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1. Introduction 

Resistance to gemcitabine is the major problem in pancreatic cancer chemotherapy, and 
recent evidence suggests that down-regulation of hTERT mRNA could enhance the 
antitumor efficacy of other well known chemotherapy agents targeting DNA. The aim of 
this study was to evaluate the combined antitumor efficacy of antisense oligonucleotides 
(AS-ODN) targeting hTERT mRNA and gemcitabine in human pancreatic cancer cells. Our 
results showed that transient transfection in clones of the human pancreatic cancer cell lines 
BxPC-3 and Panc-1 with 0.2µM hTERT AS-ODN for 24 h diminished the abundance of hTERT 
mRNA and inhibited telomerase activity, but only resulted in a slightly attenuated ability of 
proliferation. While pretreatment with 0.2µM AS-ODN for 24 h followed by gemcitabine in 
BxPC-3 or Panc-1 cells led to tumor cell growth suppression more significantly than 
gemcitabine alone in MTT, and the IC50 of gemcitabine was reduced to about 8.7 times in 
Panc-1 cells, and 4.2 times in BxPC-3 cells. Likewise, after treatment with gemcitabine for 48 h, 
the AS-ODN-transfected cells exhibited significantly decreased colony formation ability 
relative to the parental cells. Apoptosis analysis indicated that hTERT AS-ODN increased the 
gemcitabine-induced apoptosis in both cell lines. All together, these findings implied that 
hTERT AS-ODN could increase the chemosensitivity of gemcitabine through down-regulation 
of hTERT mRNA expression and inhibition of telomerase activity, which may make it an 
attractive agent for the sensitization of pancreatic cancer cells to gemcitabine.  

Pancreatic cancer is one of the most common causes of cancer death in the world. Surgery is 
the only chance for cure, unfortunately, late diagnosis often results in less than 20% of 
patients for tumor resection [1,2]. Gemcitabine, a novel pyrimidine nucleoside analogue, has 
become the standard first-line chemotherapeutic agent used in patients with pancreatic 
cancer [1]. It is, however, moderately effective, showing a tumor response rate of only 12% 
[3] and a median survival time of 5 months [4]. Increasing the susceptibility of pancreatic 
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cancer cells to gemcitabine, therefore, is of importance to the outcome of therapy. In order to 
investigate the mechanisms of gemcitabine -resistance, multiple mechanisms have been 
proposed, including enhanced NF-kB activation [5], increased activity of Src tyrosine kinase 
and expression of the M2 subunit of ribonucleotide reductase (RRM2) [6], deficiency in 
deoxycytidine kinase (dCK) [7], and altered transport over the cell membrane [8]. Recent 
studies indicate that acquired gemcitabine resistance in pancreatic cancer cells may be 
mainly attributed to an altered apoptotic threshold [9].  

Telomerase is an RNA-dependent DNA polymerase that is rarely present in normal somatic 
cells but is observed in 85% of all cancer cells tested, making the telomerase enzyme an 
attractive target for anticancer therapeutics [10,11]. The human telomerase is composed of a 
constitutively expressed RNA subunit (hTR), human telomerase-associated protein (TEP1) 
and a catalytic protein subunit (hTERT). The protein subunit hTERT is a reverse 
transcriptase, and hTERT expression is the rate-limiting component of the telomerase 
complex and therefore determines telomerase activity [12]. The main function of the 
telomerase is the lengthening and capping of the ends of linear chromosomes, the telomeres 
[13-15].Uncapped or critically shortened telomeres cause cell apoptosis (15). Many labs have 
reported that telomerase may play an active role in the response to DNA damaging agents 
[16-18], and could been implicated in suppression of apoptosis [19]. It has also been 
demonstrated recently that antisense-mediated down-regulation of hTERT quickly induced 
programmed cell death in human tumour cells [20-23] and sensitized cancer cells to DNA 
damaging agents through the activation of the apoptotic program [24-26]. For pancreatic 
cancer, it was not known so far whether hTERT mRNA silencing leads to sensitization to 
gemcitabine as the standard of care for pancreatic cancer. 

In this study, sequence-specific antisense oligonucleotides targeting the coding region of the 
protein component of human telomerase were designed to examine whether hTERT mRNA 
and telomerase activity could be inhibited and chemosensitivity to gemcitabine could be 
increased in pancreatic cancer cells.  

2. Materials and methods 

2.1 Oligonucleotides and drug  

Based on the hTERT gene cDNA sequence (4015 nt; accession no. AF015950), the antisense 
oligonucleotide was designed to be complementary to the translation initiation region of 
hTERT mRNA; the antisense oligodeoxynucleotide sequence (AS-ODN) is 5′-
GGAGCGCGCGGCATCGCGGG-3′; Non-specific oligodeoxynucleotide sequence (NS-
ODN) is 5′-CATTTCTTGCTCTCCACGCG-3′as a control, having the same base number as 
the antisense oligonucleotide but with different sequence. All oligodeoxynucleotides were 
fully phosphorothioate, and were synthesized by Invotrogen (Carlsbad, CA, USA). Their 
lack of significant interfering homology was validated using BLAST analysis. Gemcitabine 
was obtained from Eli Lilly, and the dilutions of gemcitabine were freshly prepared before 
each experiment.  

2.2 Cell culture and transfection  

Pancreatic cancer cell lines BxPC-3 and Panc-1 were kindly provided by the center 
laboratory of the Second Hospital of ChangZhou in China, and were routinely incubated in 
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DMEM (GIBCO BRL) supplemented with 10% fetal calf serum (GIBCO BRL), 4 mM 
glutamine, 50 U/ml penicillin, and 50 µg/ml streptomycin. Cells were grown at 37襖 in a 
humidified chamber of 95% air containing 5% CO2. The transfection procedure of 
oligonucleotides(ODN) was performed according to the user manual of Oligofectamine TM 
Reagent(Invitrogen, Carlsbad, CA, USA). Briefly, The cells were seeded the day before the 
experiment in different culture plates at different density per well at 30% to 50% confluence 
on the day of the experiment, and then were transfected with 0.2µM of Oligofectamine and 
0.2µM of oligonucleotides (ODN) in the serum-free DMEM, incubated at 37襖 for 4 hr, and 
then added different volume of growth medium containing 3× the normal concentration of 
serum according to the different culture plates without removing the transfection mixture. 
To assess ODN uptake, pancreatic cancer cells were transfected with the FITC-labeled ODN, 
and then Flow cytofluorometry (FACScalibur, Becton Dickinson, Franklin Lakes, NJ, USA) 
was used to quantify FITC -positive cells at defined times after transfection. 

2.3 Quantitative RT-PCR  

Pancreatic cancer cell lines BxPC-3 and Panc-1 were harvested with trypsin, washed with 

PBS, and collected by centrifugation at 1,000 rpm for 5 min. Total RNA was extracted using 

SV Total RNA isolation system ( Promega, Madison, WI, USA) following the manufacturer’s 

protocol. And its purity and quality were measured by Bio-visible spectrophotometer 

(Eppendorf, Germany); 1% agarose gel electrophoresis was used to assess the integrity of 

the obtained RNA. cDNA with a total volume of 20µl was synthesized using the reverse 

transcription system containing reverse transcriptase (Promega, Madison, WI, USA) 

according to the recommended protocol by the manufacturer. Real-time quantitative PCR of 

the target hTERT gene and β-actin as internal control was carried out with icycler iQ 

Multicolor Real-time PCR Detection System (Bio-Rad Laboratories, Inc., USA). The 20 μl 

PCR reaction mixture contained 1× primers and probe mixture [Applied Biosystems, Foster 

city , CA. Assay IDs: Hs99999022_m1 (hTERT); Hs99999903 _m1 (β-actin)], 1× Absolute 

QPCR Mix (ABgene, Surrey, UK). The PCR conditions were 50°C for 2 min, 95°C for 15 min, 

followed by 45 cycles at 95°C for 15 s and 60°C for 1 min. Relative gene expression 

quantifications were calculated according to the comparative Ct method using β-actin as an 

endogenous control and commercial human total RNA (BD Clontech, CA, USA) as 

calibrators. Final results were determined by the formula2-ΔΔCT method[27].  

2.4 Telomerase activity assay 

A commercial telomerase PCR ELISA kit (Roche Diagnostics. Scandinavia AB, Stockholm, 

Sweden) was used to determine telomerase activity in cells according to the manufacturer’s 

instructions. Briefly, 5µl amplification product which had been denaturated at room 

temperature for 10 min with 20µl denaturation reagent was hybridized with a digoxigenin-

labeled probe specific for human telomeric repeats. The probe bound to the strand with the 

labeled biotin at the 5' end. The hybrid was immobilized to a streptavidin-coated microtiter 

plate via the biotin-labeled primer at 37 ºC on a shaker for 2 h, and washed 3 times. The 

reaction product was detected with 100µl anti-digoxigeninperoxidase and 100µl peroxidase 

substrate TMB. Color intensities were measured with a model 450 microplate reader (BIO-

RAD) at 450 nm. 
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2.5 Cell viability assay  

Cytotoxicity was determined by CellTiter 96 AQueous One Solution Cell Proliferation Assay 
kit (Promega, Madison, WI, USA). Briefly, ODN-transfected and Oligofactamine- transfected 
cancer cells growing in log-phase were trypsinized and seed at 2×103 cells per well into 96-
well plates and allowed to attach overnight. Medium in each well was replaced with fresh 
medium or medium with various concentrations of drug in at least 6 replicate wells and left 
contact for 48 h. One-fifth volume of CellTiter 96 AQueous One Solution was added to each 
well and incubated for an additional 3 h, Absorbance was determined with a microplate 
reader (BIO-RAD) at 490 nm. The blank control wells were used for zeroing absorbance. 
Each experiment was allocated ten wells containing drug-free medium for the control. The 
inhibition rate (I %) was calculated using the background-corrected absorbance by the 
following equation: I% = 100× (A untreated control well–A experimental well) /A untreated control well. The 
IC50 was defined as the concentration required for 50% inhibition of cell growth. Each 
experiment was performed in triplicate, with representative data presented. 

2.6 Colony-forming cell assay  

Pancreatic tumor cells were transfected with 0.2µM AS-ODN or NS-ODN for 24 h, and then 
the transfected cells were treated with gemcitabine at 0.05μM in BxPC-3 cells and 0.8μM in 
Panc-1cells for 48 h. Subsequently, gemcitabine-treated cells and parental cells (300 cells 
/well) were plated in triplicate in 60-mm Petri dishes. On day 7, the plates were fixed in 70% 
methanol and treated with Giemsa stain. Clonogenic survival was determined by counting 
the macroscopically visible colonies. 

2.7 Apoptosis assay  

Cells quantification of apoptosis cells was performed using an Annexin-V- FITC Apoptosis 
Detection Kit ( Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. 
Briefly, cells were plateded in a 60-mm Petri disk and treated with drugs for 48h .Then cells 
were collected and resuspended in 500µl of binding buffer, and 5µl of Annexin- V-
fluorescein isothiocyanate (FITC) and 5µl of propidium iodide (PI) were added. Analyses 
were performed with a flow cytometer (FACScalibur, Becton Dickinson, Franklin Lakes, NJ, 
USA). 

2.8 Statistical methods  

Values were expressed as means ±standard deviations. Statistical comparison was 
performed using Student’s t-test, and a p value of less than 0.05 was considered statistically 
significant.  

3. Results 

3.1 Assessment of AS-ODN uptake by pancreatic cancer cells 

The use of 0.2µM Oligofectamine allowed a very efficient internalization of ODNs already 
after 4 h of transfection (> 20% FITC-positive cells), and at 24 h, the fluorescence intensity in 
both cell lines reached the strongest (> 30% FITC-positive cells), and then gradually 
decreased (data not shown). In contrast, transfection without Oligofectamine resulted in 
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<10% FITC-positive cells. After a 24-h transfection, the percentages of FITC-positive cells 
could attain to 33.6% in BxPC-3 cells and 41.8% in Panc-1 cells. 

3.2 hTERT antisense oligodeoxynucleotide(AS-ODN) down-regulates hTERT mRNA 
expression and telomerase activity of pancreatic cancer cells  

We first examined the mRNA expression of hTERT mRNA in BxPC-3 and Panc-1 using 
quantitative RT-PCR. The expression levels of hTERT mRNA in Panc-1 cells was higher than 
that in BxPC-3 cells (p＜0.001) (Fig. 1). We further examined whether hTERT AS-ODN could 

downregulate the expression levels of hTERT mRNA in both cell lines. As shown in Fig. 1, 
treatment with 0.2µM hTERT AS-ODN for 24 h down-regulated the levels of hTERT mRNA 
in BxPC-3 to 29 % and in Panc-1 cells to 35 %, relative to the Oligofectamine- treated control. 
While the same concentration of NS-ODN sequence did not down-regulate the levels of 
hTERT mRNA expression in both cell lines. We also examined the effects of gemcitabine on 
the levels of hTERT mRNA expression, and the results showed that gemcitabine alone at 
IC50 for 24 h only led to moderate down-regulation of hTERT mRNA in BxPC-3 cell lines 
and slight up-regulation of that in Panc-1 cell lines. Additionally, we examined the effect of 
suppressing hTERT mRNA on telomerase activity. We found that NS-ODN control clones 
showed significant telomerase activity, equal to parental cells, whereas 0.2µM AS-ODN  

  

Fig. 1. Sequence-specific suppression of hTERT mRNA by hTERT antisense oligonucleotide 
in BxPC-3 cells (A) and Panc-1 cells (B). Both cell lines were treated with 0.2µM ODN or 
gemcitabine at IC50 for 24 h. Cells were harvested for RNA analysis after 24 h incubation. 
Relative gene expression quantifications were calculated according to the comparative Ct 
method. Final results were determined by the formula2-ΔΔCT method. Values represent 
means ± SD, from three independent experiments; *p < 0.001 vs oligofectamine transfected 
BxPC-3 control cells. **p < 0.05 vs oligofectamine transfected control group. 
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clones expressed significantly decreased levels of telomerase activity in both cell lines (Fig. 
2) at 24 h as assessed by TRAP-ELISA Assay. At the same time, we found the level of 
telomerase activity in Panc-1 parental cells was higher than that in BxPC-3 parental cells 
(p=0.003), and gemcitabine at IC50 for 24 h moderately down-regulated the telomerase 
activity in both cell lines(data not shown). 

 

Fig. 2. Telomerase activity in transfected cells of BxPC-3 (A) and Panc-1 (B). Telomerase PCR 
ELISA was performed 24 h after transfection in triplicates. Values represent the mean 
Absorbance ± SD, from three independent experiments; *p < 0.001 vs oligofectamine 
transfected BxPC-3 control cells. **p < 0.001 vs oligofectamine transfected control group. 

3.3 hTERT antisense oligodeoxynucleotide (AS-ODN) increases gemcitabine-induced 
cytotoxicity in pancreatic cancer cells  

We next investigated whether the addition of hTERT AS-ODN could indeed increase 
gemcitabine sensitivity. BxPC-3 and Panc-1 cells were treated with gemcitabine in the 
presence of 0.2µM hTERT AS-ODN at different concentrations. Fig. 3 shows the IC50 value 
of gemcitabine in BxPC-3 and Panc-1 cells were 0.23µM and 7.13µM, respectively. That is 
to say Panc-1 cells were 31-fold more resistant to gemcitabine than BxPC-3 cells, 
suggesting that the more higher expression of hTERT mRNA or telomerase activity, the 
more resistant of cancer cells to gemcitabine. hTERT AS-ODN was able to reduce the IC50 
of gemcitabine to about 8.7 times in Panc-1 cells, and only about 4.2 times in BxPC-3 cells, 
suggesting hTERT antisense oligodeoxynucleotide could increase gemcitabine- induced 
cytotoxicity in both cell lines, and sensitize the gemcitabine -resistant cells. But the same 
concentration NS-ODN control sequence could not increase gemcitabine-induced 
cytotoxicity in both cells (data not shown). At the same time, we found AS-ODN 
treatment at 0.2µM for 24 h resulted in a slightly attenuated ability of proliferation in both 
cell lines (data not shown), suggesting that a lag phase between telomerase inhibition and 
growth inhibition and/or cell death may limited the application of telomerase inhibition 
therapy alone in solid cancer treatment. 
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Fig. 3. hTERT antisense oligodeoxynucleotide(AS-ODN) increases gemcitabine-induced 

cytotoxicity in BxPC-3(A) and Panc-1(B) cells. Briefly, ODN transfected cells and parental 
cells were treated with gemcitabine at different concentrations. The inhibition rate (I %) was 
calculated using the background-corrected absorbance by the following equation: I% = 100× 
(A untreated control well–A experimental well) /A untreated control well. Values represent the mean inhibition 
rates ± SD, from three independent experiments, compared to an untreated control cells. 

 

 

Fig. 4. Cells treatment with gemcitabine (GEM) in presence of AS-ODN exhibited 
significantly decreased colony formation ability in BxPC-3 (A) and Panc-1(B) cells. Briefly, 
cells were transfected with 0.2μM AS-ODN or NS-ODN for 24 h, and then the transfected 
cells and parental cells were treated with gemcitabine at 0.05μM in BxPC-3 cells and 0.8μM 
in panc-1cells for 48 h. Subsequently, gemcitabine-treated cells and parental cells (300 cells/ 
well) were plated in triplicate in 60-mm Petri dishes. On day 7, the plates were fixed in 70% 
methanol and were treated with Giemsa stain. Clonogenic survival was determined by 
counting the macroscopically visible colonies. The relative colony formation ability 
normalized to the untreated parental control is displayed. Data represent the mean values ± 
SD, from three independent experiments. *P<0.05 vs. the group of (control +GEM ).  
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3.4 Cells treatment with gemcitabine in presence of AS-ODN exhibited significantly 
decreased colony formation ability  

To further investigate the combined antitumor efficacy of hTERT AS-ODN and gemcitabine 
in human pancreatic cancer cells, colony formation ability was evaluated by colony 
formation assays. The ability of isolated cells to proliferate and generate colonies was clearly 
reduced in the cells treatment with gemcitabine in presence of AS-ODN, but not in presence 
of NS-ODN (Fig. 4). In particular, treatment with 0.8µM gemcitabine for 48 h, the AS-ODN-
transfected Panc-1 cells showed a remarkable decrease of ≥50% in the relative colony 
number. Furthermore, after treatment with gemcitabine for 48 h, colonies arising from AS-
ODN- transfected cells were smaller than colonies originating from NS-ODN-treated cells or 
parental control cells. 

3.5 hTERT antisense oligodeoxynucleotide increases gemcitabine- induced apoptosis 
in both cell lines  

We further examined whether down-regulation of hTERT mRNA and telomerase activity 
could increase cytotoxicity of gemcitabine by induction of apoptosis. Gemcitabine single agent 
treatment at 0.2µM for 48 h resulted in 30.5% of early apoptosis in BxPC-3 cells, and at 7µM for 
48 h resulted in 15.8% of early apoptosis in Panc-1 cells, but when 0.2µM AS-ODN was 
previously added to both cell lines for 24 h, the effects were dramatically increased to 58.5% 
and 29.2%, respectively. At the same time, the percentages of late apoptosis were increased to 
21.3% in BxPC-3 cells and 18.5% in Panc-1 cells. While when AS-ODN was added alone at 
0.2µM for 24 h, the percentages of early apoptosis in BxPC-3 and Panc-1 cells were only 8.4% 
and 5.2%, respectively, and the same concentration of NS-ODN control sequence resulted in 
the similar percentage of early apoptosis as parental cells (data not shown). Thus, it appears 
that hTERT suppressing might increase gemcitabine -induced apoptosis in both cell lines and 
subsequently lead to an increased cytotoxicity of gemcitabine (see Fig. 5). 

4. Discussion 

Pancreatic cancer has a poor prognosis, even after curative resection. Gemcitabine is 
established as the reference treatment for pancreatic cancer patients [28]. However, clinical 
efficacy with gemcitabine as a single agent remains poor. Gemcitabine-based combinations 
are needed to improve outcomes. In the present study, we evaluated the effect of a 
combined gemcitabine and antisense hTERT gene therapy on tumor growth in human 
BxPC-3 and Panc-1 pancreatic cancer cell lines in vitro. We initially demonstrated that an 
AS-ODN complementary to the translation region of hTERT mRNA inhibited the expression 
of hTERT mRNA and telomerase activity in both cell lines, while gemcitabine alone resulted 
in only moderate down-regulation of hTERT expression in BxPC-3 cells and slight up-
regulation of hTERT expression in Panc-1 cell lines. Then we demonstrated that down-
regulation of the human telomerase reverse transcriptase mRNA and inhibition of 
telomerase activity by AS-ODN could sensitize both cell lines to gemcitabine, leading to 
enhanced cytotoxicity in vitro. These consequences suggest that the anti-proliferative effect 
of the combination gemcitabine and antisense hTERT therapy in human pancreatic cancer 
are mediated through the down-regulation of hTERT mRNA and inhibition of telomerase 
activity. These findings also make an antisense technology for hTERT inhibition therapy an 
attractive approach for the sensitization of pancreatic cancer cells to gemcitabine. 
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Fig. 5. hTERT Antisense oligodeoxynucleotide (AS-ODN) increases gemcitabine-induced 
apoptosis in BxPC-3 (A) and Panc-1(B) cells. Cells quantification of apoptosis cells was 
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performed using an Annexin-V- FITC Apoptosis Detection Kit according to the 
manufacturer’s instructions. Briefly, cells were plateded in a 60-mm Petri disk and treated 
with drugs for 48 h .Then cells were collected and resuspended in 500µl of binding buffer, 
and 5µl of Annexin-V-fluoresce in isothiocyanate (FITC) and 5µl of propidium iodide (PI) 
were added. Analyses were performed with a flow cytometer. A1, B1: both cell lines were 
treated without drug.A2, B2: both cell lines were treated with AS-ODN alone.A3, B3: both 
cell lines were treated with gemcitabine alone.A4, B4: both cell lines were treated with AS-
ODN for 24 h followed by gemcitabine treatment for 48 h. Early apoptotic cells are defined 
as Annexin V-positive, PI- negative cells, late apoptotic cells are defined as Annexin V-
positive, PI- positive cells. 

Telomerase is a ribonucleoprotein enzyme responsible for lengthening and capping the ends 

of linear chromosomes, the telomeres [13-15]. Telomerase activation is required for the 

survival and proliferation of the large majority of tumor cells. Uncapped or critically 

shortened telomeres cause cellular responses such as inhibition of cell proliferation and 

apoptosis. It is currently unclear how telomerase is regulated in human cancer cells. 

Previous studies indicated that telomerase activity is strongly correlated with the abundance 

of hTERT mRNA but not the hTER[29-31], and ectopic expression of hTERT in somatic cells 

is sufficient to restore telomerase activity[32-35].Thus, strategies targeting hTERT may be a 

new approach for inhibition of telomerase activity and gene therapy of cancer. Recent 

studies indicate that down-regulation of hTERT expression or expression of dominant -

negative hTERT could inhibit telomerase activity and prevent the malignant proliferation of 

tumor cells after considerable passages in culture [21,36-38]. In our experiments, we have 

demonstrated that treatment of pancreatic cancer cells with hTERT AS-ODN could down-

regulate the levels of hTERT mRNA expression, inhibit the telomerase activity, but result in 

a slightly attenuated ability of proliferation in both cell lines. In fact, as human cells reduce 

their telomere length by 50-100 base pairs per cell division, a long lag phase is required 

before growth arrest can be obtained, even in cancer cells with relatively short telomeres 

[10,39]. Thus , in present study, the moderate anticancer efficacy of hTERT AS-ODN in both 

cell lines may be independent of telomere shortening ,but partially dependent of the loss of 

the hTERT-mediated capping function of telomerase [40]. 

It was obvious that anti-telomerase therapy alone was not the best selection of cancer 
treatment for its requiring long time to reduce the telomere length [10,39].However, 
transiently transfection of hTERT AS-ODN may enhance the anticancer efficacy of other 
well known chemotherapy agents targeting DNA [25,26]. Gemcitabine (2',2'-
difluorodeoxycytidine, dFdC) is a synthetic pyrimidine nucleoside analogue, the 
diphosphate (dFdCDP) and triphosphate (dFdCTP) forms of the drug play an important 
role in the cytotoxic effect: dFdCDP is an inhibitor of ribonucleotide reductase, while 
dFdCTP is incorporated into DNA, both leading to the inhibition of DNA synthesis and 
making genomic instability[41]. Thus, we speculate that hTERT mRNA silencing may lead 
to sensitization of pancreatic cancer cells to gemcitabine. Our study showed that hTERT AS-
ODN significantly increased the gemcitabine- induced cytotoxicity in both cell lines, 
especially sensitize the gemcitabine -resistant cells. Apoptosis test further demonstrated that 
hTERT suppressing could increase gemcitabine-induced apoptosis in both cell lines, but the 
same concentration NS-ODN control sequence could not increase gemcitabine-induced 
cytotoxicity in any of pancreatic cancer cell lines. The similar results were also acquired by 
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other report in the bladder cancer cell lines [26]. Assessment of AS-ODN uptake showed 
that Panc-1 cells are more easily to be transfected with Oligofectamine than BxPC-3 cells, 
which might partly explain why the sensitizing effects of hTERT AS-ODN on Panc-1 cells 
are more obvious than on BxPC-3 cells. 

It is not clear of the relationship between the expression levels of telomerase activity or 
hTERT mRNA and chemotherapy resistanse. In our study, we initially found that the 
expression levels of hTERT mRNA and telomerase activity in Panc-1 cells were higher than 
those in BxPC-3 cells. Then we found Panc-1 cells were 31-fold more resistant to gemcitabine 
than BxPC-3 cells. It seems that the more higher expression of hTERT mRNA or telomerase 
activity, the more resistant of cancer cells to gemcitabine. Our following study showed that 
down- regulation of hTERT mRNA and telomerase activity could increase the sensitivity of 
cancer cells to gemcitabine, especially could restore the sensitivity of gemcitabine-resistant 
cells to gemcitabine, which indirectly denmonstrated hTERT mRNA or telomerase may be 
implicated in gemcitabine resistance. Xi and his associates introduced vectors encoding 
dominate negative (DN)-hTERT, wild-type (WT)-hTERT, or a control vector expressing only 
a drug-resistance marker into HeLa cells. Results showed that DN-hTERT transfected HeLa 
cells with shortened telomeres were more susceptible to multiple chemotherapeutic agents 
and radiation. WT-hTERT transfected HeLa cells with longer telomeres exhibited resistance 
to radiation and chemotherapeutic agents [42]. Our results showed that at least in part, 
gemcitabine resistance was associated with the high expression of hTERT mRNA or high 
telomerase activity.  

In conclusion, our results demonstrate that down-regulation of hTERT mRNA and 
inhibition of telomerase activity by hTERT AS-ODN could increase the sensitivity of 
pancreatic cancer cells to gemcitabine and especially sensitize the gemcitabine -resistant 
cells. These findings should further be explored in vivo. 
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