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1. Introduction

Discontinuity detection is studied across disciplines of thermodynamics, chemistry, geology,
manufacturing, equipment maintenance, signal processing, computer architecture (bit
recognition), finance (jump processes to model markets) and image processing. In image
processing an edge is often modeled as a discontinuity (Lindeberg, 1998). Hence discontinuity
detection, can provide edge information for image analysis with applications in robotic vision,
medical imaging, tomography and surveillance etc. Scale-Space theory (Koenderink, 1984;
Lindeberg, 1994; Witkin, 1983), is a framework for multi-scale analysis of function/image.
While there are non-Gaussian Scale-Space representations (Duits et al., 2003), this article is
confined to widely accepted Gaussian Scale-Space (Babaud et al., 1986; Lindeberg, 1994).
Existing Scale-Space literature is focused mainly on developing Scale-Space theory with a
view to:

a. Study impact on underlying signals/images (Babaud et al., 1986; Koenderink, 1984;
Lindeberg, 1998; Romeny, 1994; Witkin, 1983)

b. Determine appropriate scale(s) relevant to the image/signal(Lindeberg, 1994).

c. Extract information and knowledge to develop applications like feature detection,
feature classification, image segmentation, image matching, motion estimation, shape
computation and object recognition etc.

d. Correlate the Scale-Space framework with biological vision (Hubel & Wiesel, 1987;
Koenderink & Doorn, 1992; Koenderink & van Doorn, 1987; Young, 1987).

Current Scale-Space literature, does not adequately explore the statistical component of
Scale-Space. There are contextual applications of various statistical parameters (Rodriguez,
2006; Sakai & Imiya, 2009; Zagal et al., 2000), in contemporary Scale-Space research,
but they are limited in scope to specific applications or/and statistics of image features
like blob volume, clusters, thresholds etc. Researchers would be well-assisted if some
theoretical basis were available for statistical assumptions in Scale-Space. In this article,
we present a theoretical foundation for some statistical assumptions with regard to the
derivative of a discontinuity in Scale-Space. A discontinuity has an infinitesimal existence in
Scale-Space, which leads to the assumption of continuity of underlying image/function in any
conventional Scale-Space analysis (Koenderink, 1984; Lindeberg, 1994). This article reveals
that even though Scale-Space eliminates discontinuity at infinitesimal scale, the Probability
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2 Will-be-set-by-IN-TECH

Density Function (PDF) of the derivative of a discontinuity retains its unbalanced bimodality
in Scale-Space. This chapter makes following theoretical contributions:

1. Derivation of Probability Density Function (PDF) and Cumulative Distribution Function
(CDF) for the derivative of a discontinuity in Scale-Space (Theorem 2).

2. Proof of bimodality (Theorem 3) and unbalance (Theorem 4) of the PDF of the derivative
of a discontinuity in Scale-Space.

3. Proof that the Otsu’s Threshold (OT) (Otsu, 1979) owing to its sensitivity to unbalanced
and bimodal PDFs has different patterns in Scale-Space based on the presence / absence
of a discontinuity:

a. Transient Increase: Discontinuity present.

b. Monotone Decrease: Discontinuity absent.

The above mentioned theoretical results, are then applied for a simultaneous solution of
following problems in image processing (Figure 1):

1. Scale appropriate to the discontinuity.

2. Threshold appropriate to the discontinuity.

3. Boundaries of entities in images.

(a) (b) (c) (d) (e)

Fig. 1. OT Patterns in the absence and presence of a discontinuity (boundary). (a) Banana:
Image with discontinuity (boundary).(b) Grass: Image without discontinuity (boundary). (c)
OT Plots against Scale for “Grass” and “Banana”. � and © : Upper and Lower points of
inflection. (d), (e) Segmentation at lower and upper points of inflection respectively.

2. Statistical distributions of a Gaussian function

The term Gradient Magnitude in Scale-Space (GMSS) will be used hereon to represent

a. In 1-D Non-Discrete Functions The derivative of the Scale-Space representation of the
functions

b. In 2-D Discrete Images The magnitude of the gradient (computed by Sobel operator) of
Scale-Space representation of the images.

In this section, the statistical distributions of the GMSS of a discontinuity will be derived. The
reason for doing so is to show that the PDF of the GMSS of a discontinuity is bimodal and
unbalanced i.e. the probability of one mode far exceeds the probability of the other mode. A
discontinuity is mathematically represented as a step function. Consequently the derivative
of the discontinuity is a Dirac’s Delta (Khuri, 2004) as shown in Figure 2. Convolution of the
Dirac delta (δ)1 with a Gaussian function will result in GMSS of a discontinuity.

1 Since a Dirac’s Delta is zero everywhere except at one point, therefore its PDF will be of the type shown
in Figure 2. The PDF of a Dirac’s Delta exists only at two points i.e. at (x = 0 and x = ∞) and is bimodal
and unbalanced.
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Discontinuity Detection From Inflection of Otsu’s Threshold in Derivative Of Scale-Space 3

Fig. 2. Unit step function Dirac Delta PDF of Dirac Delta

Theorem 1. The GMSS L′(x; t) of a Step function is given by a Gaussian Kernel G(x;t):

L′(x; t) = G(x; t) where

G(x; t) =
e−

x2

2t√
2πt

: Gaussian Kernel at Scale (t)

(−N < x < N : N → ∞) : Domain of the Function

(1)

Proof. For a Step function H(x), the Scale-Space (SS) representation L(x; t) is given by

H(x) =

{

1 i f N > x > 0
0 i f −N < x < 0

}

(2)

L(x; t) = H(x)⊗ G(x; t) (3)

Convolution commutates with differentiation and the derivative of a Step function is a Dirac
Delta (δ̂(x)) (Khuri, 2004) (Figure 2). Consequently:

L′(x; t) =
d

dx
[H(x)⊗ G(x; t)] =

d

dx
[H(x)]⊗ G(x; t) = δ̂(x)⊗ G(x; t)

where δ̂(x) = H′(x) =

{

∞ i f x = 0
0 i f x �= 0

} (4)

A Gaussian Kernel reduces to Dirac Delta at zero Scale i.e (δ̂(x) = G(x; 0)), therefore (4) is
equivalent to the convolution of two Gaussian Functions with scales (t1 = 0, t2 = t). Since
[G(x; t1 + t2) = G(x; t1)⊗ G(x; t2)] (Lindeberg, 1994), therefore (4) simplifies to:

L′(x; t) = G(x; t) where x ∈ 2N

Theorem 1 simplifies the GMSS of a discontinuity to a Gaussian Function, which in turn allows
formulation of the statistical characteristics of the GMSS of a discontinuity.

2.1 PDF of a Gaussian function

Theorem 2. A continuous random variable g which takes the values g ∈ ( 1√
2πt

, 1√
2πt

e
−N2

2t :

N → ∞), given by a Gaussian function G(x; t) has following statistical distributions:

PDF : fg(g) =
t

Ng
√

−tloge(2πtg2)
(5)

CDF : Fg(g) =

√

−tloge(2πtg2)

N
(6)

207Discontinuity Detection from Inflection of Otsu’s Threshold in Derivative of Scale-Space
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4 Will-be-set-by-IN-TECH

Proof. Gaussian function (G(x; t)) is symmetric and provides a one to one, monotonic and
inverse mapping between x and g, in each half of the Cartesian plane. Therefore a uniformly
distributed random variable (X) which takes the values x ∈ (0, N : N → ∞) in the positive
spatial domain of the Gaussian function can derive the PDF and CDF for g. The uniformly
distributed PDF of (X) is given by:

fx(x) =
1

N
where x ∈ {0, N : N → ∞} (7)

The equivalent PDF and the domain for the gaussian variable (g) is given by:

fg(g) where g ∈
{

1√
2πt

,
1√
2πt

e
−N2

2t : N → ∞

}

(8)

The probabilities for both the random variables are equal in the mapped ranges :

∫ g

1√
2πt

fg(g)dg =
∫ x

0
fx(x)dx where

x = G−1(g; t) =
√

−t loge(2πtg2)

(9)

Introducing a change of variable from x to g in the right hand side of (9) and solving:

∫ g

1√
2πt

fg(g)dg =
∫ g

1√
2πt

fx(x)

∥

∥

∥

∥

∥

d[G−1(g; t)]

dg

∥

∥

∥

∥

∥

dg (10)

fg(g) =
t

Ng
√

−tloge(2πtg2)
(11)

The CDF 2 can be computed by integrating the PDF (11):

P[g ≤ g ≤
√

2πt] = Fg(g) =

√

−tloge(2πtg2)

N

Alternate proof of PDF(Fg(g)), can be provided by replacing the value of (x) from (9) in the
CDF (Fx(x) = x/N) of uniformly distributed variable X and then differentiating it w.r.t (g),
which would provide expression (11).

2.2 Bimodality of the PDF of a Gaussian function

Theorem 3. The PDF fg(g) of a Gaussian function is bimodal.

Proof. The bimodality of the PDF can be proved by the existence of exactly one minima in the
PDF ((Eisenberger, 1964; Kemperman, 1991; Schilling et al., 2002)). For a point (g0) belonging

to the domain of the PDF to be a minima, it’s first derivative should be zero ( f
′
g(g0) = 0) and

2 The correctness of the expression can easily be verified by replacing the term (
√

−tloge(2πtg2)) in CDF
with x from (9). This gives (P[0 ≥ X ≥ x] = Fx(x) = x/N) which is the expression of a CDF of a
uniformly distributed variable (X)
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Discontinuity Detection From Inflection of Otsu’s Threshold in Derivative Of Scale-Space 5

(a) PDF (b) CDF (c) Derivatives of the PDF

Fig. 3. PDF, CDF and derivatives (w.r.t. g) of the PDF of a Gaussian Function. The PDF has an
inverse J-Shape. The derivatives show that only one minimum exists in the PDF making it
bimodal.

it’s second derivative should be positive ( f
′′
g (g0) > 0). The first and the second derivatives

(with respect to g) of the PDF are given by:

f
′
g(g) =

t2

Ng2(G−1(g; t))
3
− t

Ng2G−1(g; t)
(12)

f
′′
g (g) =

3t3

Ng3(G−1(g; t))
5
− 3t2

Ng3(G−1(g; t))
3
+

2t

Ng3(G−1(g; t))
(13)

The minima g0 in the PDF can be located from the root(s) of (12)

t2

g2
0(G

−1(g0; t))
3
=

t

g2
0G−1(g0; t)

⇒ g0 =
1√

2eπt
∀ t > 0

(14)

Existence of only one root for the first derivative of the PDF, implies that only one extrema
exists in the PDF. Substituting the value of g0 from (14) into (13) and solving

f
′′
g (g0) = 4

√
2t2(eπ)

3
2 > 0 (15)

From (14) and (15), g0 is the (only) minima in the PDF, therefore it establishes the bimodality
of the PDF (Figure 3).

2.3 Unbalance in modes of the PDF of a Gaussian function

Theorem 4. The bimodal PDF fg(g) of the GMSS of a Step Discontinuity is unbalanced, i.e
the probability of one mode is much greater than the other.

Fg(g0) << 1 − Fg(g0) (16)

209Discontinuity Detection from Inflection of Otsu’s Threshold in Derivative of Scale-Space
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Proof. The probabilities of the two modes separated at g0 can be computed from CDF (6)

P(g ≥ g0) = Fg(g0)

=
g0

N

√

−t loge (2πtg2
0) = (N

√
2eπ)

−1 (17)

P(g < g0) = 1 − Fg(g0) (18)

Dividing (17) by (18) gives the ratio of the probabilities of the two modes:

Fg(g0)

1 − Fg(g0)
=

Limit
N → ∞

1

N
√

2eπ − 1
<< 1 (19)

2.4 Scale life of the GMSS of a discontinuity

Theorem 5. The Scale-Life (SL) of a discontinuity (with a magnitude A), i.e the interval
of scales (t ∈ (0, SL)) within which the discontinuity can be statistically identified by the
unbalanced bimodality of the PDF of the GMSS of a discontinuity is given by:

SL =
A2

2πǫ2
where ǫ = Upper Bound of error (20)

Proof. From Theorem 1 for a discontinuity with a magnitude A, the GMSS will be given by:

L′(x; t) =
Ae−

x2

2t√
2πt

(21)

In a manner similar to proof of Theorem 2, it can be shown that the PDF ( fg(g)) of the

GMSS (21), will be defined in the interval g ∈ (0, A/
√

2πt) with the second mode existing

at (A/
√

2πt). For this mode to be identifiable as a separate mode it should be greater than or
equal to (ǫ) i.e.

A√
2πt

≥ ǫ ⇒ t ≤ A2

2πǫ2
(22)

The concept of an infinitesimal existence of a discontinuity in Scale-Space/Heat Equation
is acknowledged by research community (Gonzalez-Velasco, 1995; Lindeberg, 1994; Widder,
1975), but seldom defined. Theorem 5 provides one (amongst plausibly many) rigorous
definition of the life of a discontinuity, derived from (and therefore limited to) the statistics
of the GMSS of a discontinuity.

Implication of (ǫ): Any discrete application of the theoretical results would invoke the upper
bound of error(ǫ), and therefore needs to be understood in the context of discretization in
general, and selection of histogram bin size in specific (in images/signals). The selection of
bin size inadvertently defines (ǫ) and is dependent on:

1. Physical limitations of the sensor/hardware: E.g.a camera might be able to distinguish 8,
64 or 256 intensity levels depending on 3,6 or 8 bit representation. The upper bound of
error (as measured with respect to absolute ambient intensity) for a 8 bit representation
will be much lower than that of 3 bit representation.
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Discontinuity Detection From Inflection of Otsu’s Threshold in Derivative Of Scale-Space 7

2. Accuracy desired by the user: Even though the sensor is capable of higher precision (or
lower error), an algorithm/user might require a lower precision, wherein the upper bound
of error is artificially set at a higher value.

Hence the ability of algorithms to capture the unbalance and bimodality of the PDF within the
Scale-Life will depend on the precision of the hardware as well as the bin size of the histogram.

2.5 Comments

The theoretical results of this section can be perceived to be at slight variance with the
assumptions and models of a discontinuity in conventional scale-space, and the reasons for
this variance will be discussed in this subsection. The widely accepted norm of ignoring a
discontinuity in Scale-Space and analyzing the underlying signal/image as if it were continuous, can
be attributed to the following factors:

1. Requirement of Scale-Space framework, to comply with the principles of homogeneity
and isotropy, necessitates the framework to remain uncommitted to a gaussian scale.
Consequently modeling a discontinuity as done in heat equation, would result in violation
of the fundamental requirements of Scale-Space.

2. Inadequate Information: Most of the problems of Computer Vision, are related to identifying
the presence/absence of a discontinuity followed by a contextual analysis of the
discontinuity. In the absence of this basic information about the presence of a discontinuity,
much less its properties like the magnitude and location of the discontinuity, it is difficult
to model the transient presence of a discontinuity in Scale-Space.

3. Absence of appropriate model: Even if the location and magnitude of the discontinuity were
available, a model to represent the discontinuity is difficult to prepare, because it leads to a
lot of unanswered questions like how long does the discontinuity last? and, how to model
the transfer from a discontinuous state to a continuous state?

4. Mathematical simplification: Theoretically a discontinuity disappears at an infinitesimal
scale, therefore by ignoring this infinitesimal scale, a continuous model of a discontinuity
can be mathematically justified.

The text (Theorems 1, 2 and 5) so far, is not meant to contradict or discredit existing
conventions of Scale-Space , but to present a mathematically valid alternate representation
of the Scale-Space. As an illustration of alternate (to Scale-Space) representations of a
discontinuity, consider the heat equation (Gonzalez-Velasco, 1995; Widder, 1975). In heat
equation a discontinuity may be explicitly modeled in following mathematically valid
conventions:

1. As a Neumann Boundary Condition which specifies the rate of temperature (equivalent to
intensity) change at the boundary.

2. As a heat source in space delimited by boundaries.

These alternate models adopted by a broader theoretical framework of heat equations,
illustrate the need to represent a discontinuity in forms other than the one adopted in
conventional Scale-Space theory. The PDF of the GMSS of a discontinuity (Theorems 1, 2
and 5)is an alternate representation of a discontinuity, which is unaltered in the Scale-Life
(Theorem 5) including the zeroth scale. The unbalanced bimodality of the PDF can be applied
homogeneously across the scales for the Scale-Life of a discontinuity, without the ambiguity
of modeling or ignoring a transition from a discontinuous state to a continuous state.

211Discontinuity Detection from Inflection of Otsu’s Threshold in Derivative of Scale-Space
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8 Will-be-set-by-IN-TECH

This section provides a mathematical expression for the the PDF of a Gaussian Function, with
a universal applicability for disciplines employing Gaussian Functions e.g. inverse problems
of heat equation, chemical diffusion and Scale-Space Theory. The unbalanced bimodality of
the PDF of a Gaussian Function facilitates interpretation of the second mode of the PDF as a
statistical outlier. Consequently any problem of a discontinuity detection can be reformulated
as a statistical problem of outlier detection. The sections hereon can be viewed as one
application of the general results of this section, wherein a statistical parameter (OT) sensitive
to outlier data, is used to detect a discontinuity in images.

3. OT: Unbalanced histograms

In this section a general review of OT will be presented and an expression of OT for
unbalanced bimodal PDF will be developed for 1-Dimensional function, with a view to
accommodate the GMSS of a discontinuity. OT is statistically generated from a normalized

Fig. 4. Schema: Otsu’s Threshold (which maximizes the Between Class Variance) in a
histogram.

histogram with M bins corresponding to M gray levels in an image (Figure 4). Each bin
represents the percentage of the pixels in the image with corresponding gray level. This
normalized histogram is bifurcated into two classes C0 and C1 at a hypothetical threshold
(k). The hypothetical threshold (k), Means (μ0, μ1) and Standard Deviations (σ0, σ1) of two
classes are shown in Fig 4. The maximum of Between Class Variance (BCV) determines the
appropriate threshold (OT). BCV νB is defined by 23:

νB = ω0(μ0 − μT)
2 + ω1(μ1 − μT)

2

where
(23)

ω0 =
k

∑
i=0

pi, ω1 =
M

∑
i=k+1

pi

0thorder Cumulative Moment for C0 and C1

(24)

μT =
M

∑
i=0

ipi, γk =
k

∑
i=0

ipi

1st order Cumulative Moment up to M and k

(25)
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Discontinuity Detection From Inflection of Otsu’s Threshold in Derivative Of Scale-Space 9

μ0 =
γk

μT
, μ1 =

μT − γk

μT

Mean Gray Levels for C0 and C1 respectively

(26)

pi =
ni

NT
: Normalized probability at gray level i

ni, NT : No of pixels at gray level i, Total pixels
(27)

Theorem 6. OT (which maximizes BCV) is obtained at gray level (k*) defined by:

k∗ =
μ0 + μ1

2
(28)

Proof. Differentiate νB (23) with respect to gray levels (k) and equate to zero. For details see
Lin (2003).

The proof (Lin, 2003) is for histograms, but the results can easily be generalized to continuous
PDFs. One solution of Theorem 6 is when the OT exists at the function/image mean.

Corollary 1. The maximum of BCV is obtained at the image mean ( μT) if and only if the
probabilities of the two classes are equal:

k∗ = μT ⇐⇒ ω0 = ω1 = 0.5 (29)

Proof (If). Substituting ω0 = ω1 = 0.5 in μT (25):

μT = μ0ω0 + μ1ω1

μT = 0.5μ0 + 0.5μ1

μT = k∗ from (28)

Proof (Only if). Equating μT (25) to k∗ (28).

μ0 + μ1

2
= μ0ω0 + μ1ω1

substituting ω0 = 1 − ω1 from (24)

ω0 = ω1 = 0.5

Corollary 1 allows analysis of the OT in terms of the function/image mean, without
constructing a PDF/histogram. Some of the plausible distributions mentioned by Lin (2003)
where Corollary 1 is applicable are unimodal, perfectly balanced bimodal and unbalanced bimodal.
Corollary 1 can be tailored to a PDF containing two linearly separable classes with unbalanced
probabilities (Figure 5). This is done with a view to develop an expression for OT, applicable
to the PDF of a Gaussian function.

Let a random variable Q = {q ∈ (0, qend)} with PDF fq(q) be composed of two populations
(NC, IC) which are linearly separable at (q = ψ) having distributions fnc(q) and fic(q)
respectively, such that

213Discontinuity Detection from Inflection of Otsu’s Threshold in Derivative of Scale-Space
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Fig. 5. OT Schema: (Left) Symmetric PDF and (Right) Unbalanced dual-class PDF (larger
class is Symmetric about its mean)

fq(q) =

{

mnc fnc(q) i f q < ψ
mic fic(q) else

}

where

a.
ψ ∈ (0, qend)

Point of linear separation of two classes

b.
mic =

qend − ψ

qend
, mnc =

ψ

qend
Probabilities of the two classes

c.
μic, μnc

Averages of the two classes

d.
mic << mnc

PDF is Unbalanced

e.
μicmic + μncmnc = μT

Average value of the variable q

f.
μic > μnc

Order of classes

g.
fnc(μnc − q) = fnc(μnc + q)
∀(q < μnc) : fnc(q) �= 0

fnc(q) is symmetric about μnc

(30)

Equation (30) presents a PDF which is a super-set of the PDF of a Gaussian function with
following salient features:

1. It is unbalanced.

2. It is not strictly Bimodal, but accommodates bimodal PDFs.

3. Has an additional requirement of symmetry of the first mode about its mean, which
is satisfied by a Gaussian function’s PDF under limiting conditions (proof follows in
Corollary 2).

Theorem 7. For a PDF of the kind (30), the OT is given by:

k∗ = μnc + mic(μic − μnc)

214 Machine Vision – Applications and Systems
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Discontinuity Detection From Inflection of Otsu’s Threshold in Derivative Of Scale-Space 11

Proof. First consider that the PDF consists of only NC, i.e:

( fq(q) = fnc) ⇐⇒ (ψ = qend, μT = μnc and mic = 0)

The probability of two halves of the PDF separated at a mean value (k∗ = μT) is (ω0 = ω1 =
0.5) (Figure 5 Left). Therefore from Corollary 1:

k∗ = μnc = μT (31)

If class (ic) with a very small probability (mic << mnc) is added to this distribution (Figure 5
Right), then the OT and the PDF mean (μT) will change slightly, because for a very small
change in μT , applicability of Corollary 1 will persist (Lin, 2003):

k∗ = μT = mncμnc + micμic

= μnc + mic(μic − μnc)
(32)

Fig. 6. Schematic illustration of two sets of classes :(C0 and C1) and (NC, IC) in an
unbalanced PDF.

Schematic illustration of two sets of classes as discussed so far: (C0 and C1) and (NC, IC) in
an unbalanced PDF is shown in Fig 6. The First set (IC and NC), appears as two separate
distributions in the PDF. The second set of classes (C0 and C1) exists due to the hypothetical
bifurcation of the PDF at OT. Equation (30) imposes less rigorous conditions for application
of Theorem 7 for unbalanced PDFs as compared to (Lin, 2003). The PDF need not be strictly
bimodal as long as it is unbalanced and the larger class (NC) is symmetric about its mean. In
the next section, Theorem 7, will be adapted specifically for the PDF of a Gaussian function.
The unique inverse J Shape (Figure 3) of the PDF of the Gaussian function implies that the PDF
is concentrated around a value of zero. Thus by providing a rigorous definition of zero ǫ and
its associated spatial domain (δ(t)), following simplifications of Theorem 7 can be achieved:

1. Definition of point ψ in (30) and consequently linear separation of the PDF of the Gaussian
Function into IC and NC.

2. Expressions for average values and the probabilities of the two classes IC and NC.

3. Proof of PDF’s i.e. unbalance mic << mnc.

4. Elimination of need to prove symmetry of bigger class (NC). Proof is provided in the next
section.

215Discontinuity Detection from Inflection of Otsu’s Threshold in Derivative of Scale-Space

www.intechopen.com
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4. OT for a Gaussian function

Formal definition of zero (ǫ) and the corresponding spatial domain δ(t), is obtained from
Cauchy’s Epsilon-Delta (ǫ, δ(t)) definition (Felscher, 2000) as applied to limit of G(x; t) when
x → ∞.

Theorem 8. If (ǫ, δ(t) ∈ ℜ+) represent the real and positive upper bounds of error, for the
Gaussian function (G(x; t)) and the associated spatial variable (x) respectively, where ǫ can be
made infinitesimally small and δ(t) depends continuously on ǫ and scale (t), then the limit of
the Gaussian function when x → ∞ is given by:

Lt
x → ∞

G(x; t) = 0 (33)

Alternatively for a given ǫ and a scale (t) there exists a δ(t), such that for all x belonging to
the interval (‖δ(t)‖ , ‖∞‖], the Gaussian function takes a value less than ǫ:

∃δ(t) : ∀x ∈ (‖∞‖ > ‖x‖ > ‖δ(t)‖) ⇒ ‖G(x; t)‖ < ǫ (34)

Proof. It is trivial to show from the definition of G(x;t) (1), that for a given ǫ following value
of δ(t) provides the interval (‖δ(t)‖ , ‖∞‖] for which (G(x; t) < ǫ):

δ(t) =
√

−t loge (2πtǫ2) (35)

Magnitude (A) instead of unity, will change (35) to:

δ(t) =

√

−t loge(
2πtǫ2

A2
) (36)

Graph of δ(t) from (36) at various ratios of (ǫ/A) for a Step Discontinuity is shown in Figure 7.

Fig. 7. Graph of δ(t) from (36) at various ratios of (ǫ/A) for the GMSS of a Discontinuity.

The graphs show that a maximum exists in each plot. At this point IC and NC can be defined
in the context of the Gaussian Function with the help of ǫ.
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Fig. 8. GMSS of a Unit step (Gaussian) function along with various parameters of IC and NC.

4.1 Definition and statistics: IC and NC

Definition 1. Interface Class (IC) at scale (t) is defined as the spatial domain of the Gaussian
Function where the value of the Gaussian Function is greater than the upper bound of error
(ǫ).

IC(t) = {x ∈ N : G(x; t) > ǫ} ⇒
IC(t) = {x ∈ N : x < δ(t)} (37)

Definition 2. Non-interface Class (NC) at scale (t) is defined as the spatial domain of the
Gaussian Function where the value of the Gaussian Function is lesser than or equal to the
upper bound of error (ǫ).

NC(t) = {x ∈ N : G(x; t) ≤ ǫ} ⇒
NC(t) = {x ∈ N : x ≥ δ(t)} (38)

Figure 8 depicts the two classes IC and NC in the context of a Gaussian Function. Based on
the above definitions the statistics of IC and NC can be determined.

Class Statistic

NC Mean: μnc(t) = 0

Probability: mnc(t) =
N − δ(t)

N

IC Mean: μic(t) =
1

δ(t)

∫ δ(t)

0
G(x; t)dx

Probability: mic(t) =
δ(t)

N

(39)

4.2 Applicability of theorem 7

Corollary 2. Bifurcating the Gaussian function (G(x; t)) or it’s PDF ( fg(g)) at (ψ = ǫ), results
in two classes IC and NC such that:
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1. Two classes have an unbalanced probability.

P[g < ǫ] >> P[g ≥ ǫ] (40)

2. The larger class NC can be assumed to be symmetric about its mean μnc

Proof (Unbalance). Since G(x; t) provides a one to one, monotone mapping from x to g and x
is uniformly distributed over the interval (0, N : N → ∞), therefore the ratio of probability of
NC to IC is given by:

P[g < ǫ]

P[g ≥ ǫ]
=

P[x > δ(t)]

P[x ≤ δ(t)]
=

Lt
N → ∞

N − δ(t)

δ(t)
>> 1 (41)

Proof (Assumption of Symmetry of bigger class). The domain g < ǫ of the NC in the PDF is
infinitesimally small, lesser than the upper bound of error and consequently immeasurable.
The PDF of (NC) can be computed by applying the limits (g → 0+) to (5).

Lim

(g → 0+)
fg(g) =

Lim

(g → 0+)

t

Ng
√

−t loge (2πtg2)
=

√
t

N

Lim

(g → 0+)

1/g
√

loge (2πtg2)−1
(42)

Equation (42) is of the form ( ∞
∞ ), therefore a simplification of (42) is possible by the application

of L’Hopital’s Rule, i.e. differentiating both the numerator and the denominator w.r.t (g).

√
t

N

Lim
(g → 0+)

d
dg (

1
g )

d
dg (

√

loge (2πtg2)−1)
=

√
t

N

Lim
(g → 0+)

√

loge (2πtg2)−1

g
= ∞ (43)

Since the PDF ( fg(g)) has a value of infinity in an infinitesimal interval (g < ǫ), therefore the
PDF in the interval (g < ǫ) can be approximated by a Dirac Delta. The Dirac Delta is the
limiting case of the Symmetric Gaussian Function (with zero standard deviation), therefore
assumption of symmetry of the PDF of the NC is justified.

Corollary 2 implies that Theorem 7 is applicable for a Gaussian function where the IC and NC
are separated at a Gaussian value (G(x; t) = ǫ) or at equivalent space coordinate (x = δ(t)).

Theorem 9. The OT, for the GMSS of a step function is given by:

k∗(t) =
1

N
Er f [δ(t)] where Er f [δ(t)] =

1√
π

∫ δ(t)

0
e−p2

dp (44)

Proof. Replacing (μnc(t) = 0) from (39) in Theorem 7:

k∗(t) = mic(t)μic(t) (45)

Substituting μic(t) and (mic(t)) from (39) and (G(x; t)) from (1) into (45) and solving:

k∗(t) =
δ(t)

Nδ(t)

∫ δ(t)

o

e−
x2

2t√
2πt

dx =
1

N
Er f [δ(t)]
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Plots of OT and δ(t) from Theorem 9 at various ratios of (ǫ/A) are shown in Figure 9. Both
the plots (k∗(t), δ(t)) contain a maximum, which can also be verified by differentiating (44)
and (36) w.r.t scale (t).

Fig. 9. Comparative Graphs of OT [k ∗ (t)] and [δ(t)] against Scale at various ratios of ǫ/A.

5. OT for continuous functions

Theorem 10. The OT for the GMSS of a continuous signal is monotonically decreasing i.e.

k∗(t) > k∗(t + ∆t) ∀ ∆t > 0 (46)

Proof. Due to the Central Limit Theorem, the PDF of the GMSS of a continuous function can
be approximated by a normal (and consequently symmetric) distribution. Therefore from
Corollary 1:

k∗(t) = μT(t) and k∗(t + ∆t) = μT(t + ∆t) (47)

For continuous functions, the Maximum Principle is valid Gonzalez-Velasco (1995); Lindeberg
(1994); Widder (1975). Due to the Maximum principle the GMSS of the continuous function
(and its mean) will be monotonically decreasing with increase of scale (Babaud et al. (1986);
Lindeberg (1994; 1998)), i.e. :

μT(t) > μT(t + ∆t) ∀ ∆t > 0 (48)

Combining (47) and (48)
k∗(t) > k∗(t + ∆t) ∀ ∆t > 0

Comparison of Theorem 9 with Theorem 10 reveals the contrasting patterns for OT when
traced against scale:
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1. Transient Increase: When a discontinuity exists.

2. Monotone Decrease: When a function is continuous.

6. Heuristic and algorithm for simultaneous scale, threshold and discontinuity

detection

In this section, the theoretical results from non-discrete 1-Dimensional functions of the
previous sections will be applied to the analysis of discrete 2-Dimensional images. Specifically
the interface between the entities will be detected. The ideology underpinning this section is
that the edges in images can be broadly classified as

a. Boundary-Edges: These edges correspond to interface between two entities of a 3D physical
world, when projected onto the 2D image surface as a consequence of the process of
image capture (e.g. an edge located at the interface of foreground-background). Since
Boundary-Edges exist at the interface of heterogeneous surfaces or/and processes, the
discrete gradient (Sobel) of Boundary-Edges is computed from dissimilar neighborhoods
leading to a high intensity gradient and also spatial Scarcity, rendering Boundary-Edges
similar to IC of the 1D functions.

b. Non-Boundary-Edges: In contrast, the Non-Boundary-Edges owe their discrete gradient
computation to homogeneous neighborhood, resulting in low gradient and high spatial
probability which is similar to NC of the 1D functions.

This apparent similarity, has empirical support from contemporary literature (Bhanu &
Faugeras, 1982; Lin, 2003; Medina Carnicer & Madrid Cuevas , 2008; Rosin, 2001) wherein
existence of unbalanced histograms for the derivative of images have been reported. The
similarity of the histograms and the associated statistics (probability and mean) of IC and NC
with Boundary-Edges and Non-Boundary edges respectively, allows for the development of
a heuristic to extrapolate Theorem 9 and Theorem 10 for detection of Boundary-Edges. The
problem of Boundary-Edges identification can be subdivided into:

1. Finding the optimum Scale

2. Finding the optimum Threshold at the Scale

3. Locating the interface, as the discontinuity travels in scale-space (Lindeberg, 1994).

To locate the Boundary-Edges, the following heuristic has been evolved which identifies both
the scale and threshold appropriate to the interface using OT.

6.1 Heuristic

In the presence of an inflection in the plot of OT (calculated for the GMSS of an image) against
incremental scale, it can be assumed that a discontinuity due to a foreground-background interface
exists in the image. This discontinuity can be identified by thresholding the GMSS of the image at the
scale and OT corresponding to the upper point of inflection in the plot of OT.

Justification: There are three aspects of the Heuristic i.e. presence of discontinuity, appropriate
scale and appropriate threshold, which need to be justified individually:

1. Presence of a discontinuity: The presence of an inflection only in the presence of discontinuity
has been shown via Theorem 9 and Theorem 10 for functions with and without a
discontinuity respectively.
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2. Scale at upper point of inflection: There is no universally agreed definition of appropriate
scale; hence the justification of appropriate scale is qualitative rather than mathematical.
The upper point of inflection is the scale appropriate for the discontinuity owing to
following reasons:

(a) Lower point of inflection wrongly classifies the pixels as belonging to IC (Figure 10).
Hence for all scales lower than the lower point of inflection, false classification as IC is
a strong possibility.

(b) Experimentally and theoretically (most of the graphs of Figure 9), it has been observed
that often from the lower to the upper point of inflection there is only small difference
of scales. Hence attempting to locate the scale between the upper and lower points of
inflection is mostly futile.

(c) Scales greater than the scale at the upper point of inflection can give comparable results
for the discontinuity identification as the scale at upper point of inflection, but at some
scale greater than the upper point of inflection the IC will cease to exist. In the absence
of a priori information of this scale where IC ceases to exist, using a scale greater than
the one identified by the upper point of inflection, runs the risk of attempting to locate
IC at a scale at which the IC does not exist. Therefore the upper point of inflection is
the best scale for IC detection.

3. OT at upper point of inflection as the threshold:

(a) OT at the upper point of inflection has been chosen as the threshold as it corresponds
to the scale appropriate to the discontinuity.

(b) Minimum False positives: The upper point of inflection represents the highest
threshold intensity (utilizing OT in Scale-Space). Since the average value of the IC is
greater than the rest of the image, therefore the highest threshold results in lowest false
classification of the pixels as IC.

The application of the heuristics is demonstrated in Figure 10, wherein the Boundary-Edges
have been located by thresholding at scale and OT corresponding to upper point of inflection3.
Figure 10(a) depicts a synthetic image comprising of background only. A foreground is
added to the texture of Figure 10(a) as shown in Figure 10(c) resulting in Figure 10(b). OT
plotted against incremental scale for the GMSS of Figures 10(a) and 10(b) results in OT graphs
shown in Figure 10(d), wherein the plot corresponding to the background only image has
a monotonic decay in contrast to the image with a foreground which shows an inflection.
Thresholding the image with the foreground (Figure 10(b)) at scale and OT corresponding to
the upper point of inflection identifies the foreground-background interface.

6.2 Algorithm and results

Based on the Heuristic of the OT for discontinuity detection, a simple algorithm comprising
of following steps can locate Boundary-Edges in images Walia & Jarvis (2009):

3 The detection of the appropriate scale is not for a general discontinuity but conditional to the presence of
a specific discontinuity. The discontinuity should be due to interface and therefore have an unbalanced
histogram similar to the PDF in(30). The scale cannot be identified using the method presented here for
discontinuities which are not due to interfaces.
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(a) Syn 1: Background Only (b) Syn 2: Foreground present (c) Close Up of Syn 2

(d) Plots of OT for (a) and (b) (e) Segmentation: Lower
point of inflection

(f) Segmentation: Upper point
of inflection

Fig. 10. Illustration of Heuristic presented on Synthetic Images. (d) OT plots indicate a
monotonic decay and an inflection in the absence and presence of a foreground (and
consequent Boundary-Edge) respectively. (f) Upper point of inflection detects
Boundary-Edges.

Algorithm 1: Simultaneous detection of scale, discontinuity and threshold in images

Compute the Sobel derivative of the input image;
while Not end of Scale Range do

Convolve the Sobel derivative of the image, with a Gaussian Kernel of current scale;
Compute histogram;
Compute and record OT at current scale;

if Increment of OT in plot against scale exists then
Identify the (scale, OT) pair at which the OT attains a maximum;
Convolve the Sobel derivative of the input image with the scale identified;
Threshold at the OT identified ;

else
Output: No Discontinuity;

This chapter has discussed theoretical concepts behind the evolution of statistics of a
discontinuity. It is difficult to provide a comprehensive comparison between the Algorithm 1
and other contemporary research because usage of statistics of Scale-Space representation of
derivative of image/functions to identify discontinuity is a novel proposition. (Lindeberg,
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1998) has done extensive research in the 1990’s on automatic scale selection with applications
in edge detection which can be used to compare the theory presented in this chapter. The
differences with the approach of (Lindeberg, 1998) are :

1. Assumption of continuity of an edge in Scale-Space by Lindeberg. As a consequence
occasionally (Lindeberg, 1994) relies on maximum principle, which does not hold when
a discontinuity is present (Gonzalez-Velasco, 1995).

2. Lindeberg exploits individual properties (like edge strength, non-maxima suppression,
blob volume, scale-normalized gradient magnitude, directional derivatives etc) of local
spatial features (like blob, edge and ridge) in images, to rank and identify various features.
The theory and algorithm of this article utilize, the collective statistics of image/signal to
identify discontinuity and are therefore immune to errors (Walia & Jarvis, 2009) arising out
of local spatial considerations. Both the approaches have contextual relevance.

OT is a well known method for segmenting images and therefore provides a good benchmark
to compare the performance of the algorithm presented here. A comparison of the
segmentations based on Algorithm 1 with OT is shown in Figure 12. Algorithm 1 had scale
increments of 0.1, and histogram comprised of 255 bins. Figure 12 shows images having well
defined IC. When OT is applied at zeroth scale, the probability mic(0) of IC is very small,
therefore the OT instead of segmenting IC from NC, segments the NC at approximately the
mean of NC (μnc(0)). In comparison tracing the OT in the GMSS of the images, results in
identifying both the scale and threshold appropriate for identifying IC.

The images set used in Figure 12 originate from eclectic sources, without a ground truth so
a simple measure was chosen to compare Algorithm 1 with Otsu’s Algorithm (Otsu, 1979).
The thresholded results of the two algorithms were stored as binary images (Figure 11(b)
and Figure 11(c)). The difference in the number of positives (Figure 11(c)) between the
Otsu’s algorithm and Algorithm 1 expressed as a percentage of the total pixels in the image
determined the improvement in the boundary classification. The average improvement in
classification was computed for the dataset of images shown in Figure 12. Algorithm 1 had
on an average 31.3% better classification of the foreground-background boundary owing to a
reduction in false positives as compared to Otsu’s Algorithm.

(a) Input (b) Otsu’s Algorithm (c) Algorithm 1 (d) Eliminated False
positives

Fig. 11. Algorithm comparison: Number of eliminated false positives (d=b-c) expressed as a
percentage of the total pixels provides the improvement in boundary detection.
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Fig. 12. Segmentation comparison . Column 1 and 4: Images with obvious boundaries.(some
from Berkeley Dataset Martin et al. (2001)). Column 2 and 5:Thresholded by OT. Column 3 and
6: Thresholded at Scale and OT corresponding to inflection of OT.
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7. Conclusion

Theoretical framework along with one application for characterization and identification of
a discontinuity in Scale-Space framework for the derivative of image/function has been
presented. This chapter shows that the PDF of the derivative of a discontinuity is unbalanced
and bimodal in Scale-Space. By taking the derivative of functions/images, the discontinuities
are formulated as outliers with higher average value and low probability. Since OT is a
statistical parameter sensitive to the outliers (smaller mode in bimodal distribution) in a
given data set, therefore it can detect and locate discontinuities. It is likely that many
statistical parameters sensitive to outliers would exhibit similar response to discontinuities
in scale-space.
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