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Metabolomics and Chemometrics as Tools  
for Chemo(bio)diversity Analysis 
 - Maize Landraces and Propolis 

Marcelo Maraschin et al.* 
Plant Morphogenesis and Biochemistry Laboratory,  

Federal University of Santa Catarina, Florianopolis, SC,  
Brazil 

1. Introduction 

Developments in analytical techniques (GC-MS, LC-MS, 1H-, 13C-NMR, FT-MS, e.g.) are 

progressing rapidly and have been driven mostly by the requirements in the healthcare and 

food sectors. Simultaneous high-throughput measurements of several analytes at the level of 

the transcript (transcriptomics), proteins, (proteomics), and metabolites (metabolomics) are 

currently performed, producing a prodigious amount of data. Thus, the advent of omic 

studies has created an information explosion, resulting in a paradigm shift in the emphasis 

of analytical research of biological systems. The traditional approaches of biochemistry and 

molecular cell biology, where the cellular processes have been investigated individually and 

often independent of each other, are giving way to a wider approach of analyzing the 

cellular composition in its entirety, allowing achieving a quasi-complete metabolic picture.  

The exponential growth of data, largely from genomics and genomic technologies, has 

changed the way biologists think about and handle data. In order to derive meaning from 

these large data sets, tools are required to analyze and identify patterns in the data, and 

allow data to be placed into a biological context. In this scenario, biologists have a 

continuous need for tools to manage and analyze the ever-increasing data supply. Optimal 

use of the data set, primarily of chemical nature, requires effective methods to analyze and 

manage them. It is obvious that all omic approaches will rely heavily upon bioinformatics for 

the storage, retrieval, and analysis of large data sets. Thus, and taking into account the 

multivariate nature of analysis in omic technologies, there is an increase emphasis in 

research on the application of chemometric techniques for extracting relevant information.   
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Metabolomics* and chemometrics† have been used in a number of areas to provide 
biological information beyond the simple identification of cell constituents. These areas 
include: 

a. Fingerprinting of species, genotypes or ecotypes for taxonomic or biochemical (gene 
discovery) purposes; 

b. Monitoring the behavior of specific classes of metabolites in relation to applied 
exogenous chemical and/or physical stimuli; 

c. Studying developmental processes such as establishment of symbiotic associations or 
fruit ripening; 

d. Comparing and contrasting the metabolite content of mutant or transgenic plants with 
that of their wild-type counterparts. 

In general sense, strategies to obtain biological information in the above mentioned areas 
have focused on the analysis of metabolic differences that evidence responses to a range of 
extrinsic (ambient) and intrinsic (genetic) stimuli. Since no single analytical method has been 
found to obtain a complete picture of the metabolome of an organism, an association of 
advanced analytical techniques (GC-MS, LC-MS, FTIR, 1H-, 13C-NMR, FT-MS, e.g.) coupled 
to chemometrics, e.g., univariate (ANOVA, correlation analysis, regression analysis) or 
multivariate (PCA, HA, PLS) statistical techniques, has been performed in order to rapidly 
identify up- or down-regulated endogenous metabolites in complex matrices such as plant 
extracts, flours, starches, and biofluids, for instance. Plant extracts are recognized to be a 
complex matrix containing a wide range of primary and secondary metabolites that vary 
according to the environmental condition, genotype, developmental stage, and agronomic 
traits, for example. Such a complex matrix has long been used to characterize plant 
genotypes growing in a given geographic region and/or subjected to external stimuli, 
giving rise to additional information of interest, e.g., plant genetic breeding programs, local 
biodiversity conservation, food industry, and quality control in drug 
development/production processes.  

In the former case, programs for genetic breeding of plants have often focused on the 
analysis of landraces‡ genotypes (i.e., creole and local varieties), aiming at to identify 
individuals well adapted to specific local environmental conditions (soil and climate) and 
with superior agronomic performance and biomass yield. Indeed, the analysis and 
exploitation of the local genotypes’ diversity has long been used as a strategy to improve 
agronomic traits by conventional breeding methods in plant crops of economical interest, as 
well as for stimulating the preservation of plant genetic resources. Taking into consideration 
that a series of primary (e.g., proteins and starch) and secondary metabolites (alkaloids, 
phenolic acids, and carotenoids, for instance) are well recognized compounds associated to 
the plants’ adaptation mechanisms to their surroundings ecological factors, metabolomics 
and chemometrics have emerged as an interesting approach for helping the selection of 

                                                 
* Metabolomics: constitutes a quantitative and qualitative survey of the whole metabolites of an organism 
as well as a tissue, thus it reflects the genome and proteome of a sample. 
† Chemometrics: according to the definition of the Chemometrics Society, it is the chemical discipline that 
uses mathematical and statistical methods to design or select optimal procedures and experiments, and 
to provide maximum chemical information by analyzing chemical data. 
‡ Landraces are genotypes with a high capacity to tolerate biotic and abiotic stress, resulting in high 
yield stability and an intermediate yield level under a low input agricultural system. 
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superior genotypes, as further described in the first part of this chapter for maize landraces 
developed and cultured in southern regions of Brazil. 

In a second part of this chapter is described the adoption of a typical metabolomic platform, 
i.e., FTIR and UV-visible spectroscopies coupled to chemometrics, for discriminating 
propolis samples produced in southern Brazil, a region of huge plant biodiversity. Propolis 
is typically a complex matrix and has been recognized for its broad pharmacological 
activities (anti-inflammatory, antibacterial, antifungal, anticancer, and antioxidant, e.g.) 
since ancient times. Propolis (registration number chemical abstracts service - CAS 9009-62-
5) is a beekeeping resinous and complex product, with a variable physical appearance, 
collected and transformed by honey bees, Apis mellifera, from the vegetation they visit. It 
may be ochre, red, brown, light brown or green; some are friable and steady, while the 
others are gummy and elastic. 

Phenolics such as flavonoids and phenol-carboxylic acids are strategic components in 
propolis to render it bioactive against several pathogenic microorganisms, for instance as 
bacteriostatic and/or bactericidal agents. The flora (buds, twigs, bark, and less importantly, 
flowers) surrounding the hive is the basic source for the phenolics stuff and thus exerts an 
outstanding importance on the propolis final composition and on its physical, chemical, and 
biological properties. Although the wax component is an unquestionable supplement 
provided by the bee secretory apparatus by far less is known about the degree of intensity 
that these laborious insects play changing all the other chemical constituents collected in the 
Nature including minor ingredients like essential oils (10%), most of them responsible for 
the delicate and pleasant odor. All this flora contribution to propolis and the exact wax 
content may then explain physical properties such as color, taste, texture, melting point, and 
more importantly, from the health standpoint, a lot of pharmaceutical applications. 
However, for purpose of industrial applications, the propolis hydroalcoholic extract needs 
to meet specific composition in order to guarantee any claimed pharmacological activity. 
One common method used by the industry for quality control is analyzing the propolis 
sample for the presence of chemical markers known to be present in the specific propolis 
product they market. Even though this has been the acceptable method for quality control, 
the presence of the chemical markers do not always guarantee an individual is getting the 
actual propolis stated by the product label, especially if the product has been spiked with 
the chemical markers. The quantitation method for the chemical markers will confirm the 
compounds presence, but it may not confirm the presence of the propolis known to contain 
the chemical markers. Authentication of the propolis material may be possible by a chemical 
fingerprint of it and, if possible, of its botanical sources. Thus, chemical fingerprinting, i.e., 
metabolomics and chemometrics, is an additional method that has been claimed to be 
included in the quality control process in order to confirm or deny the propolis sample 
quality being used for manufacturing of a derived product of that resinous and complex 
matrix. The second part of this chapter aims to demonstrate the possibility of a FTIR and 
UV-vis metabolomic-chemometrics approach to identify and classify propolis samples 
originating from nineteen geographic regions (Santa Catarina State, southern Brazil) in 
different classes, on the basis of the concerted variation in metabolite levels detected by 
those spectroscopic techniques. Exploratory data analysis and patterns of chemical 
composition based on, for instance, principal component analysis, as well as discriminating 
models will be described in order to unravel propolis chemotypes produced in southern 
Brazil.  
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2. Maize: metabolomic and chemometric analyses for the study of landraces 

Maize (Zea mays L.) was chosen as a model for metabolomic analysis because although most 
of this cereal produced worldwide is used for animal feeding, an important amount is also 
used in human diet and for industrial purposes, providing raw material for food, 
pharmaceuticals, and cosmetics production. The maize grain is composed of several 
chemicals of commercial value and the diversity of its applications depends on the 
differences in relative chemical composition, e.g. protein, oil, and starch contents, traits that 
show prominent genetic components (Baye et al., 2006; White, 2001). Over the last centuries, 
farmers have created thousands of maize varieties suitable for cultivation in numerous 
environments. Accordingly, it seems consensual that the maize landraces’ phenotypes, e.g., 
morphological and agronomic traits and special chemical characteristics of grains are 
resultant of the domestication process. Thus, high throughput metabolomic analysis of 
maize genotypes could improve metabolic singularities knowledge about landraces, helping 
their characterization and evaluation, and indicating new alternatives for their use. In this 
context, to distinguish metabolic profiles it is necessary to consider the use of diverse 
analytical tools, such as spectroscopic and chromatographic techniques for instance. 
Techniques that are reproducible, stable with time, and do not require complex sample 
preparation such as infrared vibrational spectroscopy and nuclear magnetic resonance 
spectroscopy are desirable for metabolic profiling.  

2.1 Metabolic profiling of maize landraces through FTIR-PCA – integral and degermed 
flours 

Vibrational spectroscopy, and particularly Fourier transform infrared spectroscopy (FTIR) is 
thought to be interesting as one aims at discriminating and classifying maize landraces 
according to their chemical traits. FTIR is a physicochemical method that measures the 
vibrations of bonds within functional groups and generates a spectrum that can be regarded 
as a metabolic fingerprint. It is a flexible method that can quickly provide qualitative and 
quantitative information with minimal or no sample preparation of complex biological 
matrices (Ferreira et al., 2001). By other hand, a FTIR spectrum is complex, containing many 
variables per sample and making visual analysis very difficult. Hence, to extract useful 
information from the whole spectra, multivariate data analysis is needed, particularly 
through the determination of the principal components (PCA - Fukusaki & Kobayashi, 
2005). Such a multivariate analysis technique could allow the characterization of the sample 
relationships (scores plans or axis) and the recovery of their subspectral profiles (loadings). 
This approach was applied to classify flour samples from whole (integral) and degermed 
maize grains of twenty-six landraces developed and cultivated by small farmers in the far-
west region of Santa Catarina State, southern Brazil (Anchieta County – 26º31’11’’S, 
53º20’26’’W).  

Previously to multivariate analysis, FTIR spectra were normalized, baseline-corrected in the 
region of interest by drawing a straight line before resolution enhancement (k factor of 1.7) 
was applied using Fourier self deconvolution (Opus v. 5.0, Bruker Biospin, GmbH, 
Rheinstetten, Germany).  Chemometric analysis used normalized, baseline-corrected (3000–
600 cm-1. 1700 data points) and deconvoluted spectra, which were transferred via a JCAMP 
format (OPUS v. 5.0, Bruker Biospin GmbH, Rheinstetten, Germany) into the data analysis 
software for PCA (The Unscramble v. 9.1, CAMO Software Inc., Woodbridge, USA). 
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Previously to PCA analysis each spectrum within the (3000–600 cm-1) region was standard 
normal deviates corrected. 

Figure 1 shows a PCA scores scatter plot for flour samples from whole and degermed grains 
using the whole FTIR spectral window data set (3000–600 cm-1). The scores scatter plot (PC1 
vs. PC2) that contains 93% of the data set variability shows a clear discrimination among 
flour samples of whole and degermed grains. 

 

 

 
 

Fig. 1. Principal component analysis scores scatter plot of the FTIR data set in the spectral 
window of 3000–600 cm-1 wavenumber of landrace maize flours of whole and degermed 
grain cultivated in the southern Brazil. 

The samples of whole grains grouped in PC1+ axis seemed to be more discrepant in their 

chemical composition, appearing more scattered through the quadrants of the PCA 

representation. Figure 2 shows the loadings plot of PC1, revealing the most important 

wavenumbers which explain the distinction of the samples previously found (scores scatter 

plot). The loadings indicated a prominent effect of the lipid components (2924, 2850, and 

1743 cm-1) for the segregation observed. The two major structures of the grains are the 

endosperm and the germ (embryo) that constitute approximately 80 and 10% of the mature 

kernel dry weight, respectively. The endosperm is largely starch (approaching 90%) and the 

germ contains high levels of oil (30%) and protein (18% - Boyer & Hannah, 2001).  

The greatest chemical diversity observed in whole grains can be explained by genetic 

variation of embryos resulting from sexual reproduction. Some authors suggest that the 

high level of genetic and epigenetic diversity observed in maize could be responsible for its 

great adaptation capacity to a wide range of ecological factors. Lemos (2010) analyzing the 

 Whole grains 
o Degermed grains 
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metabolic profile of maize landraces’ leaf tissues from Anchieta County (southern Brazil) 

found a prominent chemical variability among individuals of same variety, although inter-

variety variability has also been observed.  

 
 

 
 

Fig. 2. PC1 loadings plot of the FTIR spectra of maize flours of whole and degermed grains 
in the 3000–600 cm-1 wavenumber region. 

2.2 Starch recognition pattern of maize landraces by NMR spectroscopy and PCA 

The composition of maize grains can be heterogeneous for both the quantity and quality of 
compounds from endosperm as starch, protein, and oil. In this context, metabolomics 
coupled to chemometrics approach was successfully applied to the discrimination of 
starches from the studied twenty-six maize landraces. The starches were extracted from 
flours with distilled water (1: 70, w/v) under reflux (80oC, 1 h), precipitated with ethyl 
alcohol (12 h, 4oC), and oven-dried (55oC until constant weight). Samples (50 mg) were 

dissolved in DMSO-6 (0.6 mL) and 1H-NMR spectra obtained under standard conditions. 

Sodium-3-trimethylsilylpropionate (TMSP-2, 2, 3, 3-d4) was used as internal reference (ppm 
0.0). Spectra were processed using 32768 data points by applying an exponential line 
broadening of 0.3 Hz for sensitivity enhancement before Fourier transformation and were 
accurately phased, baseline adjusted, and converted into JCAMP format to build the data 
matrix. All calculations were carried out using the Pirouette software (v. 3.11, InfoMetrix, 
Woodinville, Washington, USA). The PCA analysis of the whole 1H-NMR data set (32.000 

Wavenumber (cm
-1

) 
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data points) was performed including the spectra of amylose and amylopectin standards. 
The chemical structures and the purity of the standards of amylose and amylopectin were 
confirmed by 13C-NMR spectroscopy. The PC1 (32%) vs. PC2 (28%) scores scatter plot 
allowed a clear segregation of the amylopectin standard and a discrimination for the maize 
flours samples in two groups (Fig. 3) by PC1 axis.  

 

Fig. 3. Classification plot of starch fractions of maize landraces for 1H-NMR after PCA 
analysis. The arrows shows the amylose and amylopectin stardands. 

The Roxo 41 variety located closer to the amylopectin standard suggesting the 

predominance of that polysaccharide in relation to amylose in its starchy fraction. This 

result is in accordance to PCA analysis of the IR data set of the fingerprint region of 

carbohydrates that diagnosed the starch granules from Roxo 41 with superior amylopectin 

amount in respect to their amylose content (data not shown). By other hand, the amylose 

standard was grouped with MPA1 and Rajado 8 Carreiras varieties, suggesting that the 

starch granules contain superior amount of that polysaccharide in its starchy fraction. 

3. Propolis: ATR-FTIR and UV-visible spectrophotometry coupled to 
chemometrics as an analytical approach for pattern recognition  

3.1 Attenuated total reflectance-Fourier transform infrared spectroscopy  

Propolis (registration number chemical abstracts service - CAS 9009-62-5) is a sticky colored 
material, which honeybees collect from different plants exudates and modify in its 
hypopharyngeal glands, being used in the hive to fill gaps and to protect against invaders as 
insects and microorganisms. Raw propolis usually contains 50% resin and balsam, 30% wax, 

www.intechopen.com



 
Chemometrics in Practical Applications 

 

260 

10% aromatic oils, 5% pollen, and 5% other substances as inorganic salts and amino acids. 
This resin has been used by humanity since ancient civilizations like Egyptian, Assyrian, 
Greek, Roman, and Inca. In these days, a number of studies have confirmed important 
biological activities such as antibacterial, antifungal, antiviral, antioxidant, anti-
inflammatory, hepatoprotective, and antitumoral (for review see Bankova, 2009; Banksota et 
al., 2001; Castaldo & Capasso, 2002). 

The aspect, texture and the chemical composition of propolis is highly variable and depends 
on the climate, season, bee species and mainly the local flora which is visited by bees to 
collect resin (Markham et al., 1996). For this reason, comparing propolis samples from 
distinct regions might be the same as to compare extracts of two plants that belong to 
different taxonomical families (Bankova, 2005).  

Propolis from Europe is the best known type of propolis. In European regions with 

temperate climate bees obtain resin mainly from the buds of Poplus species and the main 

bioactive components are flavonoids (Greenaway et al., 1990). In tropical countries, the 

botanical resources are much more variable in respect to temperate zones, so bees find much 

more possibilities of collecting resins and hence the chemical composition of tropical 

propolis are more variable and distinct from European ones (Sawaya et al., 2011). Different 

compounds have been reported in tropical propolis such as terpenoids and prenylated 

derivatives of p-coumaric acids in Brazilian propolis (Marcucci, 1995), lignans in Chilean 

samples (Valcic et al., 1998), and polyisoprenylated benzophenones in Venezuelan, 

Brazilian, and Cuban propolis (Cuesta-Rubio et al., 1999; Marcucci, 1995). 

In order to be accepted officially into the main stream of the healthcare system and for 

industrial applications, propolis needs chemical standardization that guarantees its quality, 

safety, efficacy, and provenance. The chemical diversity mainly caused by the botanical 

origin makes the standardization difficult. Since the chemistry and biological activity of 

propolis depends on its geographical origin, a proper method to discriminate its origin is 

needed (Bankova, 2005).   

Chromatographic methods (HPLC, TLC, GC, e.g.) are largely used to identification and 

quantification of propolis compounds, but it its becoming clear that to separate and evaluate 

all constituents of propolis is an almost impossible task (Sarbu & Mot, 2011). Even thought 

the presence of the chemical markers are considered an acceptable method for quality 

control, not always is guarantee about what is stated by the product label, especially if the 

product has been spiked with the chemical markers. Besides, literature has demonstrated 

that is not possible to ascribe the pharmacological activity solely to a unique compound and 

until now no single propolis component has shown to possess anti-bacterial activity higher 

than total extract (Kujumgiev et al., 1999; Popova et al., 2004). Thus, a possibility is offered 

by the fingerprinting methods that can analyze in a non-selective way the propolis samples 

as a whole.  

Poplar propolis, for example, can be distinguished by UV-visible spectrophotometric 

determination of all three important components (flavones and flavonols, flavonones and 

dihydroflavonols, and total phenolics - Popova et al., 2004), but some constraints regarding 

such an analytical approach has been claimed for propolis from tropical regions (Bankova & 

Marcucci, 2000).  
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The search for faster screening methods capable of characterizing propolis samples of 

different geographic origins and composition has lead to the use of direct insertion mass 

spectrometric fingerprinting techniques (ESI-MS and EASI-MS), which has proven to be a 

fast and robust method for propolis characterization (Sawaya et al., 2011), although this 

analytical approach can only detect compounds that ionize under the experimental 

conditions. Similarly, Fourier transform infrared vibrational spectroscopy (FTIR) has also 

demonstrated to be valuable to chemically characterize complex matrices such as propolis 

(Wu et al., 2008).  

In order to achieve the goal of treat propolis sample as a whole than just be focused only in 
marker compounds, chemometric methods are being considered an important tool to 
analyze the huge data sets generated by non-selective analytical techniques such as UV-vis, 
MS, NMR, and FT-IR, generating information not only about chemical composition of 
propolis but also discriminating its geographical origin. 

Authentication of propolis material may be possible by a chemical fingerprint of it and, if 

possible, of its botanical sources. Thus, chemical fingerprinting, i.e., metabolomics and 

chemometrics, is an additional method that has been claimed to be included as a quality 

control method in order to confirm or deny the propolis sample being used for the 

manufacturing of a derived product of that resinous and complex matrix. 

Over the last decades, infrared (IR) vibrational spectroscopy has been well established as a 

useful tool for structure elucidation and quality control in several industrial applications. 

Indeed, the development of Fourier transform (FT) IR and attenuated total reflectance (ATR) 

techniques have also evolved allowing rapid IR measurements of organosolvent extracts of 

plant tissues, edible oils, and essential oils, for example (Damm et al., 2005; Lai et al., 1994; 

Schulz & Baranska, 2007). In consequence of the strong dipole moment of water, IR 

spectroscopy applications have mostly focused on the analysis of dried or non-aqueous 

plant matrices and currently IR methods are widely used as a fast analytical technique for 

the authentication and detection of adulteration of vegetable oils.  

ATR-FTIR spectroscopy was applied to propolis samples collected in the autumn-2010 and 

originated from nineteen geographic regions of Santa Catarina State (southern Brazil) in 

order to gain insights as to the chemical profile of those complex matrices. FTIR 

spectroscopy measures the vibrations of bonds within functional groups and generates a 

spectrum that can be regarded as a metabolic fingerprint. Similar IR spectral profiles (3000 – 

600 cm-1, figure 4) were found by a preliminary visual analysis for purpose of an exploratory 

overview of data, revealing typical signals of e.g., lipids (2910 – 2845 cm-1), monoterpenes 

(1732, 1592, 1114, 1022, 972 cm-1), sesquiterpenes (1472 cm-1), and sucrose (1122 cm-1 - Schulz 

& Baranska, 2007) for all the studied samples. However, we were not able to identify by 

visual inspection of the spectra a clear picture regarding a discriminating effect of any 

primary or secondary metabolites among the propolis samples. 

A FTIR spectrum is complex, containing many variables per sample and making visual 

analysis very difficult. Hence, to extract extra useful information, i.e., latent variables, from 

the whole spectra chemometric analysis was performed considering the whole FTIR data set 

using principal components analysis (PCA) for an exploratory overview of data. This 

method could reveal similarity/dissimilarity patterns among propolis samples, simplifying  
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Fig. 4. IR spectral profile of propolis samples (autumn, 2010) produced in southern Brazil, 
according to the geographic regions of origin in Santa Catarina State. IR spectra are shown 
from top to bottom following the geographic precedence, i.e. 19 counties, of the propolis 
samples: Angelina (ANG), Balneário Gaivotas (BG), Bom Retiro (BR1 and BR2), Caçador 
(Cç), Campo-Erê (CE), Canoinhas (CA), Campos Novos (CN), Descanso (DS), José Boiteux 
(JB), Porto União (PU), Serra Alta (SA), São Joaquim (SJ1 and SJ2), São José do Cerrito (SJC), 
Urupema (URU), Vidal Ramos (VR), Florianópolis (FLN), and Xaxim (XX). 

data dimensions and results interpretation, without missing the more relevant information 

associated to them (Fukusaki & Kobayashi, 2005; Leardi, 2003). The covariance was choose 

for matrix construction in PCA calculation, since all variables considered were expressed in 

the same unit. By doing so, the magnitude differences were maintained, i.e., data were not 

standardized and variables contribution to samples distribution along axes was direct 

proportional to their magnitude. For the purpose of the propolis chemical profile analysis 

this kind of information is thought to be very useful, because wavenumber with higher 

absorbances (higher metabolites concentration) contribute more significantly with objects 

distribution into PCA, introducing quantitative information beside the compositional 

information of the sample data. 

The principal component analysis (PCA) of the whole spectral data (3000 – 600 cm-1, 1700 

data points) revealed that PC1 and PC2 defined 88% of the variability from the original IR 

data and a peculiar pattern of lipids (2914 cm-1 and 2848 cm-1 - C-H stretching vibrations) for 

the samples from the northern region (NR) of Santa Catarina State. The climate in that 

region is typically mesothermic, humid subtropical with a mild summer and an annual 

temperature average of 17.2ºC – 19.4ºC. On the other hand, the propolis produced in the 
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highlands (1360m altitude, annual maximum and minimum temperatures average of 18.9ºC 

and 9.3ºC, respectively) were discrepant regarding their monoterpene (1114 cm-1 and 972 

cm-1 - -CH2) and sesquiterpene (1472 cm-1 -  CH2) compounds (Schulz & Baranska, 2007) – 

Figure 5.  In despite of NR1 and NR2 propolis samples have grouped in PC1- and PC2+, they 

differ somewhat in respect to their chemical composition, an effect attributed to the flora 

composition found in those regions, e.g., mostly Atlantic Rainforest in NR1 as NR2 shows 

extensive areas covered by artificial reforestations i.e., Eucalyptus spp and Pinus spp, 

furnishing distinct raw materials for propolis production.       

 
 
 

 
 

 

Fig. 5. Principal component analysis scores scatter plot of the FTIR data set in the spectral 
window of 3000–600 cm-1 wavenumber (1700 data points) of propolis samples produced in 
the southern Brazil (Santa Catarina State). NR1, NR2 and HL refer to propolis samples 
originated from northern and highland regions of Santa Catarina State. The calculations 
were carried out using The Unscrambler software (v. 9.1, Oslo - Norway). PC1 and PC2 
accounts for 88% of the variance preserved. 

Further chemometric analysis took into consideration the fact that propolis is a very well 
known source of phenolic compounds, e.g., phenolics acids and flavonoids. Indeed, 
phenolic compounds occur ubiquitously in most plant species and take part of the 
chemical constitution of propolis worldwide. IR spectroscopy allows to identify phenolic 
compounds since they demonstrate strong IR bands due to C-H wagging vibrations 
between 1260 – 1180 cm-1 and 900 – 820 cm-1 (Schulz & Baranska, 2007). The principal 

NR1 

NR2

HL 
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component calculations were performed for both 1260 – 1180 cm-1 and 900 – 820 cm-1 
spectral windows and PC1 and PC2 resolved about 96% of the spectral data variability. 
An interesting discrimination profile was detected where samples from the far-west (FW) 
region grouped distinctly in respect to northern (NR1) ones, which also differed from the 
highlands (HL) propolis samples. Such findings can be explained in any extension based 
on the flora composition of the studied geographic regions. In the northern and far-west 
regions of Santa Catarina State the Atlantic Rainforest is typically found, but the floristic 
composition varies according to the altitude, e.g., 240 m altitude – NR1 and 830 m – FW. 
Besides, as a mesothermic humid subtropical climate is found in NR1, the FW region is 
characterized by a temperate climate that determines a discrepant composition of plant 
species. Finally, the HL region (1360m altitude, temperate climate) is covered by the 
Araucaria Forest, where parana pine (Araucaria angustifolia, Gymnospermae, Araucariaceae) 
occurs as a dominant plant species. A. angustifolia produces a resinous exudate rich in 
guaiacyl type lignans, fatty acids, sterols (Anderegg & Rowe, 2009), phenolics, and 
terpenic acids that is thought to be used by honey bee (Apis mellifera) for the propolis 
production. Since the plant species populations influence the propolis chemical 
composition, the discrimination profile detected by ATR-FTIR coupled to chemometrics 
seems to be an interesting analytical approach to gain insights as to the effect of the 
climatic factors and floristic composition on the chemical traits of that complex  
matrix.    

3.2 Ultraviolet-visible scanning spectrophotometry 

Combination of UV-visible spectrophotometric wavelength scans and chemometric (PCA) 
analysis seems to be a simple and fast way to prospect plant extracts. This analytical 
strategy revealed to be fruitful for discrimination of habanero peppers according to their 
content of capsaicinoids, substances responsible for the pungency of their fruits (Davis et 
al., 2007).  

Chemometric analysis was performed considering the absorbance values of the total UV-

visible data set (200 m to 700 m, 450 data points) for the propolis samples in study, by 
using principal components analysis (PCA) for an exploratory overview of data.  

In a first approach, principal components analysis (PCA) was tested by both correlation and 
covariance matrices of calculations. If correlation is used, the data set is standardized (mean-
centered and columns scaled to the unit of variance), decreasing the effect of differences in 
magnitude between variables and leading to a distribution of objects (eigenvalues) with equal 
influence from all variables. On the other hand, if covariance is used, data is only mean-
centered; retaining its original scale. The resulting distribution is then determined either by 
composition and magnitude of variables, leading to a PCA representation more influenced 
by larger observed values (Manetti et al., 2004).  A similar distribution of objects was found 
for both correlation and covariance matrices in PC calculations, as PC1 and PC2 resolved 
91.2% and 96.3%, respectively of the variability of the spectrophotometric data set. Thus, the 
covariance matrix was chosen for PCA calculations, since all variables considered were 
expressed in the same unit. By doing so, the magnitude differences were maintained, i.e., 
data were not standardized and variables contribution to samples distribution along axes 
was direct proportional to their magnitude. For the purpose of the chemical profile analysis 
of the propolis samples this kind of information is thought to be very useful, because 
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wavelengths with higher absorbances (higher metabolites concentration) contribute more 
significantly with objects distribution into PCA, introducing quantitative information beside 
the compositional information of the sample data. 

Principal component analysis was performed using The Unscrambler software (v. 9.1, Oslo - 
Norway) and revealed mostly a distribution of the propolis samples along the PC1 axis (91% 
sample total variability), as PC2 (5% sample total variability) seemed to be lesser 
discriminator of the objects. A clear separation of the samples according to the east-west axis 
of Santa Catarina State could be found, where propolis produced near coastal regions (CR1 
and CR2) grouped in PC1+/PC2-, as the sample from the far-west region (FW) was detected 
in the opposite side of PC1 axis, along with the samples from the northern region (PU, Cç, 
and CA - Figure 6). Interestingly, propolis samples from the counties SJ, URU, BR (highlands 
counties), and ANG, which shown geographic proximities and a certain common floral 
composition, seemed to be similar in their chemical profiles as determined by UV-visible 
scanning spectrophotometry, grouping in PC1+/PC2+.  

 
 

 
 

Fig. 6. Principal component analysis scores scatter plot of the UV-visible data set in the 

spectral window of 200 m to 700 m (450 data points) of propolis samples produced in the 
southern Brazil (Santa Catarina State). CR1, CR2, and FW refer to propolis samples originated 
from coastal (BG and FLN Counties) and far-west (CE County) regions, respectively, of 
Santa Catarina State. The sample grouping of propolis with similar UV-visivel scanning 
profiles regarding their (poly)phenolic composition is detached in the PC1+/PC2+ 
quadrant. PC1 and PC2 resolved 96% of the total variability of the spectral data set. 

SJ, URU, BR, ANG 

CR1 

CR2 

FW 

PU, Cç, CA
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High loadings associated to the wavelengths 394 m, 360 m, 440 m, and 310 m seemed 
to influence the observed distribution of the propolis samples and could be associated to the 
presence of (poly)phenolic compounds. In fact, the λmax for the cinnamic acid and its 

derivatives is near 310-320 m as for the flavonols is usually around 360 m (Tsao & Deng, 
2004). Further chemical analysis of the total content of phenolics ad flavonoids in the 
propolis originated from the counties SJ, URU, BR, and ANG revealed similar contents, with 
average concentrations of 1411.52 µg/ml and  4.61 µg/ml of those secondary metabolites, 
respectively, in the hydroalcoholic (70: 30, v/v) extract. Such findings differed (P<0.05 – 
Tukey test) in respect to the concentrations detected for the propolis samples produced in the 
coastal (793.67 µg/ml – total phenolics and 2.82 µg/ml – flavonoids) and far-west  (952.97 

µg/mL – total phenolics and 0.59 g/ml flavonoids) regions of Santa Catarina State, 
corroborating the PCA results herein shown.  

 
 
 
 
 
 
 

 
 
 
 
 

Fig. 7. Dendrogram of propolis samples using average linkage with Bray-Curtis 
dissimilarity measure. Data calculations were based on the absorbance values for the UV-

visible spectral window of 200 m to 700 m of propolis samples produced in Santa 
Catarina State - southern Brazil, autumn-2010. 
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In order to check the chemical similarity pattern of propolis samples detected by PCA, 

further cluster analysis of the whole absorbance UV-vis data set, i.e., absorbance values of 

200 m to 700 m (450 data points), was performed by using the Unweighted Pair Group 

Method with Arithmatic Mean (UPGMA) based on Bray-Curtis dissimilarity coefficient. 

UPGMA is a simple agglomerative or hierachical clustering method used in for the creation 

of phonetic trees, i.e., phenograms, hierarchical trees or dendrograms that indicate the 

similarity degree among samples/objects of interest, so that observations in the same cluster 

are similar in some sense. In UPGMA method after two objects with the least dissimilarity 

fuse together an arithmetic average of the dissimilarity of this new cluster and the rest of the 

objects is calculated. This leads to a reduction in the size of the original dissimilarity matrix. 

The procedure continues with the dissimilarity matrix being correspondingly reduced. 

When the average between an object and a cluster is calculated, the method gives equal 

weights to the members of the clusters when averaging, i.e., unweighted. Thus, in the 

progressive reduction of the dissimilarity matrix, only relationships between groups are 

considered, which are given equal weighting and this leads to loss of information about the 

relationships between pairs of objects (Legendre, 1998; Singh, 2008). 

The hierarchical tree of the similarity of chemical profiles of the propolis samples is shown 

in figure 7. The findings suggest a resemblance of grouping as found by PCA calculations in 

respect to the SJ, URU, BR, and ANG samples, as well as for the propolis originated from the 

coastal (BG and FLN) and northern regions (CA, PU, and Cç). Additionally, UPGMA 

analysis also discriminate the propolis produced in the western (AC, XX, and CN) and far-

west regions.  

4. Conclusions 

The chemo(bio)diversity analysis of maize landraces and propolis produced in southern 

regions of Brazil was successfully assessed by using a typical metabolomic platform 

involving spectroscopic techniques (FTIR, 1H- and 13C-NMR, and UV-visible) and 

chemometrics. The huge amount of data afforded by those spectroscopic techniques was 

analyzed using multivariate statistical methods such as principal component analysis and 

cluster analysis allowing obtaining extra information on the metabolic profile of the complex 

matrices in study.  

The analytical approach described showed to be suitable when ones aim to discriminate 

maize flour samples from whole and degermed maize, an issue thought to be important for 

the food, cosmetic, and pharmaceutical industries regarding the usage and quality control 

process of that raw material. Similarly, the classification of maize landraces according to 

their starch traits is considered technologically relevant in order to optimize the usage of 

non-chemically modified starches in industrial process, for instance.  

The classification of Brazilian propolis as to their chemical profiles and geographic regions 

seems to be relevant because that biomass is typically quite complex, making difficult and 

expensive to perform a complete characterization in that sense. By doing so, the propolis 

produced in southern Brazil might be better evaluated as to their potential usage in cosmetic 

and pharmaceutical industry, taking into consideration their secondary metabolite 
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constituents, e.g., mono/sesquiterpenes and phenolics. The coupling of chemometrics-

spectroscopic techniques used is thought to be essential to allow detecting peculiar chemical 

traits of the propolis samples according to their geographic regions in a simple and fast way. 
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