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1. Introduction 

Diseases caused by foodborne pathogens have been a serious threat to public health and 

food safety for decades and remain one of the major concerns of our society. There are 

hundreds of diseases caused by different foodborne pathogenic microorganisms, including 

pathogenic viruses, bacteria, fungi, parasites, marine phytoplankton, and cyanobacteria, etc 

(Hui, 2001). Among these, bacteria such as Salmonella  spp.,  Shigella  spp.,  Escherichia  coli, 

Staphylococcus  aureus,  Campylobacter  jejuni,  Campylobacter  coli,  Bacillus  cereus,  Vibrio 

parahaemolyticus and Listeria monocytogenes are the most common foodborne pathogens 

(McClure, 2002), which can spread easily and rapidly under requiring food, moisture and a 

favorable temperature (Bhunia, 2008). 

Identification and detection pathogens in clinical, environmental or food samples usually 

involves time-consuming growth in selective media, subsequent isolation and laborious 

biochemical and molecular diagnostic procedures (Gates, 2011). Many of these techniques 

are also expensive or not sensitive enough for the early detection of bacterial activity (Adley, 

2006). The development of alternative analytical techniques that are rapid and simple has 

become increasingly important to reduce sample preparation time investment and to 

conduct real time analyses. 

It is well known that microorganisms can produce species-specific microbial volatile organic 

compounds (MVOCs), or odor compounds, which characterize as odor fingerprinting 

(Turner & Magan, 2004). Early in this research area, the question arose as to can we use odor 

fingerprinting like DNA fingerprinting to identify or detect microbe in pure culture or in 

food samples. To date it is still a very interesting scientific question. Many studies (Bjurman, 

1999, Kim et al., 2007, Korpi et al., 1998, Pasanen et al., 1996, Wilkins et al., 2003), especially 

those using analytical tools such as gas chromatography (GC) or gas chromatography 

coupled with mass spectrometry (GC–MS) for headspace analysis, have shown that 

microorganisms produce many MVOCs, including alcohols, aliphatic acids and terpenes, 

some of which have characteristic odors (Schnürer et al., 1999). 
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Fig. 1. Electronic nose devices mimic the human olfactory system.  

The electronic devices simulate the different stages of the human olfactory system, resulting 
in volatile odor recognition, which can now be used to discriminate between different 
bacterial infections. (Turner & Magan, 2004)  

During the past three decades there has been significant research interest in the 

development of electronic nose (E-nose) technology for food, agricultural and 

environmental applications (Buratti et al., 2004, Pasanen et al., 1996, Romain et al., 2000, 

Wilkins et al., 2003). The term E-nose describes a machine olfaction system, which 

successfully mimics human olfaction and intelligently integrates of multitudes of 

technologies like sensing technology, chemometrics, microelectronics and advanced soft 

computing (see Fig. 1). Basically, this device is used to detect and distinguish complex odor 

at low cost. Typically, an electronic nose consists of three parts: a sensor array which is 

exposed to the volatiles, conversion of the sensor signals to a readable format, and software 

analysis of the data to produce characteristic outputs related to the odor encountered. The 

output from the sensor array may be interpreted via a variety of chemometrics methods 

(Capone et al., 2001, Evans et al., 2000, Haugen & Kvaal, 1998) such as principal component 

analysis (PCA), discriminant function analysis (DFA), cluster analysis (CA), soft 

independent modelling by class analogy (SIMCA), partial least squares (PLS) and artificial 

neural networks (ANN) to discriminate between different samples. The data obtained from 

the sensor array are comparative and generally not quantitative or qualitative in any way. It 

has the potential to be a sensitive, fast, one-step method to characterize a wide array of 

different volatile chemicals. Since the first model of an intelligent electronic gas sensing 

model was described, a significant amount of gas sensing research has been focused on 

several industrial applications. 

Recently, some novel microbiological applications of E-nose have been reported, such as the 
characterization of fungi (Keshri et al., 1998, Pasanen et al., 1996, Schnürer et al., 1999), 
bacteria (Dutta et al., 2005, Pavlou et al., 2002a) and the diagnosis of disease (Gardner et al., 
2000, Pavlou et al., 2002b, Zhang et al., 2000). It is more and more clear that E-nose 
techniques coupled with different chemometrics analyses of the odor fingerprinting offer a 
wide range of applications for food microbiology, including identification of foodborne 
pathogen. 
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2. Detection strategies 

Several E-nose devices have been developed, all of which comprise three basic building 
blocks: a volatile gas odor passes over a sensor array, the conductance of the sensors 
changes owing to the level of binding and results in a set of sensor signals, which are 
coupled to data-analysis software to produce an output (Turner & Magan, 2004). 

The main strategy of foodborne pathogen identification based on E-nose, which is composed 
of three steps: headspace sampling, gas sensor detection and chemometrics analysis  
(see Fig. 2).  

 

Fig. 2. Electronic nose and chemometrics for the identification of foodborne pathogen. The 
main strategy of foodborne pathogen identification based on E-nose. 

2.1 Headspace sampling 

Before analysis, the bacterial cultures should be transferred into standard 20 ml headspace 
vials and sealed with PTFE-lined Teflon caps to equilibrate the headspace. Sample handling 
is a critical step affecting the analysis by E-nose. The quality of the analysis can be improved 
by adopting an appropriate sampling technique. To introduce the volatile compounds 
present in the headspace (HS) of the sample into the E-nose’s detection system, several 
headspace sampling techniques have been used in E-nose. Typically, the methods of 
headspace sampling (Ayoko, 2004) include static headspace (SHS) technique, purge and trap 
(P&T) technique, stir bar sorptive extraction (SBSE) technique, inside-needle dynamic 
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extraction (INDEX) technique, membrane introduction mass spectrometry (MIMS) 
technique and solid phase micro extraction (SPME) technique. 

Unlike the other techniques, SPME has a considerable concentration capacity and is very 
simple because it does not require especial equipment. The principle involves exposing a 
silica fibre covered with a thin layer of adsorbent in the HS of the sample in order to trap the 
volatile components onto the fibre. The adsorbed compounds are desorbed by heating and 
introduced into the detection system. A SPME sampler consists of a fused silica fiber that is 
coated by a suitable polymer (e.g. PDMS, PDMS/divinylbenzene, carboxen/PDMS) and 
housed inside a needle. The fiber is exposed to headspace volatile and after sampling is 
complete, it is retracted into the needle. Apart from the nature of the adsorbent deposited on 
the fiber, the main parameters to optimize are the equilibration time, the sample 
temperature and the duration of extraction. Compared with other sampling methods, SPME 
is simple to use and reasonably sensitive, so it is a user-friendly pre-concentration method. 

In our studies, the headspace sampling method of E-nose was optimized for MVOCs 

analysis. The samples were placed in the HS100 auto-sampler in arbitrary order. The 

automatic injection unit heated the samples to 37°C with an incubation time of 600 seconds. 

The temperature of the injection syringe was 47°C. The delay time between two injections 

was 300 seconds. Then the adsorbed compounds are desorbed by heating and introduced 

into the detection system (Yu Y. X., 2010a, Yu Y. X., 2010b).  

2.2 Gas sensor detection 

The most complicated part of electronic olfaction process is odor capture and sensor 

technology to be deployed for such capturing. Once the volatile compounds of samples are 

introduced into the gas sensor detection system, the sensor array is exposed to the volatile 

compounds and then the odor fingerprint of samples is generated from sensor respond. By 

chemical interaction between the volatile compounds and the gas sensors, the state of the 

sensors is altered giving rise to electrical signals that are registered by the instrument of E-

nose. In this way the signals from the individual sensor represent a pattern that is unique for 

the gas mixture measured and those data based on sensors is transformed to a matrix. The 

ideal sensors to be integrated in an electronic nose should fulfill the following criteria 

(Barsan & Weimar, 2001, James et al., 2005): high sensitivity toward the volatile chemical 

compounds, that is, the chemicals to be detected may be present in the concentration range 

of ppm or ppb, and the sensor should be sufficiently sensitive to small concentration level of 

gaseous species within a volatile mixture, similar to that of the human nose (down to 10−12 

g/ml); low sensitivity toward humidity and temperature; medium selectivity, that is, they 

must respond to a range of different compounds present in the headspace of the sample; 

high stability; high reproducibility and reliability; high speed of response, short reaction and 

recovery time, that is, in order to be used for online measurements, the response time of the 

sensor should be in the range of seconds; reversibility, that is, the sensor should be able to 

recover after exposure to gas; robust and durable; easy calibration; easily processable data 

output; and small dimensions. 

The E-nose used in our studies is a commercial equipment (FOX4000, Alpha M.O.S., 
Toulouse, France), with 18 metal oxide sensors (LY2/AA, LY2/G, LY2/gCT,  LY2/gCTl, 
LY2/Gh, LY2/LG,  P10/1,  P10/2, P30/1, P30/2, P40/1, P40/2,  PA2, T30/1, T40/2, T70/2, 
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T40/1, TA2), and this sensor array system is used for monitoring the volatile compounds 
produced by microorganism, and so on. The descriptors associated with the sensors are 
shown in Table 1. FOX4000 E-nose assay measurements showed signal with maximum 
intensities changing with the type of samples, which indicate that discrimination is 
obtained. 

 
 
 

Sensors Volatile description Sensors Volatile description 

LY2/LG 
Fluoride, chloride, oxynitride, 

sulphide 
P30 /1 

Hydrocarbons, ammonia, 
ethanol 

LY2 /G 
Ammonia, amines, Carbon 

oxygen compounds 
T70 /2 

Toluene, xylene, carbon 
monoxide 

LY2 /AA Alcohol, acetone, ammonia T40 /1 Fluorine 
LY2 /GH Ammonia, amines compounds P40 /1 Fluorine, chlorine 

P40 /2 
Chlorine, hydrogen sulfide, 

fluoride 
LY2 /gCTL hydrogen sulfide 

P30 /2 Hydrogen sulphide, ketone LY2 /gCT Propane, butane 

T30 /1 
Polar compound, hydrogen 

chloride 
T40 /2 chlorine 

P10 /1 
Nonpolar compound: 

hydrocarbon, Ammonia, chlorine 
PA /2 

Ethanol, ammonia, amine 
compounds 

P10 /2 
Nonpolar compound: Methane, 

ethane 
TA /2 ethanol 

 

Table 1. Sensor types and volatile descriptors of FOX4000 E-nose. 

Each sensor element changes its electrical resistance (Rmax) when exposed to volatile 

compounds. In order to produce consistent data for the classification, the sensor response is 

presented with a volatile chemical relative to the baseline electrical resistance in fresh air, 

which is the maximum change in the sensor electrical resistance divided by the initial 

electrical resistance, as follows: 

Relative electrical resistance change = ( Rmax − R0) / R0 

where R0 is the initial baseline electrical resistance of the sensor and Rmax − R0 is the 

maximum change of the sensor electrical resistance. The baseline of the sensors was 

acquired in a synthetic air saturated steam at fixed temperature. The relative electrical 

resistance change value was used for data evaluation because it gives the most stable result, 

and is more robust against sensor baseline variation (Siripatrawan, 2008). 

Data of the relative electrical resistance changes from the 18 sensors can combine with 

every sample to form a matrix (see Fig. 2: The library data base) and the data is without 

preprocessing prior to chemometrics analysis. The sensor response is stored in the 

computer through data acquisition card and these data sets are analyzed to extract 

information. 
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2.3 Chemometrics analysis 

The matrix of signal is interpreted by multivariate chemometrics techniques like the PCA, 
PLS, ANN, and so on. Samples with similar odor fingerprinting generally give rise to similar 
sensor response patterns, while samples with different odor fingerprinting show differences 
in their patterns. The sensors of an E-nose can respond to both odorous and odorless volatile 
compounds. 

These various chemometrics methods are used in those works, according to the aim of the 
studies. Generally speaking, the chemometrics methods can be divided into two types: 
unsupervised and supervised methods(Mariey et al., 2001). The objective of unsupervised 
methods is to extrapolate the odor fingerprinting data without a prior knowledge about the 
bacteria studied. Principal component analysis (PCA) and Hierarchical cluster analysis 
(HCA) are major examples of unsupervised methods. Supervised methods, on the other 
hand, require prior knowledge of the sample identity. With a set of well-characterized 
samples, a model can be trained so that it can predict the identity of unknown samples. 
Discriminant analysis (DA) and artificial neural network (ANN) analysis are major 
examples of supervised methods. 

PCA is used to reduce the multidimensionality of the data set into its most dominant 
components or scores while maintaining the relevant variation between the data points. 
PCA identifies the natural clusters in the data set with the first principal component (PC) 
expressing the largest amount of variation, followed by the second PC which conveys the 
second most important factor of the remaining analysis, and so forth(Di et al., 2009, Huang 
et al., 2009, Ivosev et al., 2008). Score plots can be used to interpret the similarities and 
differences between bacteria. The closer the samples are within a score plot, the more similar 
they are with respect to the principal component score evaluated(Mariey et al., 2001). In our 
studies, each sample data of 18 sensors is then compared to the others in order to make 
homogeneous groups. A scatter plot can then be drawn to visualize the results, each sample 
being represented by a plot. 

3. Application of E-nose and chemometrics for bacteria identification 

With the success of the above applications of the E-nose have been published, the authors 
were interested in determining whether or not an E-nose would be able to identify bacteria. 
A series of experiments were designed to determine this. In this part, bacteria identification 
at different levels (genus, species, strains) was cited as an example to illustrate using this 
integrated technology to foodborne bacteria effective identification. 

3.1 At genus level 

In this study, three bacteria, Listeria monocytogenes, Staphylococcus lentus and Bacillus cereus, 
which from three different genus, were investigated for the odor fingerprint by E-nose. The 
result of PCA (Fig.3a) shows that, the fingerprints give a good difference between the blank 
culture and the bacterial culture, and the three bacteria can be classified from each other by 
the odor fingerprints. Using the cluster analysis to represent the sensor responses (Fig. 3b), it 
is also possible to obtain a clear separation between the blank control and culture inoculated 
with bacteria. And the CA result also reveals that successful discrimination between the 
bacteria at different genus is possible(Yu Y. X., 2010a). 
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Fig. 3(a). Principal components analysis (PCA) for the discrimination of three bacteria from 
different genus on the basis of E-nose. The plot displays clear discrimination between the 
four groups, accounting for nearly 99% of the variance within the dataset. 

 

Fig. 3(b). Cluster analysis (CA) for the discrimination of three bacteria from different genus 
on the basis of E-nose. (S. lentus: SL1-SL5, B. cereus: BC1-BC5, L. monocytogenes: LM1-LM5, 
control blank culture: CT1-CT5). 
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3.2 At species level 

In this study, using the same collection methodology, the E-nose was tested for its ability to 

distinguish among bacterial pathogens at species levels. Four species bacteria selected from 

Pseudomonas sp, named Pseudomonas fragi, Pseudomonas fluorescens, Pseudomonas putida and 

Pseudomonas aeruginosa, were investigated for the odor fingerprint by E-nose. It is clear that 

the E-nose was able to distinguish amongst all specimens tested. The PCA result in Fig.4(a) 

shows a representative experiment, where individual species of bacteria clustered in 

individual groups, separate from each other and the bacteria Pseudomonas fragi is given a 

great difference form the three other bacteria by the odor fingerprints. The result of cluster 

analysis in Fig. 4(b) also reveals that successful discrimination between the different bacteria 

at strains level is possible. 

 
 
 
 
 
 
 

 
 
 
 

Fig. 4(a). Principal components analysis (PCA) for the discrimination of four different 
species of Pseudomonas sp on the basis of E-nose. The plot displays clear discrimination 
between the four groups, accounting for nearly 99% of the variance within the dataset. 
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(P. fragi: Pfr1-Pfr4, P. fluorescens: Pfl1-Pfl4, P. putida: Ppu1-Ppu4, P. aeruginosa: Pae1-Pae4). 

Fig. 4(b). Cluster analysis (CA) for the discrimination of four different species of 
Pseudomonas sp on the basis of E-nose.  

3.3 At strains level 

The next set of experiments involved testing the integrated method to see whether it could 

correctly differentiate bacteria samples as different strains. In this study, four strains of 

Vibrio parahaemolyticus, named V. parahaemolyticus F01, V. parahaemolyticus F13, V. 

parahaemolyticus F38 and V. parahaemolyticus F54, were compared with the odor fingerprint 

by E-nose. As shown in a representative data set in Fig. 5(a), the four strains of V. 

parahaemolyticus are separated from each other. However, the result from cluster analysis in 

Fig. 5(b) shows that some overlap appeared between V. parahaemolyticus F01 and V. 

parahaemolyticus F13, and it indicate that the odor fingerprints of these two strains may be 

too similar to identify by this method. 
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Fig. 5(a). Principal components analysis (PCA) for the discrimination of four different 
strains of V. parahaemolyticus on the basis of E-nose. The plot displays clear discrimination 
between the four groups, accounting for nearly 99% of the variance within the dataset. 

4. Future perspectives 

Electronic nose technology is relatively new and holds great promise as a detection tool in 

food safety area because it is portable, rapid and has potential applicability in foodborne 

pathogen identification or detection. On the basis of the work described above, we have 

demonstrated that the E-nose integrated with chemometrics can be used to identify 

pathogen bacteria at genus, species and strains levels. 

As to know, bacteria respond to environmental triggers by switching to different 

physiological states. If such changes can be detected in the odor fingerprints, then E-nose 

analysis can produce information that can be very useful in determining virulence, 
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(V.p F01: F011-F014, V.p F13: F131-F134, V.p F38: F381-F384, V.p F54: F541-F544). 

Fig. 5(b). Cluster analysis (CA) for the discrimination of four different strains of V. 
parahaemolyticus on the basis of E-nose.  

conducting epidemiological studies, or determining the source of a food poisoning 

outbreak. Of course the ability to produce information on the physiological state of a 

microorganism offers many potential benefits. Nevertheless, a variety of different 

fingerprints, produced under a variety of growth conditions, must be developed for each 

pathogen, for inclusion in the reference database. To avoid this complication, we should 

culture the pathogens under controlled conditions. Otherwise, the identification algorithm 

must be capable of sorting through them all, to find a single, reliable, positive identification 

for the unknown. 

Recently developed chemometrics algorithms are particularly suited to the rapid analysis 
and depiction of this data. Chemometrics is one approach that may offer novel insights into 
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our understanding of the difference of microbiology. Adopting appropriate chemometrics 
methods will improve the quality of analysis. 

Odor fingerprinting method based on E-nose is still in its infancy. Many recent technological 
advances, which are outside the scope of this chapter, can be used to transform the odor 
fingerprinting concept into user-friendly, automated systems for high-throughput analyses. 
The introduction of smaller, faster and smarter instrumentation of E-nose to the market 
could also depend much on the embedding of chemometrics. In addition, more and more 
classification techniques based on odor fingerprinting may be developed to classify the 
pathogens into exact levels such as genus, species and stains. Further investigation may 
contribute to make a distinction between the pathogen and non-pathogen bacterial.  

In short, E-nose integrated with chemometrics is a reliable, rapid, and economic technique 

which could be explored as a routine diagnostic tool for microbial analysis. 
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