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1. Introduction 

Recent developments in optical and material science have led to remarkable industrial 
applications, such as optical data recording and optical communication. The scope of the 
conventional optical technology can be extended by exploring simple and effective methods 
for detecting light circular polarization; light circular polarization carries single-photon 
information, making it essential in future optical technology, including quantum 
cryptography and quantum communication.  

Light circular polarization is coupled with electron spins in semiconductors (Meier, 1984). 
When circularly polarized light is absorbed in a semiconductor crystal, the angular 
momentum of the light is transferred to the semiconductor, inducing spin-polarized carriers 
though the optical selection rules for interband transitions [see Fig. 1(a)]. This process allows 
conversion of light circular polarization into electron-spin polarization, enabling the 
integration of light-polarization information into spintronic technologies.  

If one can convert electron spin information into an electric signal, light circular polarization 
information can be measured through the above process. Recently, in the field of 
spintronics, a powerful technique for detecting electron spin information has been 
established, which utilizes the inverse spin Hall effect (ISHE) (Saitoh, 2006; Valenzuela, 
2006; Kimura, 2007). The ISHE converts a spin current, a flow of electron spins in a solid, 
into an electric field through the spin-orbit interaction, enabling the transcription of 
electron-spin information into an electric voltage. This suggests that light-polarization 
information can be converted into an electric signal by combining the optical selection rules 
and the ISHE.  

This chapter describes the conversion of light circular polarization information into an 
electric voltage in a Pt/GaAs structure though the optical generation of spin-polarized 
carriers and the ISHE: the photoinduced ISHE (Ando, 2010).  

2. Optical excitation of spin-polarized carriers in semiconductors 

When circularly polarized light is absorbed in a semiconductor, the angular momentum of 
the light is transferred to the material, which polarizes carrier spins in the semiconductor 
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through the spin-orbit interaction (Meier, 1984). This optical generation of spin-polarized 
carriers has been a powerful technique for exploring spin physics in direct band gap 
semiconductors, such as GaAs. In GaAs, the valence band maximum and the conduction 

band minimum are at  with an energy gap Eg = 1.43 eV at room temperature. The valence 
band (p symmetry) splits into fourfold degenerate P3/2 and twofold degenerate P1/2 states, 

which lie  = 0.34 eV below P3/2 at , whereas the conduction band (s symmetry) is 
twofold degenerate S1/2 as schematically shown in Fig. 1(a). In the fourfold degenerate 

P3/2 state, holes can occupy states with values of angular momentum mj = 1/2,3/2, 
corresponding to light hole (LH) and heavy hole (HH) sates, respectively (see Fig. 1(a)). 

Let J, mj be the Bloch states according to the total angular momentum J and its projection 
onto the positive z axis mj. The band wave functions can be expressed as listed in Table 1, 

where S,X,Y, and Z are the wave functions with the symmetry of s, px, py, and px 

orbitals. The interband transitions satisfy the selection rule mj = 1, reflecting absorption 
of the photon's original angular momentum. The probability of a transition involving a 
LH or HH state is weighted by the square of the corresponding matrix element connecting 
it to the appropriate electron state, so that the relative intensity of the optical transition 
between the heavy and the light hole subbands and the conduction band induced by 
circularly polarized light illumination is 3. Thus absorption of photons with angular 

momentum +1 produces three spin-down (mj = 1/2) electrons for every one spin-up (mj 

= 1/2) electron, resulting in an electron population with a spin polarization of 50% in a 
bulk material, where the HH and LH states are degenerate. The relative transition rates 
are summarized in Fig. 1(b). Therefore, because of the difference in the relative intensity, a 
spin-polarized carriers can be generated by the illumination of circularly polarized light. 
Note that the resulting electron spin is oriented parallel or anti-parallel to the propagation 
direction of the incident photon.  

 

Fig. 1. (a) Optical generation of spin-polarized carriers in semiconductors. (b) Interband 
transitions for right and left circularly polarized light illumination.  
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Table 1. Wave functions for the conduction band (CB), heavy hole (HH), light hole (LH), and 
spin-orbit split-off band (SO).  

3. Spin current and inverse spin Hall effect 

A spin current is a flow of electron spins in a solid. One of the driving forces for a spin 

current is a gradient of the difference in the spin-dependent electrochemical potential  

for spin up ( = ↑) and spin down ( = ↓). Here,  = ce, where c is the chemical 

potential. A current density for spin channel is expressed as  

 ,
e


 


 j  (1) 

where  is the electrical conductivity for spin up ( = ↑) and spin down ( = ↓) channel. 

Here, a charge current, a flow of electron charge, is the sum of the current for  = ↑ and ↓ as 

jcj↑j↓:  

  c

1
.

e
       j   (2) 

This flow is schematically illustrated in Fig. 2(a). This flow carries electron charge while the 

flow of spins is cancelled. In contrast, the opposite flow of j↑ and j↓, jsj↑j↓, or   

  s

1
,

e
       j  (3) 

carries electron spins without a charge current. This is a spin current. In nonmagnetic 

materials, a spin current is expressed as js (N/2e)↑↓), since the electrical 

conductivity is spin-independent: ↑↓ =N/2.  

Since charge  is a conserved quantity, the continuity equation of charge is described as  

 c· .
d

dt
   j   (4) 
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Fig. 2. (a) A schematic illustration of a charge current. (b) A schematic illustration of a spin 
current.  

In contrast, spins are not conserved; a spin current decays typically in a length scale of nm to 

m. Therefore, the continuity equation of spins are written as  

 z s z· ,
d

M
dt

  j    (5) 

where Mz is the z component of magnetization. z is defined as the quantization axis. Here, 

( ) / ( ) /z e n n e n n          represents spin relaxation. n is the equilibrium carrier 

density with spin and ’ is the scattering time of an electron from spin state from  to ’. 

Note that the detailed balance principle imposes that N↑/↑↓ = N↓/↓↑, so that in equilibrium 

no net spin scattering takes place, where N denotes the spin dependent density of states at 

the Fermi energy. This indicates that, in general, in a ferromagnet, ↑↓ and ↓↑ are not the 

same. In the equilibrium condition, d/dt=dMz/dt = 0, using the continuity equations, one 
finds the spin-diffusion equations:  

 2 )( 0,           (6) 

  2
2

1
( ) ),(   

         (7) 

where sfD  is the spin diffusion length. D = D↑D↓(N↑ + N↓)/(N↑D↑ + N↓D↓) is the 

diffusion constant. The spin relaxation time sf is given by 1/sf = 1/↑↓ + 1/↓↑. By solving 

the diffusion equations, one can obtain the spatial variation of spin currents generated by 

↑↓. A spin current generated by ↑↓ decays as e/x. Thus a spin current play a key 

role only in a system with the scale of .  

 

Fig. 3. (a) A schematic illustration of the inverse spin Hall effect. (b) Conversion of magnetic 
moment M into electric polarization P'.  
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Fig. 4. (a) A schematic illustration of the magnetic-field H generation from a charge current 

jc according to Ampere's law. (b) A schematic illustration of the electric-field E generation 

from a hypothetical magnetic-monopole current jm according to the electromagnetic duality 

and Ampere's law. (c) A schematic illustration of the electric-field E generation from a pair 

of hypothetical magnetic-monopole currents, jm and jm, or a spin current.  

A spin current can be detected electrically using the inverse spin Hall effect (ISHE), 

conversion of a spin current into an electric field [see Fig. 3(a)]. The ISHE has the same 

symmetry as that of the relativistic transformation of magnetic moment into electric 

polarization, which is derived from the Lorentz transformation, as follows. Consider a 

magnet with the magnetic moment M moving at a constant velocity v along the z axis with 

respect to an observer [see Fig. 3(b)]. This motion of the magnet is a flow of angular 

momentum, meaning an existence of a "spin current". In the observer's coordinate system, 

the Lorentz transformation converts a part of this magnetic moment M into an electric 

dipole moment P' as 

 0
2

1
( ),

1 ( / )v c
   


P v M  (8) 

where c and 0 are the light velocity and the electric constant, respectively. This indicates 

that electric polarization perpendicular to the direction of the magnetic-moment velocity is 

induced.  

This electric-polarization generation can also be regarded as the spin-current version of 

Ampere's law as follows. As shown in Fig. 4(a), when a charge current jc flows, a circular 

magnetic field H is induced around the charge current, according to Ampere's law: rotH = 

jc. If a hypothetical magnetic monopole flows, a circular electric field E is expected to be 

induced around the monopole current jm according to rotE = jm [see Fig. 4(b)], from the 

electromagnetic duality. Although this monopole has never been observed in reality, a 

spin current can be regarded as a pair of the hypothetical monopole currents flowing in 

the opposite directions along the spin current spatial direction. Therefore, a spin current 

may generate an electric field and this field is the superposition of the two electric fields 

induced by this pair of the monopole current, as shown in Fig. 4(c). This spin-current-

induced electric field is identical to the field induced by the dipole moment described by 

Eq. (8).  

In this way, electromagnetism and relativity predict that a spin current generates an electric 
field. According to Eq. (8), however, this electric field is too weak in a vacuum to be detected 
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in reality. In a solid with strong spin-orbit interaction, in contrast, a similar but strong 
conversion between spin currents and electric fields appears, which is the ISHE. 

In a solid, existence of a spin current can be modelled as that two electrons with opposite 

spins travel in opposite directions along the spin-current spatial direction js, as shown in 

Fig. 3(a). Here,  denotes the spin polarization vector of the spin current. The spin-orbit 

interaction bends these two electrons in the same direction and induces an electromotive 

force EISHE transverse to js and , which is the ISHE. The relation among js, EISHE, and  is 

therefore given by (Saitoh, 2006) 

 ISHE ISHE s ,D  E J   (9) 

where DISHE is the ISHE efficiency. This equation is similar to Eq. (8) but this effect may be 

enhanced by the strong spin-orbit interaction in solids. 

The ISHE was recently observed using a spin-pumping method operated by ferromagnetic 

resonance (FMR) and by a non-local method in metallic nanostructures (Saitoh, 2006; 

Valenzuela, 2006; Kimura, 2007). Since the ISHE enables the electric detection of a spin 

current, it will be useful for exploring spin currents in condensed matter.  

4. Photoinduced inverse spin Hall effect: Experiment 

The combination of the optical generation of spin-polarized carriers and the ISHE enables 
direct conversion of light-polarization information into electric voltage in a Pt/GaAs 
interface (Ando, 2010). Figure 5(a) shows a schematic illustration of the Pt/GaAs sample. 
Here, the thickness of the Pt layer is 5 nm. The Pt layer was sputtered on a Si-doped GaAs 

substrate with a doping concentration of ND = 4.7 × 1018 cm3. The surface of the GaAs layer 
was cleaned by chemical etching immediately before the sputtering. Two electrodes are 
attached to the ends of the Pt layer as shown in Fig. 5(a). During the measurement, 

circularly polarized light with a wavelength of  = 670 nm and a power of Ii = 10 mW was 
illuminated to the Pt/GaAs sample as shown in Fig. 5(a). In the GaAs layer, electrons with a 

spin polarization  along the light propagation direction are excited to the conduction band 
by the circularly polarized light due to the optical selection rule. Here, note that hole spin 
polarization plays a minor role in this setup, since it relaxes in ~ 100 fs, which is much faster 
than the relaxation time of ~ 35 ps for electron spin polarization (Hilton, 2002; Kimel, 2001). 
This spin polarization of electrons then travels into the Pt layer across the interface as a pure 
spin current. The injected spin current is converted into an electric voltage by the ISHE in 
the Pt layer due to the strong spin-orbit interaction in Pt (Ando, 2008). Here, note that the 

angle of the light illumination to the normal axis of the film plane is set at 0 = 65° to obtain 
the photoinduced ISHE signal, since the electric voltage due to the photoinduced ISHE is 

proportional to jssin0 because of the relation EISHE  js × , where the spin polarization  is 
directed along the light propagation direction. The difference in the generated voltage 
between illumination with right circularly polarized (RCP) and left circularly polarized 

(LCP) light, VRVL, was measured by a polarization-lock-in technique using a photoelastic 
modulator operated at 50 kHz. The difference in the intensities between RCP and LCP light 
incident on the sample was confirmed to be vanishingly small. All the measurements were 
performed at room temperature at zero applied bias across the junction.  
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In-plane light illumination angle  dependence of VRVL for the Pt/GaAs sample is shown 

in Fig. 5(b), where the in-plane angle  is defined in Fig. 5(a). Figure 5(b) shows that VRVL 

varies systematically by changing the illumination angle . Notable is that this variation is 

well reproduced using a function proportional to cos, as expected for the photoinduced 

ISHE. The relation of the ISHE, EISHE  js × , indicates that the electric voltage due to the 

photoinduced ISHE is proportional to |js × |x  cos, since  and js are directed along the 

light propagation direction and the z axis, respectively. Here, |js × |x denotes the x 

component of js ×  [see Fig. 5(a)]. This electromotive force was found to be disappeared in a 
Cu/GaAs system, where the Pt layer is replaced by Cu with very weak ISHE, supporting 
that ISHE is responsible for the observed electric voltage. 

 

Fig. 5. (a) A schematic illustration of the Pt/GaAs hybrid structure and the photoinduced 

ISHE in the Pt/GaAs system. (b) In-plane illumination angle  dependence of VR−VL 
measured for the Pt/GaAs hybrid structure.  

 

Fig. 6. (a) Ellipticity A of the illuminated light dependence of VR VL. (b) A dependence of 

the ellipticity AGaAs of the light injected into the GaAs layer. (c) A dependence of the 

intensity GaAs
tI  of the light injected into the GaAs layer. (d) A dependence of the degree of 

circular polarization GaAs
circP  of the light injected into the GaAs layer. (e) GaAs

circP dependence 

of R L GaAs
t( ) /V V I .  
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The observed electric voltage signal depends strongly on the ellipticity of the illuminated 
light polarization. Here, the ellipticity A is defined as the ratio of the minor to major 
radiuses of the elliptically polarized light. Figure 6(a) shows the illuminated-light ellipticity 

A dependence of VRVL. As shown in Fig. 6(a), the VRVL signal increases with the 
ellipticity A of the illuminated light. This supports that this signal is induced by the 
photoinduced ISHE, since the angular momentum component of a photon along the light 
propagation direction is zero (maximized) when A = 0 (1).  

5. Photoinduced inverse spin Hall effect: Theory 

The A dependence of VRVL shown in Fig. 6(a) demonstrates that the electric voltage 
observed in the Pt/GaAs junction is induced by the circularly polarized light illumination. 
However, the variation of the electric voltage with respect to A is not straightforward to 

understand; the VRVL signal is not linear to A. In the following, we discuss in detail on the 
experimental result by calculating the polarization of the light injected into the GaAs layer. 

The propagation of light in a multilayer film is characterized by the optical admittance Ys(p) 

= Cs(p)/Bs(p), where s(p) denotes s(p) polarized light. Bs(p) and Cs(p) are expressed as  

 
s(p)s(p)
1

s(p)s(p) s(p)
21

1cos ( sin ) /
,

sin cos

B i

C i

  

  

    
             

  (10) 

where 1 1 12 cos / ,dn     p 1/2
0 0( ,/ ) / cosr r rn     and s 1/2

0 0( / ) cosr r rn     (r = 0, 

1, 2). Here, n0, n1, and n2 are the complex refractive indices for air, Pt, and GaAs, 

respectively. d1 is the thickness of the Pt layer and r is the incident angle of the light defined 

as shown in Fig. 7. Using Bs(p) and Cs(p), the transmittance s(p)s(p) s(p)
t i/T I I  and the 

transmission coefficient s(p)s(p) s(p)
t i/E E   are obtained as 

 
s(p) s(p)

s(p) 0 2
s(p) s(p)s(p) s(p) s(p) s(p) *
0 0

4 [ ]
,

( )( )
T

B C B C

 
 




 
  (11) 

 
ps

ps 0 0 0
s s s p p p

20 0

22 cos
, ,

cosB C B C

  
 

 
 

  (12) 

where s(p)
i(t)I  and s(p)

i(t)E  are the illuminated (transmitted) light intensity and the amplitude of 

the electric field of s(p) polarized light [see Fig. 7], respectively. Here, s(p)
2[ ]  is the real 

part of s(p)
2 . Using Eqs. (11) and (12) with the parameters shown in Table 2, the 

transmittance Ts(p) and the transmission coefficient s(p) for the Pt/GaAs system are obtained 

as shown in Table 3. The calculated transmission coefficients s(p) show that the transmission 
of the s and p polarized light is different. This indicates that the ellipticity of the illuminated 
to the sample is changed during the propagation of the film. The relation between the 
ellipticity AGaAs of the light injected into the GaAs layer and the ellipticity A of the 
illuminated light is shown in Fig. 6(b). Here, AGaAs is obtained using 
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psGaAs ( [ ]/ [ ])A A   . From the value of the ellipticity A, the degree of circular 

polarization Pcirc, the difference in the numbers between RCP and LCP photons, can be 
written as, 

 circ 2

2
,

1

I I A
P

I I A

 

 


 
 

  (13) 

where I+ and I- are the intensities of the RCP and LCP light, respectively. The degree of 

circular polarization GaAs
circP  of the light injected into the GaAs layer is shown in Fig. 6(d), 

which is obtained from the ellipticity shown in Fig. 6(b) using Eq. (13). Here, notable is that 

the degree of circular polarization GaAs
circP  of the light injected into the GaAs layer is 

proportional to the electron spin polarization generated by the circularly polarized light. 
The propagation of the circularly polarized light also changes the intensity of the light as 

pps s
t

s
i

GaA
iI T I T I  . Figure 6(c) shows the light ellipticity A dependence of the intensity 

GaAs
tI  of the light injected into the GaAs layer obtained from  

 
2

pGaAs s
t i2 2

1
.

1 1

A
I T T I

A A

 
     

  (14) 

Here, ps
i i iI I I   is the illuminated light intensity. Since the electric voltage due to the 

photoinduced ISHE is expected to be proportional to the intensity of the absorbed light, or 

the number of spin-polarized carriers generated by the circularly polarized light, one should 

calculate R L GaAs
t( ) /V V I  to compare the electric voltage induced by the circularly 

polarized light for different A. The GaAs
circP  dependence of R L GaAs

t( ) /V V I  is shown in Fig. 

6(e). As shown in Fig. 6(e), R L GaAs
t( ) /V V I  is proportional to GaAs

circP , or the electron spin 

polarization. This is consistent with the prediction of the photoinduced ISHE. Thus both the 

light illumination angle and light ellipticity dependence of the electric voltage support that 

the electric voltage is induced by the ISHE driven by photoinduced spin-polarized carriers.  

 

Table 2. The parameters used in the calculation. n0, n1, and n2 are the complex refractive 

indices for air, Pt, and GaAs, respectively (Adachi, 1993; Ordal, 1983). 0 is the incident angle 
of the illumination to the normal axis of the film plane. d1 is the thickness of the Pt layer and 

 is the wavelength of the light.  

 

Table 3. The transmittance Ts(p) and the transmission coefficient s(p) for the Pt/GaAs hybrid 
structure. 
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Fig. 7. The definition of 0,  1, and  2.  

The photoinduced ISHE allows direct conversion of the circular-polarization information 

Pcirc of the illuminated light into an electric voltage. The relation between VRVL and the 
circular-polarization information Pcirc of the illuminated light can be argued from the linear 

dependence of R L GaAs
t( ) /V V I  on GaAs

circP  shown in Fig. 6(e). For simplicity, we assume 

that the imaginary parts of n2 and s(p) are negligibly small: 2 2[ ]n n   and s(p) s(p)[ ]    

[see Tables 2 and 3]. From Eqs. (11), (12), (13), and (14), one obtains  

 
2

pGaAs s 2 2 2 2
t i2 2

0 0

1 cos
( ) ( ) ,

cos1 1

A n
I I

nA A

 


 
     

  (15) 

 
ps

GaAs
circ p 2 s 2 2

2
,

( ) ( )

A
P

A

 
 




  (16) 

 

Fig. 8. The degree of circular polarization of the illuminated light ellipticity A of the 

illuminated light circP dependence of VR VL.  
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and thus  

 
s

R L 2 2
i circ

0 0

cos
.

cos

pn
V V Q I P

n

  


 
    

 
  (17) 

Here, R L GaAs GaAs
t circ( ) /( )Q V V I P  is the proportionality constant as seen from Fig. 6(e) and 

we used pGaAs s( / )A A  . Since the proportionality constant Q is proportional to sin2 

because of Eq. (9), we obtain 

 pR L s
2 0 i circ( cos tan ) ,V V Q I P       (18) 

where 2 0 2 0sin ( / )sinQ Q Q n n    . Equation (18) shows that, in spite of the inequalities 

of GaAs
t iI I  and GaAs

circ circP P  due to the presence of the top Pt layer and oblique 

illumination, the output signal VRVL is proportional to the degree of circular polarization 
Pcirc of the illuminated light outside the sample. This indicates that the photoinduced ISHE 
can be used as a spin photodetector: the direct conversion of circular polarization 
information into electric voltage. This function is demonstrated experimentally in Fig. 8, in 

which VRVL is proportional to the degree of circular polarization of the illuminated light 
outside the sample.  

6. Conclusion 

The photoinduced inverse spin Hall effect provides a simple way for detecting light circular 
polarization through a spin current. This phenomenon enables the direct conversion of 
light-polarization information into electric voltage in a Pt/GaAs junction. This technique 
will be useful both in spintronics and photonics, promising significant advances in optical 
technology.  
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