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Surface Characterization and Interfacial 
Adhesion in MEMS Devices 

Y. F. Peng and Y. B. Guo 
Xiamen University 

China 

1. Introduction 

The characteristic size of MEMS is ranging from atomic and molecular scales to micrometer 

and several millimeters scales. Components that reach micro-scale size have a high surface 

to volume ratio, which leaves them be highly subjected to micro-scale effect and susceptible 

to surface forces. Devices that utilize MEMS technology will often having mating surfaces. 

Adhesion force can arise from any number of phenomenon such as van der Waals, capillary, 

ionic and molecular forces. The components used in MEMS structures are very light (on the 

order of a few micrograms) and operate under very light loads (on the order of a few 

micrograms to a few milligrams). Surface forces between the adjacent surfaces are becoming 

dominant over the inertial force in MEMS devices. Because of the micro-sized component, 

the adhesion forces can pull the adjacent compliant structure into contact and result the 

interfacial adhesion, which may cause the device-malfunction to a great extent. The 

operation and performance of lightly loaded micro/nano components in MEMS are highly 

dependent on the adhesive interactions between mating surfaces. In a word, it is important 

that the mechanisms of interfacial adhesion should be explained, and separating techniques 

should be added to the design of MEMS scale components to ensure there is no unwanted 

contact. Furthermore, the interfacial adhesion between two adjacent mating surfaces is 

determined by the interaction of rough surfaces. The surface is all rough though in different 

range. The interactions among different asperities are complicated because the surface 

topography is consisting of so many asperities. It stands to reason that the proper surface 

characterization is necessary to elucidate the interfacial adhesion. 

The interfacial adhesion is the science and technology of two interacting surfaces in relative 
motion and of related subjects and practices. It is also valuable in the fundamental 
understanding of interfacial phenomena to provide a bridge between science and 
engineering in MEMS. The differences between the conventional or macro-contact and 
micro/nano-adhesion are contrasted in Table 1. In macro-contact mechanics, tests are 
conducted on components with relatively large mass under heavily loaded conditions. In 
these tests, contacting between mating surfaces is inevitable and the bulk properties of 
mating components dominate the contacting performance. In micro/nano-adhesion, 
measurements are made on components, at least one of the mating components, with 
relatively small mass under lightly loaded conditions. The interaction is not limited only to 
the contacting condition. In this situation, though without contact, the attractive interaction 
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between mating opposite surfaces at small approaching distance can’t be neglected. Some of 
the smaller asperities on the micro-sized surface will be stretched, while some of the taller 
ones will be compressed through contact. The classical contact mechanics is no longer valid 
in analyzing the interaction of mating micro/nano-sized surface. It is necessary to explore 
methods to solve the interfacial adhesion problems in MEMS devices. 
 

Macro-contact mechanics Micro/Nano adhesion 

Condition 

Contact (Inevitable) 

Condition 

Contact or non-contact 

Large mass Small mass 

Heavy load Light or zero load 

Method 
Hertz theory 

Method 
Need to consider the adhesion of 
surface forces Linear elastic mechanics 

Target Bulk material Target 
Surface (Few atomic layers to 
several μm depths) 

Table 1. Comparison between macro-contact and micro/nano-adhesion 

In this chapter, we will take a close look at surface geometric structure, or surface 
topography, and surface forces to elucidate the adhesion problems between mating micro-
sized MEMS surfaces. Firstly, the complexities of the surface microstructure devices are 
discussed. Secondly, several typical surface-measurement instruments are introduced. 
Thirdly, the techniques to characterize the complex micro-scale surfaces are presented. 
Finally, the surface forces are described in a summary form, and then the adhesion models 
are given to interpret the adhesive interaction of MEMS devices. 

2. Characterization and modeling of microstructure surface 

2.1 Complexities of surface microstructure 

Whether a surface is rough or smooth, the answer is — it depends on a roughness sensors 
used (Bushan, 1999)! The problem of scale-dependent roughness is very intrinsic to solid 
surfaces. For most solid surfaces it is observed that under repeated magnification, more and 
more roughness keeps appearing until the atomic scales are reached where roughness 
occurs in the form of atomic steps (Williams & Bartlet, 1991) as shown graphically in Fig.1. 
The roughness often appears random and disordered, ranges from around 10–4m (0.1 mm) 
to about 10–9m (1 nm) and does not seem to follow any particular structural pattern 
(Thomas, 1982). The randomness and the multiple roughness scales both contribute to the 
complexity of the surface geometric structure.  
 

Surface profile
Repeated magnification

Atomic scales

 

Fig. 1. Scale-dependent of surface roughness (Bhushan, 1999). 
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2.2 Surface measurement techniques 

Because of the complexities of surface microstructure, the measuring techniques and 

instruments are important to achieve the surface information to characterize and model the 

surface microstructure in MEMS devices. The accuracy of traditional contact (probing) as 

well as noncontact techniques has been perfected to a level allowing measurement of 

roughness in the nanometer range (Fig.2). The most accurate profilometer probes allow 

measurement of summit heights of several Angstroms (Bennet & Dancy, 1981; Bhushan et 

al., 1988). Yet, the comparatively poor lateral (horizontal) resolution significantly limits 

application of these techniques to the nanometer topographies when the distance between 

asperities is much less than the solution or 0.1-1μm. The development of techniques using 

probes smaller than the radius of the probing needle or the light wavelength makes it 

possible to extend the spectrum of surfaces studied (Myshkin et al., 2003). The scanning 

electron microscope (SEM) technique can be used to gauge topography with a comparable 

resolution both vertically and laterally by interpreting the emission intensity of the 

secondary electrons the topographic pattern (Myshkin et al., 1992). The scanning tunneling 

microscope (STM) has a still finer probe, which is the electron flux tunneled between the 

target surface and the needle tip. In this case the surface topography resolution is 0.01 and 

0.1 nm in the vertical and lateral directions, respectively (Binnig & Rohrer, 1982). Hence, the 

STM technique and others resulting from its progress make it possible to use this approach 

for more accurate topographic investigations of solids on the nanoscale. Significant 

prospects are connected with the application of atomic force microscope (AFM) (Sarid, 1991) 

in which atomic-molecular surface effects are registered.  

 

 

Fig. 2. Diagram of the height and spacing parameters and ranges of vertical-lateral 
resolution for different methods of roughness measurement (Myshkin et al., 2003). 

The scanning tunneling microscope (STM) developed by Dr. Gerd Binnig and Heinrich 
Rohrer has revolutionized the study of surfaces and is rapidly becoming a required tool in 
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almost every surface characterization laboratory. It is the first instrument capable of directly 
obtaining three-dimensional images of solid surfaces with atomic resolution (Binnig et al., 
1982). Today’s STMs can be used in the ambient environment for atomic-scale imaging of 
surfaces. Generally, samples to be imaged with STM must be conductive enough to allow a 
few nanoamperes of current to flow from the bias voltage source to the area to be scanned. 
In many cases, nonconductive samples can be coated with a thin layer of a conductive 
material to facilitate imaging. AFM can be used for measurement of all engineering surfaces 
which may be either electrically conducting or insulating. AFM has now become a main 
surface profiler for topographic measurements on micro- to nanoscale (Bhushan & 
Blackman, 1991; Oden et al., 1992; Bhushan et al, 1997). STMs, AFMs, and their 
modifications can be used at extreme magnifications ranging from 10-3 to 10-9× in x-, y-, and 
z-directions for imaging macro- to atomic dimensions with high-resolution information and 
for spectroscopy (Bushan, 1999). These instruments can be used in any sample environment 
such as ambient air (Binnig & Smith, 1986), various gases (Burnham et al., 1990), liquid 
(Marti et al., 1987; Binggeli et al., 1993), vacuum (Binnig et al., 1982), low temperatures (Hug 
et al., 1993), and high temperatures. To decrease the wear of brittle tip and extend its 
application in biological research, the carbon nanotube (CNT) has been used to probe the 
sample instead by adhered it on top of a tip (Fang et al., 2008) in AFM. The resolution ratio 
can reach about 3nm with functional single-walled CNT in scanning the grease double 
molecular membranes, while it is about 15nm for conventional Si and of Si3N4 (Yamachika 
et al., 2004). Fig.3 shows such a tip-CNT probe and the captured image. 
 

          

Fig. 3. AFM CNT probe and captured image (Fang et al., 2008); (a). SEM images of CNT 
probe  (b). Images of a styrene-ethylene/butylene-styrene copolymer 

2.3 Surface characterization techniques 

The characterization of the surface roughness on the micro/nanoscale needs more thorough 

investigation. This is essential for solving interfacial adhesion phenomena. The randomness 

suggests that the statistical methods of roughness characterization should be adopted to 

determine the average dimensions of topographical elements forming the surfaces of solids. 

In addition, a rough surface involves so many length scales ranges from atomic/molecular 

level to nano or micro scale, then the characterization techniques must be independent of 

any length scale. In this section, both the statistical and fractal method to characterize 

surface roughness are presented in a way that is suitable to model adhesion of mating 

MEMS devices.  
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2.3.1 Probability height distribution  
In “Handbook of Mirco/Nano Tribology”, Bhushan has summarized various theories of 
probability distribution of rough surface (Bhushan, 1999). One of the characteristics of a 
rough surface is the probability distribution (Papoulis, 1965). It is often found that the 
normal or Gaussian distribution fits the experimentally obtained probability distribution 
quite well (Thomas, 1982; Bhushan, 1990). In addition, it is simple to use for mathematical 
calculation (Greenwood & Williamson, 1966; Chang et al., 1987). The bell-shaped normal 
distribution (Papoulis, 1965) which has a variance of unity is given as  

 
 2

1
( ) exp

22

mz z
g z z



 
      
  

 (1) 

where mz z   is the nondimensional mean height,   is the standard deviation. The mean 

height and the standard deviation can be found from a roughness measurement ( , )z x y  as 
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1 1
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( , ) ( , )

yx
x y
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L L

m i j m
x y x y i j

z x y z dxdy z x y z
L L N N


 

        (3) 

Here, xL and yL  are the lengths of surface sample, whereas xN  and yN  are the number of 

points in the x and y lateral directions, respectively. The integral formulation is for 
theoretical calculations, whereas the summation is used for calculating the values from finite 
experimental data. 
Although used extensively, the normal distribution has limitations in its applicability. The 
normal distribution near the tail is not an accurate representation of real surfaces. This is an 
important point since it is usually the tail of the distribution that is significant for calculating 
the real area of contact (Bushan, 1999). The inverted chi-squared (ICS) distribution fit the 
experimental data much better near the tail of the distribution (Brown & Scholz, 1985). This 
is given for zero mean and in terms of nondimensional height, z , as 

        
4

( 2) 1
max max max

2
2

( 2)
g z z z e z z z z







     


 (4) 

which has a variance of 2  and a maximum height max 2z  . The advantage of the ICS 

distribution is it has a finite maximum height, as does a real surface, and has a controlling 

parameter , which gives a better fit to the topography data. It is found that as   increases, the 

ICS distribution tends toward the normal distribution (Bushan, 1999; Brown & Scholz, 1985). 

Berry and Hannay (Berry & Hannay, 1978) suggested that the variance can be represented as 
follows: 

 2 nL   (5) 

where L  is the length of the sample and n varies between 0 and 2. 
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If the exponent n in Equation (5) is equal to zero, then the rough surface is generally to be a 
statically stationary process. This means that the measured roughness sample is a true 
statistical representation of the entire rough surface. However, n is not equal to zero in the 
general cases. Then a rough surface is assumed to be a nonstationary random process and 
the standard deviation is scale dependent, which arises from the probability distribution of a 
small surface region may be different from that of the larger one. The gathered roughness 
measurements of a wide range surfaces by Sayles and Thomas (Sayles & Thomas, 1978) have 
shown that the variance of the height distribution is a function of the sample length and in 

fact suggested that the variance varied as 2 L  . This behavior implies that the surface is a 

nonstationary process and any length of the surface cannot fully represent the surface in a 
statistical sense.  

Other statistical parameters, such as rms slope    and rms curvature    proposed by 

Nayak (Nayak, 1971, 1973) are also used in surface roughness characterization (Greenwood 

& Williamson, 1966; Nayak, 1973) and to model the elastic-plastic contact of isotropic and 

anistropic solid bodies (McCool, 1986). The question is that the determination of  ,    and 

   depends on the sample size, instrument resolution, and experimental filter used to 

acquire the topography data (Yan & Komvopoulos, 1998), that is whether the rms 

parameters vary with the statistical sample size or the instrument resolution. Given a rough 

surface, an instrument with resolution   will measure the surface height of points that are 

separated by a distance  . If   is reduced, new locations on the surface are accessed. Due to 

the multiple scales of roughness present, a reduction in   makes the measured profile look 

different for the same surface. It is thus necessary to obtain some scale-independent 

techniques for roughness characterization. 

2.3.2 Fractal techniques 

It is found that the power spectra of engineering surfaces produced by random processes, 
such as cleavage, solidification, vapour deposition, and directionally unbiased machining, 
have been obaserved to follow inverse power laws over a wide range of length scales 
(Majumdar & Tien, 1990). This is an inherent property of fractal geometry illustrating its 
potential to represent surface features from the microscale down to the nanoscale (Yan & 
Komvopoulos, 1998). Fractal geometry, pioneered by Manderbrot (Mandelbrot, 1967) 
when studying the problem of the length of Britain coastline, can be observed in various 
natural phenomena, such as precipitation, turbulence, and surface topography, and is 
characterized by continuity, nondifferentiablity, and self-affinity. Recent works (Kardar et 
al., 1986; Gagnepain, 1986; Majumdar & Bhushan, 1990) have shown that the fractal 
geometry can be utilized to develop a scale-independent characterization technique of the 
fractallike behavior for a rough surface. The mathematical properties of fractal geometry 
can be satified by the Weierstrass-Mandelbrot (W-M) function given by (Berry & Lewis, 
1980) 

  ( 2)( ) 1
n

niD n i xw x e e     (6) 

where w is a complex function of the real variable x . A fractal profile ( )z x  can be obtained 

as the real part of ( )w x  
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( 2)

( ) Re ( )

cos cos( )D n n
n n

n

z x z x

   








      (7) 

where D ( 1 2D  ) is the fractal dimension of the profile, is a frequency index, n  is a 

random phase, and  ( 1  ) is a parameter that determines the density of frequencies in 

the profile, which is often chosen to be 1.5. The right hand side of Equation is a 

superposition of cosine function with geometrically increasing frequencies. The random 

phase n  is used to prevent the surface profile. The approximate continuous power 

spectrum, ( )P  , of the profile ( )z x  given be Equation 

 
(5 2 )

1
( )

lnD
P 

   (8) 

is an inverse power function of the spatial frequency,  , and has been observed to hold for 

many engineering surfaces.  

The two-variable function developed by Ausloos and Berman (Ausloos & Berman, 1980) can 

be used to model fractal surfaces exhibiting corrugations in all directions. The height 

function of a fractal surface can be expressed 

     
1

( 3)2

, ,
1

ln
( , ) cos cos cos

M Dn n
m m n m m n

m n

z A
M

        
 

 

           
   (9) 

where D ( 2 3D  ) is the fractal dimension of the surface. The physical significance of D  is 

the extent of space occupied by the rough surface, with larger D  values corresponding to 

denser profiles. For isotropic surfaces, the value of D  can be determined from the slope of 

the log-log plot of power spectrum (Wang & Komvopoulos, 1994; Gagnepain & Rogues-

Carmes, 1986). The parameter M denotes the number of supposed ridges used to construct 

the surface. The anisotropy of the surface geometry is controlled by the magnitude of mA . 

For isotropic surface, mA A  for all m  values; for anisotropic surfaces, mA  varies with m . 

The arbitrary angle m  is used to offset the ridges in the azimuthal direction. The parameter 

  is a wave number related to the sample size, m M  . The frequency index n  is a finite 

value. The lowest frequency of index minn  is equal to 1 L  and it can also be set equal to 

zero. The upper limit of n  is 

 max

log( )
int

log
sL L

n


 
  

 
  (10) 

where  int ...  denotes the maximum integer value of the number in the brackets, sL is the 

cut-off length of sample. 

By introducing a new length parameter G  such that G , the surface height function of 3D 

isotropic surfaces can be obtained 
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The Equation (11) can be used to represent a 3D isotropic fractal surface. This function of 

surface height provides a deterministic means of generating stochastic rough surfaces. The 

only unknown variables in Equation (11) are the scale dependent fractal parameters G  and 

D , which can be determined experimentally. Therefore, this fractal approach has the 

inherent capability of representing surfaces at various length scales, different from those at 

which the measurements were made (Yan & Komvopoulos, 1998).  

3. Surface forces and adhesion mechanics 

Surface microstructures typically range from 0.1 to several μm in thickness with lateral 

dimensions of 10-500μm, and lateral and vertical gaps to other structures or to the substrate 

of around 1μm (Maboudian & Howe, 1997). The large surface area and small offset from 

adjacent surfaces makes these microstructures especially vulnerable to adhesion upon 

contact. The causes of strong adhesion can be traced to the interfacial forces existing at the 

dimensions of microstructures. These include capillary, electrostatic, van der Waals, and 

chemical forces. 

3.1 Surface forces and adhesion work 

There are a wide variety of surface forces (Israelachvili, 1992). Capillary, electrostatic and 

van der Waals forces can each contribute to adhesion under different circumstances in 

MEMS devices.  

3.1.1 van der Waals forces 

Van der Waals force is the force acting between atoms or small molecules, which includes 
dispersion force，Debye force and dipole-dipole force. The interaction potential between 

atoms or molecules of each force is a function of 61 r , which r  is the separation between 

atoms. For two flat parallel surfaces, and for separations less than a characteristic distance, 

0 20r  nm (nonretarded regime), the attractive force per unit area is given by (Israelachvili, 

1985) 

 3
( )

6
vdW

A
F r

r
  (12) 

where A  is the Hamaker constant to reflect the strength of the van der Waals interaction for 

two bodies in medium. However, for separations larger than 0r , the attraction is retarded. 

Taking retardation into account, it is proposed (Cheng & Cole, 1988) that the van der Waals 
force per unit area is represented more accurately as 

 0
3 3

0

( )
6 ( )

vdW

rA
F r

r r r r



 (13) 
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The work of adhesion between two surfaces interacting with each other via van der Waals 

interaction can be obtained by integration from contact, 0,vdWr , to infinity (Maboudian & 

Howe, 1997) 

 
2
0,

( )
12

vdW
vdW

A
W r

r
   (14) 

3.1.2 Electrostatic forces 

Electrostatic forces are the forces between charged bodies. Charges are known to accumulate 
from the ambient and migrate across insulating surfaces on silicon chips. Early in the 
development of integrated-circuit (IC) technology, charge migration was the source of 
device instabilities. Transport of both positive and negative ionic species has been observed 
in the presence of lateral electrical fields (Shockley, 1964). Electrostatic attraction may also 
arise due to a difference in the work function of the approaching surfaces. Neglecting the 
internal space charge regions, the force per unit area acting between surfaces with potential 

difference V  separated by an air gap with permittivity 0  is given by 

 
2

0
2

( )
2

el

V
F r

r


  (15) 

and the associated energy is given by 

 
2

0( )
2

el

V
W r

r


   (16) 

3.1.3 Capillary force 
With the presence of a thin liquid film, such as a lubricant or adsorbed water layer at the 
contact interface, menisci will form around the contacting and noncontacting asperities due 
to surface energy effects (Israelachvili, 1985). Fig.4 (a) shows the condition that the amount 
of liquid film volume was large enough to immerse the rough surface. When the mating 
surfaces are pulled apart, meniscus will formed underneath the microstructures. Then the 
liquid meniscus will create a pressure because of the pressure difference across the curved 
liquid-air interface, which is called the capillary pressure (Laplace pressure), and is given by 

 
1 2

1 1
l lP

r r

 

  
 

 (17) 

 

The liquid surface tension is denoted by l , and the two radii of curvature of the liquid 

surface are termed by 1r  parallel to the surface normal of the substrate and 2r  (in the plane 

of the substrate) (Adamson, 1990; Israelachvili,1985). Since in micromechanical structures 
lateral dimensions are often much larger than the vertical spacing, 2 1r r , and in this case, 

Equation (17) simplifies to 

  1 2cos cosl
lP

d

     (18) 
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where 1 , 2  is the upper and lower contact angle of liquid bridge, and d is the separation 

distance between the two surfaces, equal to  1 1 2cos cosr   . On a hydrophilic surface 

( 90   ), such as the native oxide of silicon, the meniscus shape will be concave underneath 

a structure shown in Fig.4 (a). This creates an attractive capillary force that may sufficiently 
strong to pull the compliant structures into contact. 
 

1r
d

1


2


         

    (a)                                                                 (b) 

 

Fig. 4. Wetting and contact angle 

The isolated micromenisci would occur at the contact interface, if the amount of meniscus 

volume were not large enough to immerse all asperities of the rough surface, as shown in 

Fig.4 (b), the meniscus radius at equilibrium is equal to the so-called Kelvin radius kr . It is 

related to the Kelvin equation value and controlled by the relative vapor pressure relative 

humidity (Admoson, 1990). At equilibrium, the meniscus curvature is related to the relative 

vapor pressure ( rH ) by the Kelvin equation: 

 

1

1 2

1 1

log
l

l k
r

v
r

r r RT H




 
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 
 (19) 

where 1r  and 2r  are the two radii of curvature of the meniscus, kr  is the Kelvin radius, l  is 

the surface tension of the liquid, and v  is its molar volume ( 0.54lv RT  nm for water at 

20。C). As two hydrophilic surfaces approach each other in a humid environment, the liquid 

undergoes capillary condensation as soon as the separation equals 

  0 1 2cos coskd r     (20) 

If, after the condensation has occurred, the two surfaces are pulled apart, the volume of the 

condensate is essentially constant and is given by 0wV S d , where wS  is the wetted surface 

area (Maboudian & Howe,1997). The effect of a liquid condensate on the adhesion force per 

unit area between two parallel plates is then given by 

  0
1 22

( ) cos cosl
cap

d
F d

d

     (21) 
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If we assume that, as the two surfaces are pulled apart, the meniscus breaks at a separation 

much larger than 0d , then integrating Equation (21) from 0d  to infinity yields the work of 

adhesion due to capillary forces 

  1 2cos coscap lW      (22) 

3.2 Adhesion models of single asperity 
To better understand the interfacial adhesion of MEMS devices, it is important to provide an 
adequate background of the prior work performed in the area of adhesive rough surface 
contact. For determining the interfacial adhesive behavior, several solutions have been 
developed and many of these theories idealize the asperity in contact with a half rigid flat as 
a spherical shape.  
Hertz theory is the famous continuum contact mode to predict the contact area for various 
geometries. It relates the radius of the circle of contact Ha  to the load P , the spherical 

indenter radius R , and the equivalent elastic modulus of the contacting materials K  by: 

 
3
H

H

Ka
P

R
  (23) 

and between the contact radius Ha  and the indentation depth  , 

 
2
Ha

R
   (24) 

In the presence of surface forces, Hertz theory can underestimate the contact area, especially 
when the load diminishes to zero. Considering the contact between a rigid sphere with half 
rigid flat, the adhesion force aP , between then is given be Bradely theory (Bradley, 1932) as 

 2aP R   (25) 

DMT theory was then proposed by Derjaguin, Muller and Toporov to account for the long-
ranged attraction around the periphery of the contact area. The DMT model gives the 
contact radius DMTa  related to the work of adhesion,  , by 

 
3
DMT

DMT 2
Ka

P R
R

   (26) 

 
2
DMTa

R
   (27) 

It is apparent that DMT is Hertz with an offset due to surface forces. Therefore, DMT theory 
applies to rigid systems, low adhesion and small radii of curvature. JKR theory, described 
by Johnson, Kendall and Roberts, takes the short-ranged attractive forces among the contact 
area into account. It related the contact radius, JKRa , to the work of adhesion ,  , as 
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P Ka
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2 3
JKR JKR62

3

a a

R K


    (29) 

JKR theory applies well to highly adhesive systems that have large radii of curvature and 
low stiffness. To bridge the DMT theory and JKR theory, by following the analysis of Tabor 
(Tabor, 1977; Muller et al., 1980) pointed out that the two theories represented the opposite 
extremes of a dimensionless parameter   given as  

 
2

2 2

R

E




 
    

 (30) 

where   is the equilibrium spacing in the lennard-Jones potential.  can be interpreted as 

the ratio of elastic deformation resulting from adhesion to the effective range of surface 

forces.  

A more complex, yet more accurate, description of sphere–flat adhesion mechanic, which is 
referred as MD model, was formulated by Maugis (Maugis, 1992). By analogy with the 
plastic zone ahead of a crack, the adhesion is represented by a constant additive traction 
acting over an annular region around the contact area. The ratio of the width of the annular 
region to the radius of the contact area is denoted by m. The set of equations relating the 
dimensionless load, approach is 

 
2 2

2 2 1 2 2 1 24
1 1 ( 2) 1 1 1 1

2 3

A A
m m tg m m m tg m

                    
 (31) 

  3 2 2 2 1 21 1P A A m m tg m       (32) 

 2 24
1

3

A
A m


     (33) 

where   is another dimensionless number, called transition parameter  , and is related 

to   by 1.157  . The dimensionless parameters that appear in the above equations are 

defined as follows: 

 
0

1 3
2

2

K R




 , 
P

P
R

 , 

 1 3
2

MDa
A

R K
 , 

 1 3
2 2R K




  , where 

the adhesion work is defined as 0 0h , 0  is the adhesive attraction equals Dugdale stress 

and 0h  is the effective range of Dugdale stress.  

For each previous mentioned theories were presented, there may be cases when 
assumptions made for a given approach do not exactly describe the materials combinations 
or the geometry, which are depicted physically in Fig.5. 
Following the analysis of Maguis, Kim et al (Kim et al., 1998) offers an extension of the MD 
solution by adding to the solution regime when the asperity might not be in physical contact 
but still in the range of adhesion. The KMJ extensions explained by Kim is 

 2 22
1 ( 2)

4 3
c c

         (34) 
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C 
 
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where 

 1 3
2

c
C

R K
 , c  represents the adhesive contact zone radius,   is ratio of  

0gh h , and gh , 0h  are the gap between the deformed asperity at 0r   and r c  

respectively shown in Fig.5(e.) 
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Fig. 5. Interactive forces for the (a). Hertz, (b). DMT, (c). JKR, (d). MD, and (e).KMJ. 

3.3 Adhesion for micro-sized rough surface  

In practice, the contact at the surface interface is governed by asperity interaction. Since the 

surfaces are not smooth, contact of two multiscale rough surfaces will occur only at discrete 

points which sustain the total compressive force. The typical contact interface which is 

formed of contact spots of different sizes that are spatially distributed randomly over the 

interface. The size of contact spots ranges from nanometers to micrometers, making 

adhesion a multiscale phenomenon.  
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3.3.1 Statistical adhesion theories for micro-sized rough surface  

Most contact theories of the rough surface thus far are mostly based upon the conventional 
statistical parameters such as standard deviation of asperity heights, slope and radius of 
curvature (Greenwood & Williamson, 1966; Fuller & Tabor, 1975). The Greenwood-
Williamson (GW) model assumes the surface to be composed of hemispherical asperities all 

having the same radius of curvature R . The summit heights or asperity peaks are 
distributed randomly about a mean summit plane and follow a Gaussian distribution with a 

standard deviation, . If there exists a probability density function ( )z  of asperity heights, 

then it is possible to find the probability that an asperity will be greater than a certain 

height, d . The distance d  represents the length from the mean plane of asperity heights to 

the smooth surface. The probability that an asperity height is greater than d  is given by: 

 ( )d
d

z z


   (37) 

Therefore, it follows that the number of asperities in contact is represented by 

 ( )d
d

n N z z


   (38) 

where N  represents the total number of asperities. 

Having the numerical expressions for the non-dimensional contact radius ( iA ) and load 

( iP ) for a single asperity as a function of  , the total contact area and load can be formed 

(Morrow et al., 2003) 

  
2 32

2
( )dtotal id

R
A N A z z

K

  
 

   
 

  (39) 

  2 ( )dtotal id
P N R P z z 


   (40) 

The asperities that have a height than d  greater than are deformed by a distance z d   . 

Assuming a Gaussian distribution and to have a relationship between   and z , the 

following equation can be obtained: 

 
 22
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id
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dP
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N RP

 
   

            
  (41) 

where   is  1 32 2 2R K  . The above equation is only valid when the smooth surface 

progressively approaches the rough surface until a minimum d  is reached [Fuller and 

Tabor]. Because of the existence of c (  1 32 2 23 4R K  ) to abrupt rupture, or pull-off, the 

asperities will no longer contribute to the adherence force when asperities were extended 

above c . Therefore, Morrow et al made the adjustment of the lower integration limit by the 

amount ( )c  , the adhesion model given above then takes the form: 
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Any term in above equation that has a superscript has been divided by  . The improvement 

equation by Morrow is similar in form to the rough surface integral of Fuller and Tabor, but 

has some important difference. The most important is that the lower integration limit c  and 

cP  are functions of  , which gives the solution validity over the entire range of the transition 

parameter. cP  represents the force at which the system becomes stable under force control. 

The normalization factor ( )cP   is determined by finding the point at which the tangent for 

load deflection curve becomes zero.  c   can also be determined in a similar manner. The 

critical step in obtaining an adhesive rough surface solution is to find the load at which the 

system becomes unstable, i. e. the minimum pull-off force ( minP ). The *d  can be solved by set 

the derivative of Eq. (42) equals to zero (Morrow, 2003).  

3.3.2 Fractal adhesion theories for micro-sized rough surface  

The statistically based adhesive theory can be used with confidence as long as the length 

scale is known before hand (Morrow, 2003). It is well documented that surfaces exhibit 

roughness on many different length scales (Majumdar & Bhushan, 1990; Majumdar, 1989; 

Majumdar & Bhushan, 1991). The topography of any surface can be thought of as roughness 

surperimposed on top of roughness. Majumdar et al (Majumdar & Bhushan, 1990; 

Majumdar & Tien, 1990) have proven that the multi-scale nature for surface roughness can 

be represented by fractal geometry. Then it is reasonable to establish the adhesion model of 

rough interface based on the fractal parameters. Majumdar (Majumdar & Bhushan, 1991) 

has argued that the size distribution of contact spots can be given as: 

 
2

( )
2

D

lsD
n s

s s

   
 

 (44) 

where s  is the contact area and ls  represents the largest spot contact area.  

3.3.2.1 Fractal model for adhesive contact of JKR type 

By assuming that the plasticity plays a minor role in the asperity contact due to the light 
loading conditions, Morrow et al proposed a fractal model for adhesive contact of JKR type 
(Morrow &  Lovell, 2003). The model follows the example set forth by Majumdar and 
Bhushan (Majumdar & Bhushan, 1991). It was assumed that the interference which a 
spherical has with a rigid plane is given by: 

 ( 1) (2 )D DG l    (45) 

where l  is the length scale of the asperity as shown in Fig. 6. 
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A relationship between the truncated and real contact area is developed by equaling the 

interference distance for both the Hertizan truncated and JKR conditions: 
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 (46) 

Following the work of Majumdar and Bhushan, the expression for the interference,  , in 

terms of truncated area s : 

 (2 ) 2( 1) DDG s    (47) 

The radius of curvature at the asperity tip in terms of fractal parameters (Majumdar & 
Bhusha, 1991) 
 

z
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2l2l
      

Contact area, s

Truncated area, s
 

(a) Geometry of contact spot with a given interference    (b) Truncated area and contact area 

Fig. 6. Fractal approximation of asperity contact (Morrow, 2003)  
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Because of the surface attraction, the asperities are stretched when the contacting surfaces 

are pulled away. The critical interference c  is given 
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The critical contact area cs  for adhesion is broken is: 
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Supposing that the size distribution of the asperities, ( )n s , is known, the real area of contact 

can be integrated  
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where ls  represents the truncated area of the largest contact spot and is related with the 

total truncated area S  with 
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 (52) 

Then the pull-off force is  

 ( ) ( )d
l

c

s

s
P P s n s s




    (53) 

The above Equation can be numerically integrated and solved (Morrow, 2003).  

3.3.2.2 Fractal elastic-adhesive model 

Based on the work of Yan and Komvopolous (Yan & Komvopoulos, 1998), Morrow 
proposed a 3D fractal elastic adhesive rough surface solution methodology (Morrow, 2003). 
In order to develop easy to use expressions for the asperity interference, Yan and 

Komvopoulos developed a two-dimensional form of Equation (11) to account for the M  

number of ridges by introducing a multiplicative factor which was eventually set equal to 1. 
This implied that a two-dimensional W-M function could be used to approximate a fractal 
function in three dimensions. Yan states in (Yan & Komvopoulos, 1998) that since the radius 
of curvature of each asperity is much greater than the height of the asperity then this 
relationship can be assumed to be 

 2a R   (54) 

where a  is the truncated contact radius. Then the radius of curvature is: 
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where the truncated contact area s  can be expressed as 
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  (56) 

The fractal relationship for the radius of curvature, R  can be used to modify the transition 

parameter   which is related to fractal dimensions 
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where 0z  is the intermolecular distance. From the fractal adhesion model, it can be found 

that transition parameter   is no more a constant, but a variant with the approaching 
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distance   of the asperity during the adhesive contact process. Then the truncated area for 

each ith asperity can be determined based on a given interference i : 
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 (58) 

Equation 58 can be solved using a fixed point iteration scheme to determine the truncated 
area. It should be noted that the truncated area is used for the first iteration of the algorithm 
only. To solve for the total load and contact area, Morrow proposed a novel numerical 
algorithm. In this algorithm the Maugis-Dugdale solution is used to model the micro-sized 
contact of each asperity. The first step is to generate the surface topography from the fractal 
parameters using W-M function. Next the surface is offset to introduce an initial penetration 
into the rigid plane. The interference, i , of each asperity is determined. Based on this 

interference, the truncated area is subsequently computed for only the asperities that are 
physically interfering with the rigid plane and is then used to compute the radius of 
curvature and transition parameter   for each asperity. Once the truncated area is initially 
determined, the main iteration scheme is started to determine the real area of contact for 
each asperity. Using the values for   and R , the contact radius, m  and com  are computed. 

These values are computed based on the adhesive contact solution of Maugis given in 
Equations (31-33). Once the iterations have converged, the values of the load, iP , and area, 

iS  are added to the totals ( totalP  and totalS ). All interfering asperities are iterated on in this 

fashion and then the surface is moved to the next separation locatio1n and the procedure 
starts once again. 

3.3.2.3 Fractal elastic-plastic adhesion model 

According to Majumdar-Bhushan model (Majumdar & Bhushan, 1991), the truncated area 

cs s   are elastically deformed since they satisfy the condition of c  , whereas asperities 

with cs s   satisfy the plastic flow criterion and are thus considered to be in fully plastic 

deformation state. This result is in disagreement with that derived from the GW model. The 
reason for this disagreement is that the present analysis accounts for the dependence of the 
curvature radius on microcontact area, whereas in the GW model the curvature radius of 
asperity is considered to be invariant. The critical microcontact area for plastic flow of the 
entire asperity is 
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 (59) 

The elastic adhesion of asperities can be analyzed by Morrow method (Morrow, 2003). 
Assuming the asperity is at a fully plastic microcontact, the contact pressure within the 
contact zone is the hardness, H . Then with the Maugis-Dugdale approximation to the 
adhesive interaction, the adhesive contact pressure for the microcontact can be 
approximated as (Peng & Guo, 2007) 
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The adherence force can be obtained by integration over the contact and cohesive zones 
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where 22s a  is the real contact area. When plastically deformed, the contact area s  of the 

microcontact is just the truncated area, which means a a  and is 
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The radius of cohesive zone c  can also be determined by geometrical consideration 
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If l cs s  , both elastic and fully plastic microcontacts exists. Thus the total adherence force 

for the fractal surface includes the elastic adhesion and plastic adhesion forces, which is 

 t ej pj
j j

F P P    (64) 

where ejP  is the adherence force of j th asperity in elastic contact which can be determined 

by MD theory utilizing the Morrow method, and pjP  is the adherence force of j th asperity 

in plastic contact which can be calculated by Equation (61). 

3.3.2.4 Adhesion model for meniscus stiction 

The issue of meniscus force is of critical importance for the microsized interfacial interaction 

mechanism, such as in the magnetic storage hard-disk drives (Bhushan, 1996). For a given 

interacting system and environmental parameters, the Laplace pressure and the meniscus 

height can be assumed to be a constant, whose character is similar to that of the Dugdale 

stress in linear elastic fracture mechanics. To solve the adhesive problem of the capillary 

force due to meniscus, the effective work of adhesion can be defined by the product of the 

meniscus height and Laplace pressure (Xue & Polycarpou,200; Peng et al., 2009) 

 l c lh p    (65) 

Then by substituting the 0  with lp , and 0h  with ch , the above methodology, mentioned 

in section 3.3.2.2 and 3.3.2.3, can be adopted to solve the sitiction problem in presence of 

meniscus. 

4. Summary 

In this chapter, we have attempted to present a description of issues and techniques in the 
interfacial adhesion for the MEMS devices. We firstly discus the complexity of the surface 
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microstructure. Then we present the techniques to characterize the micro-scale surfaces. 
Finally, we introduce the adhesion models to interpret the adhesive interaction of MEMS 
devices.  
It is hoped that the introductions in this chapter can gain the rational understanding leading 
to the design of better MEMS structures in the technologically field. The interpretation of 
interfacial adhesion is challenging for the application of MEMS technology. It is further 
complicated by the inability to observe the interfacial interactions directly, resulting in 
conclusions from inference. The gap between theoretical research of rough surface adhesion 
and the real world where thousands or millions of asperities are involved remains 
enormous. Then it is clear that there is still a great deal of research necessary to obtain a 
comprehensive understanding of adhesion at the microscale. The high-resolution 
instrument should be developed and well calibrated, with which one can measure both the 
microstructure topography and adhesion, especially the biological sample and hydrophilic 
surface. It is essential that the proper data processing method should be presented to reflect 
the intrinsic characters more accurately, and helps to understand the sources of error. 
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