Kampung Dengkil 

2918606 Sb04 81.14 2O 57.835’N  101O 

47.030’E 
Near West Country Estate 

2917642 Sb03 86.94 2O 59.533’N  101O 
47.219’E 

Kajang bridge 

3017612 Sb02 93.38 3O 02.459’N  101O 
46.387’E 

Junction to Serdang, Cheras 
at Batu 11 

3118647 Sb01 113.99 3O 09.953’N  101O 
50.926’E 

Bridge at Batu 18 

 
 

Table 1. DOE sampling station at study area. 

2.2 Principal component analysis 

In this work, PCA was performed on the above mentioned water quality parameters to rank 

their relative significance and to describe their interrelation patterns. Chosen PC scores of 
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the 23 water quality parameters were used as input variables in ANN model to predict the 

WQI. The principal components (PCs) can be expressed as 

 
mjimjijiij xaxaxaz  ...2211

         (1) 

Where z is the component score, a is the component loading, x the measured value of 

variable, i is the component number, j is the sample number and m is the total number of 

variables.  

The PCs generated by PCA are sometimes not readily interpreted; therefore, it is advisable 

to rotate the PCs by varimax rotation. Varimax rotation ensures that each variable is 

maximally correlated with only one PC and a near zero association with the other 

components (Abdul-Wahab et al., 2005; Sousa et al., 2007). Varimax rotations applied on the 

PCs with eigenvalues more than 1 are considered significant (Kim and Mueller, 1987) where 

the typical criteria are 75-95% of total variance (Chen and Mynett, 2003). The rotations were 

carried out, in order to obtain new groups of variables.  Variables with communality greater 

than 0.7 are considered, having significant factor loadings (Stevens, 1986). 

2.3 Artificial neural networks for WQI prediction 

In this work, the back propagation (BP) ANN was used in the development of all the 

prediction models. The Activation Transfer Function of a back-propagation network is 

usually a differentiable Sigmoid (S-shape) function, which helps to apply the non-linear 

mapping from inputs to outputs. A three layer back-propagation ANN is used in this study. 

The number of input and output neurons is determined by the nature of the problem under 

study. In this study, the networks were trained, tested and validated with one hidden layer 

and 1 to 10 hidden neurons. This choice was based on the work of Jiang et al. (2004), who 

found that the results with one hidden layer was better than that of two hidden layers, and 

the best performance was obtained using a structure with 3 to 6 neurons in the hidden layer. 

The output neuron (layer) gives the predicted WQI value. 

Two different types of ANN models were developed. In the first type,  prediction was 

performed based on the original PCs. In the second type of ANNs developed, scores of 

rotated (varimax rotation) PCs (ANN-RPCs) with eigenvalues greater than 1 were selected 

as input. For this model, prediction of WQI was performed using two to six rotated 

principal components separately. 

The original PCs and rotated PCs (RPCs) data sets consist of 305 observations (305 rows) 

and are divided into training, testing and validating phases for WQI prediction. The ANN 

predicted WQI values are compared to the WQI values calculated using the DOE-WQI 

formula which is based on 6 water quality parameters, namely the DO, COD, BOD, AN, SS 

and pH (DOE, 1997). The input data matrix consists of 23 water quality variables (column) 

and 305 observations (rows) [23×305]. The observed data for each station is arranged 

according to time of observation from September 13, 1995 to June 7, 2002. Table 2 describes 

the data structure. The validation data is at least 10% of the whole data set, with 75% 

training set and 25% testing set data (Kuo et al., 2007). 
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No. of Observations Input parameters Output 

 Input1 Input2 Input3 . . . . Input23 Output1 

1 Obs1,1 Obs1,2 Obs1,3 . . . . Obs1,23 O1,1 

2 Obs2,1 Obs2,2 Obs2,3 . . . . Obs2,23 O2,1 

. 

. 

. 

... 

. 

. 

. 

.... 

. 

. 

. 

.... 

. 

. 

. 

... 

. 

. 

. 

.... 

. 

. 

. 

.... 

. 

. 

. 

.... 

. 

. 

. 

.... 

. 

. 

. 

... 

. 

. 

. 

. 

... 

305 Obs305,1 Obs305,2 1     Obs305,23 O305,1 

          

Table 2. The data structure for ANN prediction model. 

2.4 Determination of model performance  

The model’s behaviour in both learning (training and testing) and validating phase, is 
evaluated using the following statistical methods; the correlation coefficient (R) at 95% 
confidence limit, given by equations; 

 
Coefficient of correlation (R),

 
  

    



 



 













  

 


222

2

1

ˆ
1

ˆ
1

ˆ
1

ˆ

iiii

n

i

iiii

x
n

xx
n

x

xx
n

xx

r
   

(2)
 

and the mean bias error or residual error given by; 

 Mean bias error (MBE),  



n

i

ii xx
n

MBE
1

)ˆ(
1  (3) 

Where ˆ
ix  and ix   represent observed values and the corresponding forecast values for i 

=1,2,…..,n. 

The prediction performance evaluated using these two methods are used to evaluate the 
accuracy of the forecast and for comparing the forecasting ability of each approach. 

The 95% confidence limit is used to determine that the predicted output lie within the 

confidence range. It is assumed that a predicted value fall into an interval within which 

there is an associated uncertainty. According to Wackerly et al. (1996), this uncertainty is 

derived from the residual errors that have already been calculated within that range of 

values. If the residual errors are randomly distributed, there is a general rule of thumb 

which states that they will lie within two standard deviations of their mean with a 

probability of 0.95. This method was used in the measurements of the ANN prediction 

performance conducted by some researchers (Bishop, 1995; Tibshirani, 1996; Shao et al., 

1997; Zhang et al., 1998; Lowe and Zapart, 1999; Townsend and Tarassenko, 1999) 

ANN models and statistical analyses were carried out using MATLAB 7.0 and XLSTAT2008 
(Excel2003 add-in) for Windows. 
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3. Results and discussion  

Post PCA, out of the 23 principal components generated, only six PCs with eigenvalues 
higher than 1 (Table 3) were selected for the ANN input parameters. Selected PCs explained 
75.1% of the total variation. Furthermore, communality values were high for the selected 
PCs, for example, the values are 93% for Cond., 95% for Sal, 98% for DS and TS (Table 4). 
These results further confirm the choice of the selected number of PCs (Stevens, 1986). 

For the first six rotated PCs (RPCs), the loadings from PCA are given in Table 4. The highest 
correlations between variables are noted in bold. For instance, Cond., Sal, DS, TS, Cl, Ca, K, 
Mg and Na, have high correlations with RPC1. Eighteen variables with strong loadings were 
included in the six selected RPCs. Significant variables in RPC1 are Cond., Sal., DS, TS, Cl, 
Ca, K, Mg, and Na; in RPC2 they are DO, BOD and AN; in RPC3 they are SS and Tur and in 
RPC4, NO3- and PO43-. The only meaningful loads in RPC5 and RPC6 are pH and Zn. 

 

 PC1 PC2 PC3 PC4 PC5 PC6 

Eigenvalue 9.074 2.387 2.067 1.492 1.225 1.026 
Variability (%) 39.451 10.380 8.987 6.488 5.326 4.459 
Cumulative % 39.451 49.830 58.817 65.305 70.631 75.091 

Table 3. Descriptive statistics of selected original PCs with eigenvalues more than 1. 

 

Variables RPC1 RPC2 RPC3 RPC4 RPC5 RPC6 Communalities 

DO -0.205 -0.722 -0.121 0.046 0.485 -0.066 0.82 
BOD 0.035 0.740 0.071 0.110 0.110 0.022 0.58 
COD 0.340 0.103 0.081 -0.166 0.268 0.326 0.34 
SS -0.042 -0.009 0.920 0.010 -0.025 0.017 0.85 
pH 0.189 -0.109 -0.204 0.020 0.792 -0.083 0.72 
AN -0.092 0.797 -0.151 0.161 0.023 -0.032 0.69 
T 0.337 0.368 -0.242 -0.298 -0.317 0.208 0.54 
Cond. 0.963 0.022 -0.043 0.035 0.013 -0.022 0.93 
Sal. 0.974 0.023 -0.038 0.030 0.008 -0.004 0.95 
Tur. -0.031 -0.007 0.863 0.011 -0.140 -0.035 0.77 
DS 0.988 0.017 -0.034 0.013 0.009 -0.005 0.98 
TS 0.985 0.017 0.069 0.014 0.007 -0.003 0.98 
NO3- 0.018 0.033 0.107 0.688 -0.126 0.300 0.59 
Cl 0.986 0.010 -0.029 -0.004 0.020 0.005 0.97 
PO43- 0.023 0.312 -0.106 0.700 0.112 -0.073 0.62 
Zn -0.019 0.044 -0.011 0.186 -0.128 0.767 0.64 
Ca 0.980 0.028 -0.026 -0.043 -0.024 0.039 0.97 
Fe -0.080 0.043 0.475 0.540 0.066 0.192 0.57 
K 0.984 0.004 -0.031 -0.004 0.004 0.010 0.97 
Mg 0.974 0.000 -0.022 -0.028 -0.002 0.037 0.95 
Na 0.986 0.002 -0.025 -0.020 0.005 0.017 0.97 
COLI -0.254 0.361 0.097 -0.424 0.457 0.056 0.60 
COLIFORM -0.032 0.049 -0.025 0.042 -0.077 -0.517 0.28 

Table 4. Rotated factor loadings using six PCs. 
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Using the original principal component scores as inputs, the best architecture consist of a 

three layer network with 23 input neurons, 10 neurons in the hidden layer and one neuron 

in the output layer. Considering RPC scores as inputs, the best architectures were achieved 

with almost the same number of hidden neurons. The hidden neurons consist of 9 and 10 

neurons respectively. Training was carried out for a maximum 10000 iterations. Selection of 

the network was performed at maximum correlation coefficient (R) and 95% confidence 

limit.  

Table 5 and Figure 2 illustrate the prediction performances of ANN models using 

different combinations of PC scores as input variables. ANN using the first 2 PCs (PC1 

and PC2) does not perform very well as far as accuracy is concerned for all the training, 

testing and validation phases. It is observed that the prediction performance of the 

validation phase is slightly worse compared to the training and testing phases. It is 

important to point out that for this model, the cumulative percentage in explaining the 

variance given by these two RPCs is only 49.8%. None of the strong loading variables 

contains the variables forming the WQI equation. DO, BOD and pH loadings in PC2 

explain only 10.4% of the total variance.  

Based on the results, it is apparent that the WQI prediction performance increases with the 

increase in number of input variables. The highest accuracy in predicting WQI is given by 

model ANN-RPC6, which contains six RPCs with 75.1% variation explained, giving an R2 

value of 0.64 (training), 0.87 (testing), and 0.72 (validation) respectively. 

 
 
 

Model 
No.of 

PC 

R squared MBE 

Training Testing Validation Training Testing Validation 

ANN-RPC2 (2 inputs) 2 0.43 0.70 0.32 28.01 -167.90 -40.71 
ANN-RPC3 (3 inputs) 3 0.60 0.78 0.61 64.95 -109.68 6.60 
ANN-RPC4 (4 inputs) 4 0.53 0.79 0.47 0 -165.04 -89.78 
ANN-RPC5 (5 inputs) 5 0.53 0.79 0.47 140.12 -143.75 -44.77 
ANN-RPC6 (6 inputs) 6 0.64 0.87 0.72 67.93 -58.57 -44.61 
ANN-PC23 
(23 original PC inputs) 

 
23 
 

 
0.60 

 

 
0.85 

 

 
0.66 

 

 
-18 

 

 
-81.59 

 

 
-49.83 

 

 

Table 5. The prediction performances of the different ANN models. 

From table 5, it can be observed that the prediction performance of the ANN model using 

original PCs (23 input PC scores) is not significantly different from the RPC models. 

However, as RPC models use fewer variables and is far less complex, the advantage over the 

ANN-PC23 model is obvious. Comparing the MBE values, it is generally observed that the 

signs for the validation phases are negative for both the un-rotated and rotated PC models. 

This is an indication that the predicted WQI values are consistently underestimated in both 

approaches.  
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Part III 

Fig. 2. The prediction performances for different combination of PC scores during training,  
testing  and validation  phases : (i) 2 RPCs, (ii) 3 RPCs, (iii) 4 RPCs, (iv) 5 RPCs, (v) 6 RPCs 
and, (vi) 23 original PCs. 
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This study also attempts to allocate 95% confidence interval on the WQI prediction 

produced by the best ANN model. Figure 3, 4 and 5 show the comparison between 

predicted values and the upper (UL) and lower limits (LL) lying within 95% confidence 

interval. This was carried out for ANN-RPC6 and ANN-PC23 models. It can be seen that 

only 4.3% out of the 305 predicted values were identified beyond the 95% confidence limit 

(1% fall below the LL and 3.3% fall beyond the UL) for ANN-RPC6. For ANN-PC23, 25% of 

the 305 observations fall beyond the upper and lower of 95% confidence interval limit (14% 

fall below the LL and 11.8% fall beyond the UL). This basically shows that by using reduced 

rotated PC scores as input, better results can be obtained without losing information. It is 

thus apparent that ANN prediction using scores of varimax rotated PCs result in a more 

accurate WQI prediction. 
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Fig. 3. Predicted WQI within the 95% confidence interval during training phase using (a) six 
rotated PCs, and (b) 23 original PCs. 
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Fig. 4. Predicted WQI within the 95% confidence interval during testing phase using (a) six 
rotated PCs, and (b) 23 original PCs. 
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(b) 

Fig. 5. Predicted WQI within the 95% confidence interval during validation phase using (a) 
six rotated PCs, and (b) 23 original PCs. 

4. Conclusion  

In this work, a combination of PCA and ANN is used to predict WQI based on 23 historical 
water quality parameters. The original predictors were selected based on the available 
Malaysian DOE data. To obtain the latent variables as inputs into the ANN, two different 
approaches were used; one based on un-rotated original PCs and the other based on 
varimax rotated PCs. 

Using six PCs, significant loadings are observed for  Cond, Sal, DS, TS, Cl, Ca, K, Mg and Na 
in PC1,  DO, BOD and AN in PC2, SS and Tur in PC3, NO3- and PO43- in PC4, pH in PC5 
and Zn in PC6. ANN models based on these 6 PC scores can predict WQI with acceptable 
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accuracy (within 95% confidence limit). Moreover, the ANN model using the 23 original PCs 
as input, do not render the prediction more accurate, even with a complex network 
structure. The use of rotated PC scores based models is clearly more effective and efficient 
due to the elimination of collinearity and reduction of predictor variables without losing 
important information.  
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